import { ROM } from "./rom.js"; export class ESP32S2ROM extends ROM { constructor() { super(...arguments); this.CHIP_NAME = "ESP32-S2"; this.IMAGE_CHIP_ID = 2; this.IROM_MAP_START = 0x40080000; this.IROM_MAP_END = 0x40b80000; this.DROM_MAP_START = 0x3f000000; this.DROM_MAP_END = 0x3f3f0000; this.CHIP_DETECT_MAGIC_VALUE = [0x000007c6]; this.SPI_REG_BASE = 0x3f402000; this.SPI_USR_OFFS = 0x18; this.SPI_USR1_OFFS = 0x1c; this.SPI_USR2_OFFS = 0x20; this.SPI_MOSI_DLEN_OFFS = 0x24; this.SPI_MISO_DLEN_OFFS = 0x28; this.SPI_W0_OFFS = 0x58; this.SPI_ADDR_REG_MSB = false; this.MAC_EFUSE_REG = 0x3f41a044; // ESP32-S2 has special block for MAC efuses this.UART_CLKDIV_REG = 0x3f400014; this.SUPPORTS_ENCRYPTED_FLASH = true; this.FLASH_ENCRYPTED_WRITE_ALIGN = 16; // todo: use espefuse APIs to get this info this.EFUSE_BASE = 0x3f41a000; this.EFUSE_RD_REG_BASE = this.EFUSE_BASE + 0x030; // BLOCK0 read base address this.EFUSE_BLOCK1_ADDR = this.EFUSE_BASE + 0x044; this.EFUSE_BLOCK2_ADDR = this.EFUSE_BASE + 0x05c; this.EFUSE_PURPOSE_KEY0_REG = this.EFUSE_BASE + 0x34; this.EFUSE_PURPOSE_KEY0_SHIFT = 24; this.EFUSE_PURPOSE_KEY1_REG = this.EFUSE_BASE + 0x34; this.EFUSE_PURPOSE_KEY1_SHIFT = 28; this.EFUSE_PURPOSE_KEY2_REG = this.EFUSE_BASE + 0x38; this.EFUSE_PURPOSE_KEY2_SHIFT = 0; this.EFUSE_PURPOSE_KEY3_REG = this.EFUSE_BASE + 0x38; this.EFUSE_PURPOSE_KEY3_SHIFT = 4; this.EFUSE_PURPOSE_KEY4_REG = this.EFUSE_BASE + 0x38; this.EFUSE_PURPOSE_KEY4_SHIFT = 8; this.EFUSE_PURPOSE_KEY5_REG = this.EFUSE_BASE + 0x38; this.EFUSE_PURPOSE_KEY5_SHIFT = 12; this.EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT_REG = this.EFUSE_RD_REG_BASE; this.EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT = 1 << 19; this.EFUSE_SPI_BOOT_CRYPT_CNT_REG = this.EFUSE_BASE + 0x034; this.EFUSE_SPI_BOOT_CRYPT_CNT_MASK = 0x7 << 18; this.EFUSE_SECURE_BOOT_EN_REG = this.EFUSE_BASE + 0x038; this.EFUSE_SECURE_BOOT_EN_MASK = 1 << 20; this.EFUSE_RD_REPEAT_DATA3_REG = this.EFUSE_BASE + 0x3c; this.EFUSE_RD_REPEAT_DATA3_REG_FLASH_TYPE_MASK = 1 << 9; this.PURPOSE_VAL_XTS_AES256_KEY_1 = 2; this.PURPOSE_VAL_XTS_AES256_KEY_2 = 3; this.PURPOSE_VAL_XTS_AES128_KEY = 4; this.UARTDEV_BUF_NO = 0x3ffffd14; // Variable in ROM .bss which indicates the port in use this.UARTDEV_BUF_NO_USB_OTG = 2; // Value of the above indicating that USB-OTG is in use this.USB_RAM_BLOCK = 0x800; // Max block size USB-OTG is used this.GPIO_STRAP_REG = 0x3f404038; this.GPIO_STRAP_SPI_BOOT_MASK = 1 << 3; // Not download mode this.GPIO_STRAP_VDDSPI_MASK = 1 << 4; this.RTC_CNTL_OPTION1_REG = 0x3f408128; this.RTC_CNTL_FORCE_DOWNLOAD_BOOT_MASK = 0x1; // Is download mode forced over