Byte Rider
Release 06-2025

Alexander B

Jul 19, 2025

Table of Contents

1.1 ABSTRACT

21 Reserved PIns & GPIOS o o e e
2.2 Fusion of Software with Hardware. e
2.3 Schematic e e

List of Figures

OVERVIEW

HOW DOES IT WORK?

DATA STRUCTS

31 DataPayload
TRANSMITTER

41 Configuration Variables
42 Reading Joystick x- and y- Axis Values
43 Sending & Ecapsulating Data
44 Main Function.
RECEIVER

5.1 Configuration Variables
5.2 Receiving & Extracting Data.
53 Main Function.

WORK-IN-PROGRESS WALK THROUGH

6.1 Finished Work.
62 Chassis.
63 Wiring
6.4 Motor Wires Harness.
REFERENCES

71 GitHub.

iii

11
11

13
13
13
13
14

15
15
15
16

List of Figures

Figure 2.1: DC Motor PWM duty cycle 0% o o i 6
Figure 2.2: DC Motor PWM duty cycle 47.6%. o o i i 7
Figure 2.3: DC Motor PWM duty cycle 90.8%. o 7
Figure 6.1: Completed chassis with only DC motor controllers installed. 18
Figure 6.2: Completed wiring.. 19
Figure 6.3: DC Motors wires secured inside harnes. 20

Byte Rider, Release 06-2025

2 Chapter .

Chapter 1

OVERVIEW

At the heart of this project is a customizable remote-controlled car that responds to real-time control
inputs, capable of handling speed adjustments, directional changes, and even extended features like
lights or sensors. The foundational setup uses ESP-NOW for transmitter and receiver devices,
allowing you to wirelessly guide the car’s behaviour. While the design and physical appearance of
the RC car can vary wildly depending on your creativity and available hardware, the control system
remains elegantly efficient. To facilitate wireless communication between devices, the system employs
ESP-NOW , which is a lightweight and connection-free protocol ideal for fast, low-latency data trans-
mission between ESP32 microcontrollers. Though ESP-NOW is used under the hood, the spotlight
remains on the RC car itself.

An ESP-NOW-based remote controller sends control data wirelessly using the ESP-NOW protocol to
the remote-controlled car. ESP-NOW enables fast and efficient communication between ESP32 devices
without the need for a Wi-Fi router, network, or pairing. The provided tutorial demonstrates a func-
tional setup where a transmitter sends data to a receiver to define the car’s speed and direction,
forming the core communication loop. While the baseline implementation focuses on movement,
additional features like lights, sensors, or telemetry can easily be integrated by expanding the source
code. This modular design gives users the freedom to customize both the appearance and behaviour
of their RC car, resulting in endless creative possibilities.

1.1 ABSTRACT

To enable real-time remote operation of the RC car, the system translates joystick x- and y- axis inputs
into PWM (Pulse Width Modulation) signals that control the DC motors. These PWM values are
stored in a predefined data structure, which is then transmitted wirelessly using ESP-NOW —
a low-latency, connectionless communication protocol developed by Espressif. Both the transmitter
and receiver modules are based on ESP32-C3 microcontrollers.

On the transmitter side, the joystick’s X and Y coordinates are continuously monitored and converted
into PWM parameters. These values are packed into the data structure and sent via ESP-NOW to
the receiver.

The receiver module listens for incoming ESP-NOW packets, extracts the PWM control data, and
applies it directly to the DC motors. This communication flow allows the RC car to respond instantly
to user input, managing speed and direction without any physical connection between the devices.

Byte Rider, Release 06-2025

4 Chapter 1. OVERVIEW

Chapter 2

HOW DOES IT WORK?

The BitByteRider RC car is powered by ESP32-C3 Breadboard & Power adapter developmemt board.
The Schematic and KiCAd PCB board are available on GitHub: https:/ /github.com /alexandrebobkov
/ESP32-C3_Breadboard-Adapter

2.1 Reserved Pins & GPIOs

The following table summarizes GPIOs and pins reserved for operations purposes.

