Files
ESP-Nodes/ESP32-IDF_Temperture-Node-v2/managed_components/esp-idf-lib__i2cdev/i2cdev_legacy.c

794 lines
30 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Ruslan V. Uss <unclerus@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @file i2cdev.c
*
* ESP-IDF I2C master thread-safe functions for communication with I2C slave
*
* Copyright (c) 2018 Ruslan V. Uss <unclerus@gmail.com>
* Updated 2025 by quinkq to use newer ESP-IDF I2C master driver API
* MIT Licensed as described in the file LICENSE
*/
#include "esp_idf_lib_helpers.h" // For HELPER_TARGET_IS_ESP32 etc.
#include "i2cdev.h" // Common header
#include <driver/i2c.h> // Legacy I2C driver
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <inttypes.h>
#include <sdkconfig.h>
#if !HELPER_TARGET_IS_ESP8266
#include <soc/clk_tree_defs.h> // For APB_CLK_FREQ
#endif
#include <string.h>
static const char *TAG = "i2cdev_legacy";
typedef struct
{
SemaphoreHandle_t lock;
i2c_config_t config; // Use legacy config struct
bool installed;
uint32_t ref_count;
i2c_dev_t *devices[CONFIG_I2CDEV_MAX_DEVICES_PER_PORT]; // Track devices registered on this port
} i2c_port_state_t;
static i2c_port_state_t states[I2C_NUM_MAX] = { 0 };
#if CONFIG_I2CDEV_NOLOCK
#define SEMAPHORE_TAKE(port)
#else
#define SEMAPHORE_TAKE(port) \
do \
{ \
if (!xSemaphoreTake(states[port].lock, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT))) \
{ \
ESP_LOGE(TAG, "Could not take port mutex %d", port); \
return ESP_ERR_TIMEOUT; \
} \
} \
while (0)
#endif
#if CONFIG_I2CDEV_NOLOCK
#define SEMAPHORE_GIVE(port)
#else
#define SEMAPHORE_GIVE(port) \
do \
{ \
if (!xSemaphoreGive(states[port].lock)) \
{ \
ESP_LOGE(TAG, "Could not give port mutex %d", port); \
return ESP_FAIL; \
} \
} \
while (0)
#endif
/**
* @brief Register an I2C device for tracking and resource management
*
* This function adds a device to the port's tracking array, which helps with:
* - Monitoring which devices are active on each port
* - Proper cleanup when the system shuts down
* - Diagnostics and debugging
*
* Each port can track up to CONFIG_I2CDEV_MAX_DEVICES_PER_PORT devices.
*
* @param dev Device descriptor to register
* @return ESP_OK if registration succeeded, or an error code
*/
static esp_err_t register_device(i2c_dev_t *dev)
{
if (!dev || dev->port >= I2C_NUM_MAX)
return ESP_ERR_INVALID_ARG;
if (!states[dev->port].lock)
return ESP_ERR_INVALID_STATE;
esp_err_t ret = ESP_ERR_NO_MEM;
// Take the mutex directly instead of using the macro
if (xSemaphoreTake(states[dev->port].lock, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT)) != pdTRUE)
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not take port mutex for registration", dev->addr, dev->port);
return ESP_ERR_TIMEOUT;
}
// Search for an empty slot in the device tracking array
for (int i = 0; i < CONFIG_I2CDEV_MAX_DEVICES_PER_PORT; i++)
{
if (states[dev->port].devices[i] == NULL)
{
// Found empty slot - register the device here
states[dev->port].devices[i] = dev;
ESP_LOGV(TAG, "[0x%02x at %d] Registered device in slot %d", dev->addr, dev->port, i);
ret = ESP_OK;
break;
}
}
// All slots full - this will still allow communication but prevents automatic cleanup
if (ret != ESP_OK)
{
ESP_LOGW(TAG, "[0x%02x at %d] No free slots to register device", dev->addr, dev->port);
}
// Release the mutex
if (!xSemaphoreGive(states[dev->port].lock))
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not give port mutex after registration", dev->addr, dev->port);
// If can't give the mutex, that's a serious error that overrides the registration result
return ESP_FAIL;
}
return ret;
}
/**
* @brief Deregister a device and update reference counting
*
* This function:
* 1. Removes the device from the port's tracking array
* 2. Decrements the port's reference count
* 3. Cleans up the I2C driver if this was the last device on the port
*
* This is called during device cleanup to ensure proper resource management.