USB? this.RTCCNTL_BASE_REG = 0x3f408000; this.RTC_CNTL_WDTCONFIG0_REG = this.RTCCNTL_BASE_REG + 0x0094; this.RTC_CNTL_WDTCONFIG1_REG = this.RTCCNTL_BASE_REG + 0x0098; this.RTC_CNTL_WDTWPROTECT_REG = this.RTCCNTL_BASE_REG + 0x00ac; this.RTC_CNTL_WDT_WKEY = 0x50d83aa1; this.MEMORY_MAP = [ [0x00000000, 0x00010000, "PADDING"], [0x3f000000, 0x3ff80000, "DROM"], [0x3f500000, 0x3ff80000, "EXTRAM_DATA"], [0x3ff9e000, 0x3ffa0000, "RTC_DRAM"], [0x3ff9e000, 0x40000000, "BYTE_ACCESSIBLE"], [0x3ff9e000, 0x40072000, "MEM_INTERNAL"], [0x3ffb0000, 0x40000000, "DRAM"], [0x40000000, 0x4001a100, "IROM_MASK"], [0x40020000, 0x40070000, "IRAM"], [0x40070000, 0x40072000, "RTC_IRAM"], [0x40080000, 0x40800000, "IROM"], [0x50000000, 0x50002000, "RTC_DATA"], ]; this.EFUSE_VDD_SPI_REG = this.EFUSE_BASE + 0x34; this.VDD_SPI_XPD = 1 << 4; this.VDD_SPI_TIEH = 1 << 5; this.VDD_SPI_FORCE = 1 << 6; this.UF2_FAMILY_ID = 0xbfdd4eee; this.EFUSE_MAX_KEY = 5; this.KEY_PURPOSES = { 0: "USER/EMPTY", 1: "RESERVED", 2: "XTS_AES_256_KEY_1", 3: "XTS_AES_256_KEY_2", 4: "XTS_AES_128_KEY", 5: "HMAC_DOWN_ALL", 6: "HMAC_DOWN_JTAG", 7: "HMAC_DOWN_DIGITAL_SIGNATURE", 8: "HMAC_UP", 9: "SECURE_BOOT_DIGEST0", 10: "SECURE_BOOT_DIGEST1", 11: "SECURE_BOOT_DIGEST2", }; this.UART_CLKDIV_MASK = 0xfffff; this.UART_DATE_REG_ADDR = 0x60000078; this.FLASH_WRITE_SIZE = 0x400; this.BOOTLOADER_FLASH_OFFSET = 0x1000; this.FLASH_SIZES = { "1MB": 0x00, "2MB": 0x10, "4MB": 0x20, "8MB": 0x30, "16MB": 0x40, }; } async getPkgVersion(loader) { const numWord = 4; const addr = this.EFUSE_BLOCK1_ADDR + 4 * numWord; const word = await loader.readReg(addr); const pkgVersion = (word >> 0) & 0x0f; return pkgVersion; } async getMinorChipVersion(loader) { const hiNumWord = 3; const hi = ((await loader.readReg(this.EFUSE_BLOCK1_ADDR + 4 * hiNumWord)) >> 20) & 0x01; const lowNumWord = 4; const low = ((await loader.readReg(this.EFUSE_BLOCK1_ADDR + 4 * lowNumWord)) >> 4) & 0x07; return (hi << 3) + low; } async getMajorChipVersion(loader) { const numWord = 3; return ((await loader.readReg(this.EFUSE_BLOCK1_ADDR + 4 * numWord)) >> 18) & 0x03; } async getFlashVersion(loader) { const numWord = 3; return ((await loader.readReg(this.EFUSE_BLOCK1_ADDR + 4 * numWord)) >> 21) & 0x0f; } async getChipDescription(loader) { const chipDesc = { 0: "ESP32-S2", 1: "ESP32-S2FH2", 2: "ESP32-S2FH4", 102: "ESP32-S2FNR2", 100: "ESP32-S2R2", }; const chipIndex = (await this.getFlashCap(loader)) + (await this.getPsramCap(loader)) * 100; const majorRev = await this.getMajorChipVersion(loader); const minorRev = await this.getMinorChipVersion(loader); return `${chipDesc[chipIndex] || "unknown ESP32-S2"} (revision v${majorRev}.