The GPIO numbers correspond to those on the ESP32-C3 WROOM microcontroller. The Pin number
corresponds to the pin on the Breadboard and Power adapter development board.

2.1.1 Reading the Joystick x- and y- axis

To determine the position of the Joystick, the BitRider RC car uses ADC to measure voltage on two
GPIOs connected to the joystic x- and y- axis potentionometers (GPIO0 and GPIO1).

2.1.2 Controlling the Direction and Speed

To set any desired speed of BiteRider RC car, the ESP32-C3 Breadboard Adapter DevBoard uses PWM to
control the rotation speed of DR motors. Similarly, to set the direction of the RC car, the rotation speed
of corresponding DC motors is changed as required.

Due to the design and limited number of available GPIOs, the ESP32-C3 Breadboard DevBoard can
control rotation speed and direction of DC motors in pairs only (i.e. left and right side). Consequently,
this means that the four PWM channels used for controlling the direction of the RC car.

Based on this constraint, the RC car can only move front, back, and turn/rotate left and right. Any
other movements are not possible (i.e. diagonal or sideways).

PWM of DC Motors Direction
PWM(left) = PWM(right) | Straight
PWM(left) > PWM(right) | Left
PWM(left) < PWM(right) | Right

What is PWM?

PWM stands for Pulse Width Modulation. It is a technique used to simulate analog voltage levels
using discrete digital signals. It works by rapidly switching a digital GPIO pin between HIGH (on)
and LOW (off) states at a fixed frequency (often, at base frequency of 5 kHz). The duty cycle—the
percentage of time the signal is HIGH in one cycle determines the effective voltage delivered to
a device. A higher duty cycle increases the motor speed, and a lower duty cycle decreases the motor
speed. This allows for fine-grained speed control without needing analog voltage regulators.

https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter
https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter
https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter

Byte Rider, Release 06-2025

A pair of PWM channels are used per DC motor for defining their rotation speed and direction on
each side. In particular, GPIO6 and GPIO5 provide PWM to the left- and right- side DC motors to
rotate in a clockwise direction. Similarly, GPIO4 and GPIO7 provide PWM to the left- and right- side
DC motors to rotate in a counter-clockwise direction. Changing PWM on each channel determines
the speed and direction of the RC car.

The table below summarizes the GPIO pins used for PWM to control the direction of the DC motors
in the remote-controlled car.

class break

GPIOs State Description Function
GPIO6, GPIO4 | PWM | Left & Right DC Motors spin clockwise Forward
GPIOS5, GPIO7 | PWM | Left & Right DC Motors spin counterclockwise Reverse

Left DC Motors spin clockwise. Right DC Motors spin counter-

GPIO6, GPIO7 | PWM .
clockwise

Left

Left DC Motors spin counterclockwise. Right DC Motors spin

GPI104, GPIO5 | PWM)
clockwise

Right

The following images illustrate various PWM duty cycles registered by oscilloscope (duty cycles 0%,
48% and 91%, resp.).

(] sous soomsars 4kpt [5] 0.00s [10emv

EAVQ=:4.22rrE1V F Vt;op=8ri1V
100mv] 2DC

Figure 2.1. DC Motor PWM duty cycle 0%

6 Chapter 2. HOW DOES IT WORK?

Byte Rider, Release 06-2025

[}] sous so00msars 4kpt [8] o0.00s [108mv

+Duty=47.60% - Avg=162.14my . Freq=5.00KHz - VYtop=336mY .