*
* @param dev Device descriptor to deregister
*/
static void deregister_device(i2c_dev_t *dev)
{
if (!dev || dev->port >= I2C_NUM_MAX)
return;
// Don't use macros that return values since this is a void function
if (states[dev->port].lock)
{
if (xSemaphoreTake(states[dev->port].lock, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT)) != pdTRUE)
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not take port mutex for deregistration", dev->addr, dev->port);
return; // Cannot proceed without lock
}
// Find the device in the tracking array
for (int i = 0; i < CONFIG_I2CDEV_MAX_DEVICES_PER_PORT; i++)
{
if (states[dev->port].devices[i] == dev)
{
// Clear this slot
states[dev->port].devices[i] = NULL;
ESP_LOGV(TAG, "[0x%02x at %d] Deregistered device from slot %d", dev->addr, dev->port, i);
break;
}
}
// Manage reference counting for this port
if (states[dev->port].ref_count > 0)
{
states[dev->port].ref_count--;
ESP_LOGD(TAG, "[Port %d] Decremented ref_count to %" PRIu32, dev->port, states[dev->port].ref_count);
// If this was the last device using this port, clean up the driver
if (states[dev->port].ref_count == 0 && states[dev->port].installed)
{
ESP_LOGI(TAG, "[Port %d] Last device removed, uninstalling driver", dev->port);
i2c_driver_delete(dev->port);
states[dev->port].installed = false;
}
}
// Release the mutex
if (!xSemaphoreGive(states[dev->port].lock))
{
ESP_LOGE(TAG, "[Port %d] Could not give port mutex after deregistration", dev->port);
// Can't do much about this error except log it
}
}
}
esp_err_t i2cdev_init()
{
memset(states, 0, sizeof(states));
#if !CONFIG_I2CDEV_NOLOCK
for (int i = 0; i < I2C_NUM_MAX; i++)
{
states[i].lock = xSemaphoreCreateMutex();
if (!states[i].lock)
{
ESP_LOGE(TAG, "Could not create port mutex %d", i);
return ESP_FAIL;
}
}
#endif
return ESP_OK;
}
esp_err_t i2cdev_done()
{
ESP_LOGV(TAG, "Cleaning up I2C subsystem (legacy)...");
for (int i = 0; i < I2C_NUM_MAX; i++)
{
if (!states[i].lock)
continue;
if (states[i].installed)
{
SEMAPHORE_TAKE(i);
// First, clean up any devices still registered on this port
for (int j = 0; j < CONFIG_I2CDEV_MAX_DEVICES_PER_PORT; j++)
{
if (states[i].devices[j] != NULL)
{
i2c_dev_t *dev = states[i].devices[j];
ESP_LOGW(TAG, "[Port %d] Device 0x%02x still registered during cleanup", i, dev->addr);
states[i].devices[j] = NULL;
}
}
i2c_driver_delete(i);
states[i].installed = false;
states[i].ref_count = 0;
SEMAPHORE_GIVE(i);
}
#if !CONFIG_I2CDEV_NOLOCK
vSemaphoreDelete(states[i].lock);
#endif
states[i].lock = NULL;
}
ESP_LOGV(TAG, "I2C subsystem cleanup finished (legacy).");
return ESP_OK;
}
esp_err_t i2c_dev_create_mutex(i2c_dev_t *dev)
{
#if !CONFIG_I2CDEV_NOLOCK
if (!dev)
return ESP_ERR_INVALID_ARG;
ESP_LOGV(TAG, "[0x%02x at %d] Creating device mutex", dev->addr, dev->port);
// Initialize device pins to -1 to ensure consistent pattern with new driver
if (dev->sda_pin == 0 && dev->scl_pin == 0)
{
dev->sda_pin = -1;
dev->scl_pin = -1;
ESP_LOGD(TAG, "[0x%02x at %d] Initialized pins to -1", dev->addr, dev->port);
}
if (dev->mutex)
{
