This commit is contained in:
2025-01-05 02:45:37 -05:00
parent f9a91cbcf6
commit 035ea2de67
10 changed files with 579 additions and 1056 deletions

View File

@@ -315,403 +315,7 @@ static void ledc_init (void) {
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_4));
}
/* ESP-NOW */
// Wi-Fi should start before using ESP-NOW
static void wifi_init()
{
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_storage(WIFI_STORAGE_RAM) );
ESP_ERROR_CHECK( esp_wifi_set_mode(ESPNOW_WIFI_MODE) );
//ESP_ERROR_CHECK( esp_wifi_set_mode(CONFIG_ESPNOW_WIFI_MODE_STATION_SOFTAP) );
ESP_ERROR_CHECK( esp_wifi_start());
ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
}
static void espnow_send_cb (const uint8_t *mac_addr, esp_now_send_status_t status) {
espnow_event_t evt;
espnow_event_send_cb_t *send_cb = &evt.info.send_cb;
if (mac_addr == NULL) {
ESP_LOGE(TAG, "Send cb arg error");
return;
}
evt.id = ESPNOW_SEND_CB; //EXAMPLE_ESPNOW_SEND_CB;
memcpy(send_cb->mac_addr, mac_addr, ESP_NOW_ETH_ALEN);
send_cb->status = status;
if (xQueueSend(espnow_queue, &evt, ESPNOW_MAXDELAY) != pdTRUE) {
ESP_LOGW(TAG, "Send send queue fail");
}
}
static void espnow_recv_cb (const esp_now_recv_info_t *recv_info, const uint8_t *data, int len) {
espnow_event_t evt;
espnow_event_recv_cb_t *recv_cb = &evt.info.recv_cb;
uint8_t * mac_addr = recv_info->src_addr;
uint8_t * des_addr = recv_info->des_addr;
if (mac_addr == NULL || data == NULL || len <= 0) {
ESP_LOGE(TAG, "Receive cb arg error");
return;
}
if (IS_BROADCAST_ADDR(des_addr)) {
/* If added a peer with encryption before, the receive packets may be
* encrypted as peer-to-peer message or unencrypted over the broadcast channel.
* Users can check the destination address to distinguish it.
*/
ESP_LOGD(TAG, "Receive broadcast ESPNOW data");
}
else {
ESP_LOGD(TAG, "Receive unicast ESPNOW data");
}
evt.id = ESPNOW_RECV_CB;
memcpy(recv_cb->mac_addr, mac_addr, ESP_NOW_ETH_ALEN);
recv_cb->data = malloc(len);
// Display payload received.
ESP_LOGW(TAG, "Received payload: %x", (unsigned int)recv_cb->data);
if (recv_cb->data == NULL) {
ESP_LOGE(TAG, "Malloc receive data fail");
return;
}
memcpy(recv_cb->data, data, len);
recv_cb->data_len = len;
if (xQueueSend(espnow_queue, &evt, ESPNOW_MAXDELAY) != pdTRUE) {
ESP_LOGW(TAG, "Send receive queue fail");
free(recv_cb->data);
}
}
/* Parse received ESPNOW data. */
int espnow_data_parse(uint8_t *data, uint16_t data_len, uint8_t *state, uint16_t *seq, uint32_t *magic)
{
espnow_data_t *buf = (espnow_data_t *)data;
uint16_t crc, crc_cal = 0;
if (data_len < sizeof(espnow_data_t)) {
ESP_LOGE(TAG, "Receive ESPNOW data too short, len:%d", data_len);
return -1;
}
*state = buf->state;
*seq = buf->seq_num;
*magic = buf->magic;
crc = buf->crc;
buf->crc = 0;
crc_cal = esp_crc16_le(UINT16_MAX, (uint8_t const *)buf, data_len);
// Display received data.