20¢ 0y

Figure 2.2. DC Motor PWM duty cycle 47.6%

[sous 500Msa/s 4kpt [3) 0.00s [108mv

+D:1.JtY=9:0.30'3fo: Av9=:310.9;¢'mV req=5.00KHz Vtzop=34-4mV
1DC 100mv] 2DC [\ g

Figure 2.3. DC Motor PWM duty cycle 90.8%

GPIO | Pin Function Notes
0 16 | Joystick x-axis ADC1_CHO
1 15 | Joystick y-axis ADC1_CH1

2.1. Reserved Pins & GPIOs 7

Byte Rider, Release 06-2025

Joystick push button

LEDC_CHANNEL_1
LEDC_CHANNEL_0
LEDC_CHANNEL_2
LEDC_CHANNEL_3

PWM for clockwise rotation of left-side motors

PWM for clockwise rotation of right-side motors

PWM for counter-clockwise rotation of right-side motors

N| | Q1 O] ©
NN W =] O1

PWM for counter-clockwise rotation of left-side motors

2.2 Fusion of Software with Hardware

The struct for storing motors PWM values.

struct motors_rpm {

int motorl_rpm_pwm;
motor2_rpm_pwnm;
motor3_rpm_pwnm;
motor4_rpm_pwnm;

int
int
int

}i

The function for updating motors” PWM values.

/7
'/ ct

/

void sendData

Fun 10N send data to the receiver

(void) {
sensors_data_t buffer;

CO

buffer.

crc 0

1

buffer.
buffer.
buffer.
buffer
buffer

X_axis 0;

y_axis
nav_bttn

0;

.motorl_rpm_pwm
.motor2_rpm_pwm

buffer
buffer

.motor3_rpm_pwm
.motor4_rpm_pwm

D7 g
D1 S

// splay brief 7 of dat
ESP_LOGI (TAG,

(uint8_t)buffer.x_axis,
ESP_LOGI (TAG, '"pwm 1,

(uint8_t)buffer.pwm) ;
ESP_LOGI (TAG, '"pwm 3,

(uint8_t)buffer.pwm) ;

E sent.
(0x%04X,
axis);

0x%04X

being

"Joystick (x,y) position 0x%04X
(uint8_t)buffer.y_.

pwm 2 [0x%04X,

)Hl

1", (uint8_t)buffer.pwnm,

pwm 4 [0x%04X, 0x%04X 1", (uint8_t)buffer.pwnm,

nd dat
)

esp_now_send (receiver_mac,

—

el
& ength

(e

result sbuffer, sizeof (buffer));

NOT OK,

{

display error message and error code (in hexadec

i3
1S

0)

status

if (result
ESP_LOGE ("ESP-NOW",
deletePeer () ;

1=

"Error sending data! Error code: 0x%04X", result);

}
else

ESP_LOGW ("ESP-NOW", "Data was sent.");

}

The onDataReceived() and onDataSent() are two call-bacl functions that get evoked on each corre-
sponding event.

// Call-back for the event when data is being received
void onDataReceived (uint8_t *mac_addr, uint8_t *data, uint8_t data_len) {
buf = (sensors_data_t*)data; // Allocate memory for

Chapter 2. HOW DOES IT WORK?

Byte Rider,

buffer to st
ESP_LOGW
ESP_LOGI
ESP_LOGI
ESP_LOGI

ore data being received

TAG, "Data was received");

TAG, "x—axis: 0x%04x", buf->x_axis);
TAG, "x-axis: 0x%04x", buf->y_axis);

// Call-back for the event when data is being sent

TAG, "PWM 1: 0x%04x", buf->motorl_rpm_ pwm) ;

void onDataSent (uint8_t *mac_addr, esp_now_send_status_t status) {
ESP_LOGW (TAG, "Packet send status: 0x%04X", status);

The rc_send_data_task() function runs every 0.1 second to transmit the data to the receiver.

// Continous, periodic task that sends data.
static void rc_send_data_task (void *arg) {

while (true) {
if (esp_now_is_peer_exist (receiver_mac))
sendData () ;
vTaskDelay (100 / portTICK_PERIOD_MS) ;