ESP_LOGW(TAG, "[0x%02x at %d] Device mutex already exists", dev->addr, dev->port);
return ESP_OK; // Already created
}
dev->mutex = xSemaphoreCreateMutex();
if (!dev->mutex)
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not create device mutex", dev->addr, dev->port);
return ESP_FAIL;
}
// Register device for tracking
esp_err_t reg_res = register_device(dev);
if (reg_res != ESP_OK)
{
ESP_LOGW(TAG, "[0x%02x at %d] Could not register device: %s", dev->addr, dev->port, esp_err_to_name(reg_res));
// Continue anyway since this is not critical
}
#endif
return ESP_OK;
}
esp_err_t i2c_dev_delete_mutex(i2c_dev_t *dev)
{
#if !CONFIG_I2CDEV_NOLOCK
if (!dev)
return ESP_ERR_INVALID_ARG;
ESP_LOGV(TAG, "[0x%02x at %d] Deleting device mutex and cleaning up", dev->addr, dev->port);
// Deregister and update ref counts
deregister_device(dev);
// Delete mutex if exists
if (dev->mutex)
{
vSemaphoreDelete(dev->mutex);
dev->mutex = NULL;
}
else
{
ESP_LOGV(TAG, "[0x%02x at %d] Device mutex was NULL", dev->addr, dev->port);
}
#endif
return ESP_OK;
}
esp_err_t i2c_dev_take_mutex(i2c_dev_t *dev)
{
#if !CONFIG_I2CDEV_NOLOCK
if (!dev)
return ESP_ERR_INVALID_ARG;
ESP_LOGV(TAG, "[0x%02x at %d] Taking mutex", dev->addr, dev->port);
if (!dev->mutex)
{
ESP_LOGE(TAG, "[0x%02x at %d] Attempt to take NULL mutex!", dev->addr, dev->port);
return ESP_ERR_INVALID_STATE;
}
if (!xSemaphoreTake(dev->mutex, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT)))
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not take device mutex (timeout %d ms)", dev->addr, dev->port, CONFIG_I2CDEV_TIMEOUT);
return ESP_ERR_TIMEOUT;
}
#endif
return ESP_OK;
}
esp_err_t i2c_dev_give_mutex(i2c_dev_t *dev)
{
#if !CONFIG_I2CDEV_NOLOCK
if (!dev)
return ESP_ERR_INVALID_ARG;
ESP_LOGV(TAG, "[0x%02x at %d] Giving mutex", dev->addr, dev->port);
if (!dev->mutex)
{
ESP_LOGE(TAG, "[0x%02x at %d] Attempt to give NULL mutex!", dev->addr, dev->port);
return ESP_ERR_INVALID_STATE;
}
if (!xSemaphoreGive(dev->mutex))
{
ESP_LOGE(TAG, "[0x%02x at %d] Could not give device mutex", dev->addr, dev->port);
return ESP_FAIL;
}
#endif
return ESP_OK;
}
inline static bool cfg_equal(const i2c_config_t *a, const i2c_config_t *b)
{
bool clock_equal;
#ifdef CONFIG_IDF_TARGET_ESP8266
clock_equal = (a->clk_stretch_tick == b->clk_stretch_tick);
#else
clock_equal = (a->master.clk_speed == b->master.clk_speed);
#endif
return a->mode == b->mode && a->scl_io_num == b->scl_io_num && a->sda_io_num == b->sda_io_num && a->scl_pullup_en == b->scl_pullup_en && a->sda_pullup_en == b->sda_pullup_en && clock_equal;
// Note: Ignoring clk_flags for comparison as it might not be consistently set by users
}
/**
* @brief Configure and initialize the I2C port for a device
*
* This function is responsible for:
* 1. Determining which pins to use (from device or config)
* 2. Validating pin configuration
* 3. Installing/configuring the I2C driver if not already done
* 4. Managing reference counting for the port
* 5. Setting up clock stretching timeout
*
* This is a critical function that must succeed before any I2C operations
* can be performed with a device.