${minorRev})`; } async getFlashCap(loader) { return await this.getFlashVersion(loader); } async getPsramVersion(loader) { const numWord = 3; const addr = this.EFUSE_BLOCK1_ADDR + 4 * numWord; const registerValue = await loader.readReg(addr); const psramCap = (registerValue >> 28) & 0x0f; return psramCap; } async getPsramCap(loader) { return await this.getPsramVersion(loader); } async getBlock2Version(loader) { const numWord = 4; const addr = this.EFUSE_BLOCK2_ADDR + 4 * numWord; const registerValue = await loader.readReg(addr); const block2Ver = (registerValue >> 4) & 0x07; return block2Ver; } async getChipFeatures(loader) { const features = ["Wi-Fi"]; const flashMap = { 0: "No Embedded Flash", 1: "Embedded Flash 2MB", 2: "Embedded Flash 4MB", }; const flashCap = await this.getFlashCap(loader); const flashDescription = flashMap[flashCap] || "Unknown Embedded Flash"; features.push(flashDescription); const psramMap = { 0: "No Embedded Flash", 1: "Embedded PSRAM 2MB", 2: "Embedded PSRAM 4MB", }; const psramCap = await this.getPsramCap(loader); const psramDescription = psramMap[psramCap] || "Unknown Embedded PSRAM"; features.push(psramDescription); const block2VersionMap = { 0: "No calibration in BLK2 of efuse", 1: "ADC and temperature sensor calibration in BLK2 of efuse V1", 2: "ADC and temperature sensor calibration in BLK2 of efuse V2", }; const block2Ver = await this.getBlock2Version(loader); const block2VersionDescription = block2VersionMap[block2Ver] || "Unknown Calibration in BLK2"; features.push(block2VersionDescription); return features; } async getCrystalFreq(loader) { return 40; } _d2h(d) { const h = (+d).toString(16); return h.length === 1 ? "0" + h : h; } async readMac(loader) { let mac0 = await loader.readReg(this.MAC_EFUSE_REG); mac0 = mac0 >>> 0; let mac1 = await loader.readReg(this.MAC_EFUSE_REG + 4); mac1 = (mac1 >>> 0) & 0x0000ffff; const mac = new Uint8Array(6); mac[0] = (mac1 >> 8) & 0xff; mac[1] = mac1 & 0xff; mac[2] = (mac0 >> 24) & 0xff; mac[3] = (mac0 >> 16) & 0xff; mac[4] = (mac0 >> 8) & 0xff; mac[5] = mac0 & 0xff; return (this._d2h(mac[0]) + ":" + this._d2h(mac[1]) + ":" + this._d2h(mac[2]) + ":" + this._d2h(mac[3]) + ":" + this._d2h(mac[4]) + ":" + this._d2h(mac[5])); } getEraseSize(offset, size) { return size; } async usingUsbOtg(loader) { const uartNo = (await loader.readReg(this.UARTDEV_BUF_NO)) & 0xff; return uartNo === this.UARTDEV_BUF_NO_USB_OTG; } async postConnect(loader) { const usingUsbOtg = await this.usingUsbOtg(loader); loader.debug("In _post_connect using USB OTG ?" + usingUsbOtg); if (usingUsbOtg) { loader.ESP_RAM_BLOCK = this.USB_RAM_BLOCK; } } }