2.3 Schematic

T 3 5
i
BarrelJack_Switch BRDL
1 oy £SP32-C3 Breadboard Adapter us
3 7415125
2 H 3 MTR_FRONT_RIGHT
g I
Y Eo O e e el 6
A s GPI01_ADC1_cH1 [15PROJX
GND GNDD —&{epioe_sct — B o GPI02_ADC1_CH2 [<
—5{GPios_spA € g% GPI03_ADC1_cH3 A3
+5VD 11 < GPIO4_ADCT_CH4 (2 RO ERCREY GNDD
—Hcprots usap-— @ Shivs MIR_FRONT_LEFT
—21GPI019_USB_D+ B abios T8 MIR_FRONT_RIGHT_REV U1A
< s 7 7415125
3 12 s 8 cpioto——
221 Gpio21.Tx 28
o 210 cpioorx —7 E] MTR_FRONT_RIGHT 2 3 RGLFWD
s o
ute iN o g
L Y]
715125 o . i "
B v ¥
g 0 g 2 GNDD.
H
s s ™ utc
| 3R e w
Va5 & 745125
GNDD J_A o p— MIR_FRONT_LEFTREV o 8 LFT_REV
GNDD. =
g
GNDD.
u1d
745125
MIR_FRONT LEFT 12 f 11 LFLFWD
M oy GNDD.
+ov u3
T Lzoon “'T" e LEE
ol ML+ vrrev 5[w e E
ReLRev 5[I b RN 2
RGLEWD 7| > = +3v3 <81 Ena o
+3v3 <8 Ena ML outt [2M3+ Motor_DC
outt [2M1+ Motor_DC WELREV 10l o Ut [BM3- M3- T
4 RGTREV 10l | o ours [PML- Mo [GAGTTRE. e
ROLEWD_12 +3vs <Ll ens ours 3N M
+3vs <L ens ours fl3k2+ M2+ ouTh [LAM=
outy [LaM2- iy 39
59 74 Ma
ulul M2 22 o Motor_bC
22 2 Motor_DC 53 3 . K
—— z= v T
B ﬂ?
GND
H GND
+3v3 +3v3
b proJX 2] RVt provy 2.7 Rv2
10k 10k
Sheet: /
4 o File: ESP32-C3-RC.kicad_sch
Title: RC Model Car
Size: USLetter | Date: 2025-01-01 [Rev: 2.0.1
KiCad E.D.A. 8.0.4 | a1/t
T T 7 I 3 T % 5

2.3. Schematic

Release 06-2025

Byte Rider, Release 06-2025

10 Chapter 2. HOW DOES IT WORK?

Chapter 3

DATA STRUCTS

The struct serves as the data payload for sending control signals from the transmitting device to
the receiver using ESP-NOW. In addition, it may contain additional data such as telemetry, battery
status, etc. The sensors_data_t struct encapsulates all control commands and sensor states relevant to
the vehicle’s operation. It’s intended to be sent from a transmitting device (like a remote control) to
a receiver (such as a microcontroller on board of the vehicle).

typedef struct ({

int X_axis;
int y_axis;
bool nav_bttn;
bool led;
uint8_t motorl_rpm_pwnm;
uint8_t motor2_rpm_pwnm;
uint8_t motor3_rpm_pwnm;
uint8_t motor4_rpm_pwnm;
} __attribute__ ((packed)) sensors_data_t;

struct motors_rpm {
int motorl_rpm_pwm;
int motor2_rpm_pwm;
int motor3_rpm_pwm;
int motor4_rpm_pwm;

}i

When used with communication protocols like ESP-NOW, this struct is encoded into a byte stream,
then transmitted at regular intervals or in response to user input, and finally decoded on
the receiving end to control hardware.

What is struct?

In C programming, a struct (short for structure) is a user-defined data type that lets you group
multiple variables of different types together under a single name. It’s like a container that holds
related information — perfect for organizing data that logically belongs together. Structs are espe-
cially powerful in systems programming, embedded projects, and when dealing with raw binary data
— like parsing sensor input or transmitting control packets over ESP-NOW.

3.1 Data Payload

x_axis and y_axis fields capture analog input from a joystick, determining direction and speed.
nav_bttn represents a joystick push-button.

led allows the transmitter to toggle an onboard LED and is used for status indication (e.g. pairing,
battery warning, etc).

11

Byte Rider, Release 06-2025

motorl_rpm_pwm to motord_rpm_pwm provide individual PWM signals to four DC motors. This
enables fine-grained speed control, supports differential drive configurations, and even allows for
maneuvering in multi-directional platforms like omni-wheel robots.