ESP_LOGW(TAG, "Received data size: %d", data_len);
ESP_LOGW(TAG, "Payload: %x", (uint8_t)buf->payload);
ESP_LOGW(TAG, "payload[0] = %x", (uint8_t)buf->payload[0]);
ESP_LOGW(TAG, "payload[1] = %x", (uint8_t)buf->payload[1]);
if (crc_cal == crc) {
return buf->type;
}
return -1;
}
void espnow_data_prepare(espnow_send_param_t *send_param) {
// Data struct
espnow_data_t *buf = (espnow_data_t *)send_param->buffer;
assert(send_param->len >= sizeof(espnow_data_t));
buf->type = IS_BROADCAST_ADDR(send_param->dest_mac) ? ESPNOW_DATA_BROADCAST : ESPNOW_DATA_UNICAST;
buf->state = send_param->state;
buf->seq_num = espnow_seq[buf->type]++;
buf->crc = 0;
buf->magic = send_param->magic;
/* Fill all remaining bytes after the data with random values */
buf->payload[0] = (uint8_t)3;
buf->payload[1] = (uint8_t)3;
//esp_fill_random(buf->payload, send_param->len - sizeof(espnow_data_t));
ESP_LOGW(TAG, "payload[0]: %x", buf->payload[0]);
ESP_LOGW(TAG, "payload[1]: %x", buf->payload[1]);
buf->crc = esp_crc16_le(UINT16_MAX, (uint8_t const *)buf, send_param->len);
}
static void espnow_task (void *pvParameter) {
espnow_event_t evt;
uint8_t recv_state = 0;
uint16_t recv_seq = 0;
uint32_t recv_magic = 0;
bool is_broadcast = false;
int ret;
esp_err_t task_status;
vTaskDelay(5000 / portTICK_PERIOD_MS);
ESP_LOGI(TAG, "Start sending broadcast data");
/* Start sending broadcast ESPNOW data. */
// Retrieve send parameters passed as reference.
espnow_send_param_t *send_param = (espnow_send_param_t *)pvParameter;
// Send data to the destination MAC address.
if (esp_now_send(send_param->dest_mac, send_param->buffer, send_param->len) != ESP_OK) {
ESP_LOGE(TAG, "Send error");
espnow_deinit(send_param);
vTaskDelete(NULL);
}
while (xQueueReceive(espnow_queue, &evt, portMAX_DELAY) == pdTRUE) {
switch (evt.id) {
// Send Callback
case ESPNOW_SEND_CB:
{
espnow_event_send_cb_t *send_cb = &evt.info.send_cb;
is_broadcast = IS_BROADCAST_ADDR(send_cb->mac_addr);
ESP_LOGD(TAG, "Send data to "MACSTR", status1: %d", MAC2STR(send_cb->mac_addr), send_cb->status);
if (is_broadcast && (send_param->broadcast == false)) {
break;
}
if (!is_broadcast) {
send_param->count--;
if (send_param->count == 0) {
ESP_LOGI(TAG, "Send done");
espnow_deinit(send_param);
vTaskDelete(NULL);
}
}
/* Delay a while before sending the next data. */
if (send_param->delay > 0) {
vTaskDelay(send_param->delay/portTICK_PERIOD_MS);
}
ESP_LOGI(TAG, "send data to "MACSTR"", MAC2STR(send_cb->mac_addr));
// Copy destination MAC address to the parameters struct.
memcpy(send_param->dest_mac, send_cb->mac_addr, ESP_NOW_ETH_ALEN);
// Append data struct to the parameters struct.
espnow_data_prepare(send_param);
/* Send the next data after the previous data is sent. */
if (esp_now_send(send_param->dest_mac, send_param->buffer, send_param->len) != ESP_OK) {
ESP_LOGE(TAG, "Send error");
espnow_deinit(send_param);
vTaskDelete(NULL);
}
/*
task_status = esp_now_send(send_param->dest_mac, send_param->buffer, send_param->len);
if (task_status != ESP_OK) {
ESP_LOGE(TAG, "Send error");
espnow_deinit(send_param);
vTaskDelete(NULL);
}*/
break;
}
// Receive callback.