*
* @param dev Device descriptor with configuration info
* @return ESP_OK on success, or an error code on failure
*/
static esp_err_t i2c_setup_port(i2c_dev_t *dev)
{
if (!dev)
{
ESP_LOGE(TAG, "Device is NULL");
return ESP_ERR_INVALID_ARG;
}
if (dev->port >= I2C_NUM_MAX)
{
ESP_LOGE(TAG, "Invalid I2C port number: %d", dev->port);
return ESP_ERR_INVALID_ARG;
}
// Pin Selection Logic:
// Pins are taken from dev->cfg.xyz_io_num.
// If -1, Kconfig defaults are used.
gpio_num_t sda_pin; // Effective SDA pin to be used
gpio_num_t scl_pin; // Effective SCL pin to be used
if (dev->cfg.sda_io_num == (gpio_num_t) -1)
{
sda_pin = (gpio_num_t)CONFIG_I2CDEV_DEFAULT_SDA_PIN;
}
else
{
sda_pin = dev->cfg.sda_io_num;
}
if (dev->cfg.scl_io_num == (gpio_num_t) -1)
{
scl_pin = (gpio_num_t)CONFIG_I2CDEV_DEFAULT_SCL_PIN;
}
else
{
scl_pin = dev->cfg.scl_io_num;
}
ESP_LOGD(TAG, "[0x%02x at %d] Based on cfg: sda_cfg=%d, scl_cfg=%d. Effective pins for setup: SDA=%d, SCL=%d", dev->addr, dev->port, dev->cfg.sda_io_num, dev->cfg.scl_io_num, sda_pin, scl_pin);
// Perform basic validation of effective pins
if (sda_pin < 0 || scl_pin < 0)
{
ESP_LOGE(TAG, "[0x%02x at %d] Invalid effective SDA/SCL pins (%d, %d). Check Kconfig defaults if cfg pins were -1.", dev->addr, dev->port, sda_pin, scl_pin);
return ESP_ERR_INVALID_ARG;
}
if (sda_pin == scl_pin)
{
ESP_LOGE(TAG, "[0x%02x at %d] Effective SDA and SCL pins cannot be the same (%d).", dev->addr, dev->port, sda_pin);
return ESP_ERR_INVALID_ARG;
}
// Initialize common fields
i2c_config_t legacy_cfg = { .mode = I2C_MODE_MASTER,
.sda_io_num = sda_pin, // Use locally determined pins
.scl_io_num = scl_pin, // Use locally determined pins
.sda_pullup_en = dev->cfg.sda_pullup_en ? GPIO_PULLUP_ENABLE : GPIO_PULLUP_DISABLE,
.scl_pullup_en = dev->cfg.scl_pullup_en ? GPIO_PULLUP_ENABLE : GPIO_PULLUP_DISABLE
};
#ifdef CONFIG_IDF_TARGET_ESP8266
// ESP8266 uses clk_stretch_tick instead of master.clk_speed
// Clock speed will be handled during driver installation
uint32_t desired_speed = dev->cfg.master.clk_speed > 0 ? dev->cfg.master.clk_speed : 400000;
ESP_LOGD(TAG, "Final I2C config for port %d: SDA=%d, SCL=%d, speed=%lu (ESP8266)", dev->port, legacy_cfg.sda_io_num, legacy_cfg.scl_io_num, (unsigned long)desired_speed);
#else
// ESP32 family uses master.clk_speed