3.1.1 Why use __attribute((packed))?

ESP-NOW uses fixed-size data packets (up to 250 bytes). The __attribute_ ((packed)) removes compil-
er-added padding for precise byte alignment.

As packed attribute tells the compiler not to add any padding between fields in memory, this makes
the struct:

¢ Compact
¢ Predictable for serialization over protocols like UART or ESP-NOW

¢ Ideal for low-latency transmission in embedded systems

This ensures the receiver interprets the exact byte layout you expect, minimizing bandwidth and
maximizing compatibility across platforms.

12 Chapter 3. DATA STRUCTS

Chapter 4

TRANSMITTER

4.1 Configuration Variables

uint8_t receiver_mac [ESP_NOW_ETH ALEN] = {0Oxed4, 0xb0, 0x63, 0x17, 0x9e, 0x44};

typedef struct {

int x_axis; // Joystick x-position
int y_axis; // Joystick y-position
bool nav_btn; // Joystick push button
bool led; // LED ON/OFF state
uint8_t motorl_rpm_pwm; // PWMs for each DC motor
uint8_t motor2_rpm_pwnm;
uint8_t motor3_rpm_pwnm;
uint8_t motor4_rpm_pwnm;

} __attribute__ ((packed)) sensors_data_t;

4.2 Reading Joystick x- and y- Axis Values

4.3 Sending & Ecapsulating Data

void sendData (void) {

buffer.x_axis = x_axis;
buffer.y_axis = y_axis;

// Call ESP-NOW function to send data (MAC address of receiver, pointer to
the memory holding data & data length)

uint8_t result = esp_now_send((uint8_t*)receiver_mac, (uint8_t *)&buffer,
sizeof (buffer));

13

Byte Rider, Release 06-2025

4.4 Main Function

#include "freertos/FreeRTOS.h"
#include "nvs_flash.h"
#include '"esp err.h”

void app_main (void) {

//

Initialize internal

chip_sensor_init () ;

tialize NVS
esp_err_t ret = nvs_flash_init();
if (ret ESP_ERR_NVS_NO_FREE_PAGES

ESP_ERROR_CHECK (nvs_flash_erase()
ret = nvs_flash_init () ;
}

ESP_ERROR_CHECK (ret
wifi_init ();
joystick_adc_init () ;
transmission_init () ;
system_led_init () ;

)i

ret

)i

ESP_ERR_NVS_NEW_VERSION_FOUND)

14

Chapter 4. TRANSMITTER

Chapter 5

RECEIVER

5.1 Configuration Variables

typedef struct {

int x_axis; // Joystick x-position
int y_axis; // Joystick y-position
bool nav_bttn; // Joystick push button
bool led; // LED ON/OFF state
uint8_t motorl_rpm_pwm; // PWMs for 4 DC motors
uint8_t motor2_rpm_pwnm;

uint8_t motor3_rpm_pwnm;

uint8_t motor4_rpm_pwnm;

} __attribute__ ((packed)) sensors_data_t;

uint8_t transmitter_mac[ESP_NOW_ETH_ALEN] = {0x9C, 0x9E, Ox6E, 0x14, 0xB5, 0x54};

struct motors_rpm ({
int motorl_rpm_pwm;
int motor2_rpm_pwm;
int motor3_rpm_pwm;
int motor4_rpm_pwm;

}i

5.2 Receiving & Extracting Data

void onDataReceived (const uint8_t *mac_addr, const uint8_t *data, uint8_t
data_len) {

ESP_LOGI (TAG, "Data received from: %02x:%02x:%02x:%02x:%02x:%02x, len=%d",
mac_addr[0], mac_addr[1], mac_addr[2], mac_addr([3], mac_addr[4], mac_addr[5],
data_len) ;

memcpy (&buf, data, sizeof (buf));

x_axis = buf.x_axis;
y_axis = buf.y_axis;

15

Byte Rider, Release 06-2025

5.3 Main Function

#include <string.!