case ESPNOW_RECV_CB:
{
espnow_event_recv_cb_t *recv_cb = &evt.info.recv_cb;
ret = espnow_data_parse(recv_cb->data, recv_cb->data_len, &recv_state, &recv_seq, &recv_magic);
free(recv_cb->data);
/*
======== BROADCAST ========
*/
// If data was sent to all devices (broadcast)
if (ret == ESPNOW_DATA_BROADCAST) {
ESP_LOGI(TAG, "Receive %dth broadcast data from: "MACSTR", len: %d", recv_seq, MAC2STR(recv_cb->mac_addr), recv_cb->data_len);
/* If MAC address does not exist in peer list, add it to peer list. */
if (esp_now_is_peer_exist(recv_cb->mac_addr) == false) {
esp_now_peer_info_t *peer = malloc(sizeof(esp_now_peer_info_t));
if (peer == NULL) {
ESP_LOGE(TAG, "Malloc peer information fail");
espnow_deinit(send_param);
vTaskDelete(NULL);
}
memset(peer, 0, sizeof(esp_now_peer_info_t));
peer->channel = CONFIG_ESPNOW_CHANNEL;
peer->ifidx = ESPNOW_WIFI_IF;
peer->encrypt = true;
memcpy(peer->lmk, CONFIG_ESPNOW_LMK, ESP_NOW_KEY_LEN);
memcpy(peer->peer_addr, recv_cb->mac_addr, ESP_NOW_ETH_ALEN);
ESP_ERROR_CHECK( esp_now_add_peer(peer) );
free(peer);
}
/* Indicates that the device has received broadcast ESPNOW data. */
if (send_param->state == 0) {
send_param->state = 1;
}
/* If receive broadcast ESPNOW data which indicates that the other device has received
* broadcast ESPNOW data and the local magic number is bigger than that in the received
* broadcast ESPNOW data, stop sending broadcast ESPNOW data and start sending unicast
* ESPNOW data.
*/
if (recv_state == 1) {
/* The device which has the bigger magic number sends ESPNOW data, the other one
* receives ESPNOW data.
*/
if (send_param->unicast == false && send_param->magic >= recv_magic) {
ESP_LOGI(TAG, "Start sending unicast data");
ESP_LOGI(TAG, "send data to "MACSTR"", MAC2STR(recv_cb->mac_addr));
/* Start sending unicast ESPNOW data. */
memcpy(send_param->dest_mac, recv_cb->mac_addr, ESP_NOW_ETH_ALEN);
espnow_data_prepare(send_param);
if (esp_now_send(send_param->dest_mac, send_param->buffer, send_param->len) != ESP_OK) {
ESP_LOGE(TAG, "Send error");
espnow_deinit(send_param);
vTaskDelete(NULL);
}
else {
send_param->broadcast = false;
send_param->unicast = true;
}
}
}
}
/*
======== UNICAST ========
*/
// If data was sent to the specific device (unicast)
else if (ret == ESPNOW_DATA_UNICAST) {
ESP_LOGI(TAG, "Receive %dth unicast data from: "MACSTR", len: %d", recv_seq, MAC2STR(recv_cb->mac_addr), recv_cb->data_len);
/* If receive unicast ESPNOW data, also stop sending broadcast ESPNOW data. */
send_param->broadcast = false;
}
else {
ESP_LOGI(TAG, "Receive error data from: "MACSTR"", MAC2STR(recv_cb->mac_addr));
}
break;
}
default:
ESP_LOGE(TAG, "Callback type error: %d", evt.id);
break;
}
}
}
static esp_err_t espnow_init(void) {
espnow_send_param_t *send_param;
espnow_queue = xQueueCreate(ESPNOW_QUEUE_SIZE, sizeof(espnow_event_t));
// Confirm that queue exists, and continue if so.