legacy_cfg.master.clk_speed = dev->cfg.master.clk_speed > 0 ? dev->cfg.master.clk_speed : 400000;
ESP_LOGD(TAG, "Final I2C config for port %d: SDA=%d, SCL=%d, speed=%lu", dev->port, legacy_cfg.sda_io_num, legacy_cfg.scl_io_num, (unsigned long)legacy_cfg.master.clk_speed);
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
legacy_cfg.clk_flags = 0;
#endif
esp_err_t err = ESP_OK;
// Part 1: Driver Installation / Reconfiguration
if (!cfg_equal(&legacy_cfg, &states[dev->port].config) || !states[dev->port].installed)
{
ESP_LOGD(TAG, "[0x%02x at %d] Reconfiguring I2C driver", dev->addr, dev->port);
if (states[dev->port].installed)
{
ESP_LOGD(TAG, "Uninstalling previous I2C driver configuration for port %d", dev->port);
i2c_driver_delete(dev->port);
states[dev->port].installed = false;
states[dev->port].ref_count = 0;
}
vTaskDelay(1);
// Target-specific driver installation/configuration sequence
#if HELPER_TARGET_IS_ESP32 || HELPER_TARGET_IS_ESP32S2 || HELPER_TARGET_IS_ESP32S3 || HELPER_TARGET_IS_ESP32C3 || HELPER_TARGET_IS_ESP32C6
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 1, 0)
ESP_LOGD(TAG, "Using IDF >= 5.1.0 driver install order for ESP32 family");
err = i2c_driver_install(dev->port, legacy_cfg.mode, 0, 0, 0);
if (err == ESP_OK)
{
err = i2c_param_config(dev->port, &legacy_cfg);
}
#else
ESP_LOGD(TAG, "Using IDF < 5.1.0 driver install order for ESP32 family");
err = i2c_param_config(dev->port, &legacy_cfg);
if (err == ESP_OK)
{
err = i2c_driver_install(dev->port, legacy_cfg.mode, 0, 0, 0);
}
#endif
#elif HELPER_TARGET_IS_ESP8266
ESP_LOGD(TAG, "Using ESP8266 specific driver installation");
legacy_cfg.clk_stretch_tick = dev->timeout_ticks ? dev->timeout_ticks : I2CDEV_MAX_STRETCH_TIME;
err = i2c_driver_install(dev->port, legacy_cfg.mode);
if (err == ESP_OK)
{
err = i2c_param_config(dev->port, &legacy_cfg);
}
// ESP8266 note: Clock speed is not directly configurable through i2c_config_t
// The desired speed was: %lu Hz", desired_speed
#else
// If legacy mode is off, and target detection fails, this avoids a compile error.
// The legacy driver just won't support any target in this case.
ESP_LOGW(TAG, "i2cdev_legacy.c: No specific target (ESP32/ESP32-S2/ESP32-S3/ESP32-C3/ESP32-C6/ESP8266) detected "
"for driver installation. Legacy driver might be inactive or misconfigured.");
err = ESP_ERR_NOT_SUPPORTED; // Indicate that setup can't proceed.