#include h"
#include "nvs_flash.h"
#include '"esp err.h”

void app_main (void) {

~ialize NVS

esp_err_t ret = nvs_flash_init();

if (ret ESP_ERR_NVS_NO_FREE_PAGES | |
ret == ESP_ERR_NVS_NEW_VERSION_FOUND)
ESP_ERROR_CHECK (nvs_flash_erase ());
ret = nvs_flash_init () ;

ESP_ERROR_CHECK (ret);
wifi_init ();
ESP_ERROR_CHECK (esp_now_init ()) ;

esp_now_peer_info_t transmitterInfo =
memcpy (transmitterInfo.peer_addr,
transmitterInfo.channel = 0; // Current
transmitterInfo.ifidx = ESP_IF_WIFI_STA;
transmitterInfo.encrypt = false;

WiFi

{0};

transmitter_mac,

ESP_NOW_ETH_ALEN) ;

cnannel

ESP_ERROR_CHECK (esp_now_add_peer (&¢transmitterInfo)) ;

ESP_ERROR_CHECK (esp_now_register_recv_cb ((void*)onDataReceived)) ;

system_led_init () ;

16

Chapter 5. RECEIVER

Chapter 6

WORK-IN-PROGRESS WALK THROUGH

6.1 Finished Work

17

Byte Rider, Release 06-2025

6.2 Chassis

Figure 6.1. Completed chassis with only DC motor controllers installed.

18 Chapter 6. WORK-IN-PROGRESS WALK THROUGH

Byte Rider, Release 06-2025

6.3 Wiring

l;k-
|

|
|
&y

ou| | e |
S|l W
|| &

\
\

|

‘\lll
a =N
L
\.
L]

Rl

- EEE

| s momes |‘\Il
| aommE i
| mom oM I\\‘;'
- E e N

PR
arpiogie

!

]

-IIIII
- E E e
PO
"L
Cw mmam
s 8 = &
- 8 m =&
PR
L-l-ll
(L

OLII

Figure 6.2. Completed wiring.

6.3. Wiring

Byte Rider, Release 06-2025

6.4 Motor Wires Harness

Figure 6.3. DC Motors wires secured inside harnes.

20 Chapter 6. WORK-IN-PROGRESS WALK THROUGH

Chapter 7

REFERENCES

7.1 GitHub

Complete source code with README.md file: https://github.com/alexandrebobkov/ESP-Nodes
/blob/main/ESP-IDF_Robot/README.md

KiCAd Schematic and PCB design: https://github.com/alexandrebobkov/ESP32-C3_Bread-
board-Adapter

21

https://github.com/alexandrebobkov/ESP-Nodes/blob/main/ESP-IDF_Robot/README.md
https://github.com/alexandrebobkov/ESP-Nodes/blob/main/ESP-IDF_Robot/README.md
https://github.com/alexandrebobkov/ESP-Nodes/blob/main/ESP-IDF_Robot/README.md
https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter
https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter
https://github.com/alexandrebobkov/ESP32-C3_Breadboard-Adapter

23

	List of Figures
	1 OVERVIEW
	1.1 ABSTRACT

	2 HOW DOES IT WORK?
	2.1 Reserved Pins & GPIOs
	2.1.1 Reading the Joystick x- and y- axis
	2.1.2 Controlling the Direction and Speed

	2.2 Fusion of Software with Hardware
	2.3 Schematic

	3 DATA STRUCTS
	3.1 Data Payload
	3.1.1 Why use __attribute((packed))?

	4 TRANSMITTER
	4.1 Configuration Variables
	4.2 Reading Joystick x- and y- Axis Values
	4.3 Sending & Ecapsulating Data
	4.4 Main Function

	5 RECEIVER
	5.1 Configuration Variables
	5.2 Receiving & Extracting Data
	5.3 Main Function

	6 WORK-IN-PROGRESS WALK THROUGH
	6.1 Finished Work
	6.2 Chassis
	6.3 Wiring
	6.4 Motor Wires Harness

	7 REFERENCES
	7.1 GitHub