if (espnow_queue == NULL) {
ESP_LOGE(TAG, "Create ESP-NOW mutex failed.");
return ESP_FAIL;
}
/* Initialize ESPNOW and register sending and receiving callback function. */
ESP_ERROR_CHECK( esp_now_init() );
ESP_ERROR_CHECK( esp_now_register_send_cb(espnow_send_cb) );
ESP_ERROR_CHECK( esp_now_register_recv_cb(espnow_recv_cb) );
#if CONFIG_ESPNOW_ENABLE_POWER_SAVE
ESP_ERROR_CHECK( esp_now_set_wake_window(CONFIG_ESPNOW_WAKE_WINDOW) );
ESP_ERROR_CHECK( esp_wifi_connectionless_module_set_wake_interval(CONFIG_ESPNOW_WAKE_INTERVAL) );
#endif
/* Set primary master key in menuconfig. */
ESP_ERROR_CHECK( esp_now_set_pmk((uint8_t *)CONFIG_ESPNOW_PMK) );
/* Add broadcast peer information to peer list. */
esp_now_peer_info_t *peer = malloc(sizeof(esp_now_peer_info_t));
if (peer == NULL) {
ESP_LOGE(TAG, "Malloc peer information fail");
vSemaphoreDelete(espnow_queue);
esp_now_deinit();
return ESP_FAIL;
}
memset(peer, 0, sizeof(esp_now_peer_info_t));
peer->channel = CONFIG_ESPNOW_CHANNEL;
peer->ifidx = ESPNOW_WIFI_IF;
peer->encrypt = false;
memcpy(peer->peer_addr, broadcast_mac, ESP_NOW_ETH_ALEN);
ESP_ERROR_CHECK( esp_now_add_peer(peer) );
free(peer);
/* Initialize sending parameters. */
send_param = malloc(sizeof(espnow_send_param_t));
if (send_param == NULL) {
ESP_LOGE(TAG, "Malloc send parameter fail");
vSemaphoreDelete(espnow_queue);
esp_now_deinit();
return ESP_FAIL;
}
memset(send_param, 0, sizeof(espnow_send_param_t));
send_param->unicast = false;
send_param->broadcast = true;
send_param->state = 0;
// The higher the magic number is, the lower the priority of the device is
// higher number -> receiver
send_param->magic = 55;//esp_random(); // Arbitrary number that determines which device is sender/receiver.
send_param->count = CONFIG_ESPNOW_SEND_COUNT;
send_param->delay = CONFIG_ESPNOW_SEND_DELAY;
send_param->len = CONFIG_ESPNOW_SEND_LEN;
// Maximum data length is ESP_NOW_MAX_DATA_LEN = 250
send_param->buffer = malloc(CONFIG_ESPNOW_SEND_LEN); // malloc(sizeof(message)); // malloc(CONFIG_ESPNOW_SEND_LEN); // Data to be sent?
if (send_param->buffer == NULL) {
ESP_LOGE(TAG, "Malloc send buffer fail");
free(send_param);
vSemaphoreDelete(espnow_queue);
esp_now_deinit();
return ESP_FAIL;
}
memcpy(send_param->dest_mac, broadcast_mac, ESP_NOW_ETH_ALEN);
espnow_data_prepare(send_param);
xTaskCreate(espnow_task, "robot_espnow_task", 2048, send_param, 4, NULL);
return ESP_OK;
}
static void espnow_deinit(espnow_send_param_t *send_param)
{
free(send_param->buffer);
free(send_param);
vSemaphoreDelete(espnow_queue);
esp_now_deinit();
}
static bool IRAM_ATTR s_conv_done_cb(adc_continuous_handle_t handle, const adc_continuous_evt_data_t *edata, void *user_data)
{
BaseType_t mustYield = pdFALSE;
//Notify that ADC continuous driver has done enough number of conversions
vTaskNotifyGiveFromISR(s_task_handle, &mustYield);
return (mustYield == pdTRUE);
}
static void continuous_adc_init(adc_channel_t *channel, uint8_t channel_num, adc_continuous_handle_t *out_handle)
{
adc_continuous_handle_t handle = NULL;
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = 1024,
.conv_frame_size = READ_LEN,
};
ESP_ERROR_CHECK(adc_continuous_new_handle(&adc_config, &handle));
adc_continuous_config_t dig_cfg = {
.sample_freq_hz = 20 * 1000,
.conv_mode = ADC_CONV_MODE,
.format = ADC_OUTPUT_TYPE,
};
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
dig_cfg.pattern_num = channel_num;
for (int i = 0; i < channel_num; i++) {
adc_pattern[i].atten = ADC_ATTEN;
adc_pattern[i].channel = channel[i] & 0x7;
adc_pattern[i].unit = ADC_UNIT;
adc_pattern[i].bit_width = ADC_BIT_WIDTH;
ESP_LOGI(TAG, "adc_pattern[%d].atten is :%"PRIx8, i, adc_pattern[i].atten);
ESP_LOGI(TAG, "adc_pattern[%d].channel is :%"PRIx8, i, adc_pattern[i].channel);
ESP_LOGI(TAG, "adc_pattern[%d].unit is :%"PRIx8, i, adc_pattern[i].unit);
}
dig_cfg.adc_pattern = adc_pattern;
ESP_ERROR_CHECK(adc_continuous_config(handle, &dig_cfg));
*out_handle = handle;
}
void motors_task (void *pvParameter) {}
static void led_task (void *arg) {