#endif
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Failed to install/configure I2C driver for port %d: %d (%s)", dev->port, err, esp_err_to_name(err));
states[dev->port].installed = false; // Ensure state reflects failure
return err;
}
memcpy(&states[dev->port].config, &legacy_cfg, sizeof(i2c_config_t));
states[dev->port].installed = true;
states[dev->port].ref_count++;
dev->sda_pin = legacy_cfg.sda_io_num;
dev->scl_pin = legacy_cfg.scl_io_num;
ESP_LOGD(TAG, "I2C driver successfully installed/reconfigured on port %d, ref_count=%" PRIu32, dev->port, states[dev->port].ref_count);
}
else
{
states[dev->port].ref_count++;
ESP_LOGV(TAG, "I2C driver already installed on port %d with matching config, ref_count=%" PRIu32, dev->port, states[dev->port].ref_count);
dev->sda_pin = states[dev->port].config.sda_io_num;
dev->scl_pin = states[dev->port].config.scl_io_num;
}
// Part 2: Timeout Configuration (ESP32 family specific hardware timeout)
#if HELPER_TARGET_IS_ESP32 || HELPER_TARGET_IS_ESP32S2 || HELPER_TARGET_IS_ESP32S3 || HELPER_TARGET_IS_ESP32C3 || HELPER_TARGET_IS_ESP32C6
int current_timeout_hw;
err = i2c_get_timeout(dev->port, &current_timeout_hw);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Failed to get HW timeout for port %d: %d (%s)", dev->port, err, esp_err_to_name(err));
return err;
}
uint32_t timeout_ticks_val = dev->timeout_ticks ? dev->timeout_ticks : I2CDEV_MAX_STRETCH_TIME;
if (timeout_ticks_val != (uint32_t)current_timeout_hw)
{
ESP_LOGV(TAG, "Port %d: Updating HW timeout from %d to %" PRIu32 " ticks", dev->port, current_timeout_hw, timeout_ticks_val);
err = i2c_set_timeout(dev->port, timeout_ticks_val);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Failed to set HW timeout for port %d: %d (%s)", dev->port, err, esp_err_to_name(err));
return err;
}
ESP_LOGD(TAG, "HW Timeout: ticks = %" PRIu32 " (%" PRIu32 " usec) on port %d", timeout_ticks_val, timeout_ticks_val / 80, dev->port);
}
#endif
return ESP_OK;
}
esp_err_t i2c_dev_probe(const i2c_dev_t *dev, i2c_dev_type_t operation_type)
{
if (!dev)
return ESP_ERR_INVALID_ARG;
SEMAPHORE_TAKE(dev->port);
esp_err_t res = i2c_setup_port((i2c_dev_t *)dev);
if (res == ESP_OK)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, dev->addr << 1 | (operation_type == I2C_DEV_READ ? 1 : 0), true);
// Alternative Write-style probe for better device compatibility
// many devices don't respond well to blind read probes.
// i2c_master_write_byte(cmd, dev->addr << 1 | 0, true); // Force write bit (0)
i2c_master_stop(cmd);
res = i2c_master_cmd_begin(dev->port, cmd, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT));
i2c_cmd_link_delete(cmd);
}
SEMAPHORE_GIVE(dev->port);
return res;
}
esp_err_t i2c_dev_read(const i2c_dev_t *dev, const void *out_data, size_t out_size, void *in_data, size_t in_size)
{
if (!dev || !in_data || !in_size)
return ESP_ERR_INVALID_ARG;
SEMAPHORE_TAKE(dev->port);
// Use a local status variable to track errors
esp_err_t err = i2c_setup_port((i2c_dev_t *)dev);
if (err == ESP_OK)
{
// Only create a command handle if setup was successful
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
if (out_data && out_size)
{
// Write phase - typically used to specify a register address
i2c_master_start(cmd);
i2c_master_write_byte(cmd, dev->addr << 1, true); // Addr + Write bit (0)
i2c_master_write(cmd, (void *)out_data, out_size, true);
}
// Read phase - get data from the device
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->addr << 1) | 1, true); // Addr + Read bit (1)
i2c_master_read(cmd, in_data, in_size,
I2C_MASTER_LAST_NACK); // NACK the last byte to signal end
i2c_master_stop(cmd);
// Execute the command
err = i2c_master_cmd_begin(dev->port, cmd, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT));
if (err != ESP_OK)
{
ESP_LOGE(TAG, "i2c_master_cmd_begin failed for read: %d (%s)", err, esp_err_to_name(err));
}
// Always delete the command handle
i2c_cmd_link_delete(cmd);
}
// Always release the semaphore before returning
SEMAPHORE_GIVE(dev->port);
return err;
}
esp_err_t i2c_dev_write(const i2c_dev_t *dev, const void *out_reg, size_t out_reg_size, const void *out_data, size_t out_size)
{
if (!dev)
return ESP_ERR_INVALID_ARG;
if ((!out_reg || !out_reg_size) && (!out_data || !out_size))
return ESP_ERR_INVALID_ARG;
SEMAPHORE_TAKE(dev->port);
// Use a local status variable to track errors
esp_err_t err = i2c_setup_port((i2c_dev_t *)dev);
if (err == ESP_OK)
{
// Only create a command handle if setup was successful
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, dev->addr << 1, true);
// Write register address/command if provided
if (out_reg && out_reg_size)
{
i2c_master_write(cmd, (void *)out_reg, out_reg_size, true);
}
// Write data if provided
if (out_data && out_size)
{
i2c_master_write(cmd, (void *)out_data, out_size, true);
}
i2c_master_stop(cmd);
// Execute the command
err = i2c_master_cmd_begin(dev->port, cmd, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT));
if (err != ESP_OK)
{
ESP_LOGE(TAG, "i2c_master_cmd_begin failed for write: %d (%s)", err, esp_err_to_name(err));
}
// Always delete the command handle
i2c_cmd_link_delete(cmd);
}
// Always release the semaphore before returning
SEMAPHORE_GIVE(dev->port);
return err;
}
esp_err_t i2c_dev_write_reg(const i2c_dev_t *dev, uint8_t reg, const void *out_data, size_t out_size)
{
if (!dev || !out_data || !out_size)
return ESP_ERR_INVALID_ARG;
SEMAPHORE_TAKE(dev->port);
// Use a local status variable to track errors
esp_err_t err = i2c_setup_port((i2c_dev_t *)dev);
if (err == ESP_OK)
{
// Only create a command handle if setup was successful
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->addr << 1) | I2C_MASTER_WRITE, true); // Addr + Write bit
i2c_master_write_byte(cmd, reg, true); // Register address
if (out_data && out_size)
{
i2c_master_write(cmd, (void *)out_data, out_size, true); // Data to write
}
i2c_master_stop(cmd);
// Execute the command
err = i2c_master_cmd_begin(dev->port, cmd, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT));
if (err != ESP_OK)
{
ESP_LOGE(TAG, "i2c_master_cmd_begin failed for write_reg: %d (%s)", err, esp_err_to_name(err));
}
// Always delete the command handle
i2c_cmd_link_delete(cmd);
}
// Always release the semaphore before returning
SEMAPHORE_GIVE(dev->port);
return err;
}
esp_err_t i2c_dev_read_reg(const i2c_dev_t *dev, uint8_t reg, void *in_data, size_t in_size)
{
if (!dev || !in_data || !in_size)
return ESP_ERR_INVALID_ARG;
SEMAPHORE_TAKE(dev->port);
// Use a local status variable to track errors
esp_err_t err = i2c_setup_port((i2c_dev_t *)dev);
if (err == ESP_OK)
{
// Only create a command handle if setup was successful
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->addr << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, reg, true);
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->addr << 1) | I2C_MASTER_READ, true);
i2c_master_read(cmd, in_data, in_size, I2C_MASTER_LAST_NACK);
i2c_master_stop(cmd);
// Execute the command
err = i2c_master_cmd_begin(dev->port, cmd, pdMS_TO_TICKS(CONFIG_I2CDEV_TIMEOUT));
if (err != ESP_OK)
{
ESP_LOGE(TAG, "i2c_master_cmd_begin failed for read_reg: %d (%s)", err, esp_err_to_name(err));
}
// Always delete the command handle
i2c_cmd_link_delete(cmd);
}
// Always release the semaphore before returning
SEMAPHORE_GIVE(dev->port);
return err;
}
// Implementation of i2c_dev_check_present (updated version of i2c_dev_probe) using legacy I2C driver
esp_err_t i2c_dev_check_present(const i2c_dev_t *dev)
{
if (!dev)
return ESP_ERR_INVALID_ARG;
ESP_LOGV(TAG, "[0x%02x at %d] Checking device presence (legacy driver)...", dev->addr, dev->port);
// Use the exact same pattern as i2c_dev_probe with WRITE operation to ensure consistent behavior
return i2c_dev_probe(dev, I2C_DEV_WRITE);
}