mirror of
				https://github.com/alexandrebobkov/ESP-Nodes.git
				synced 2025-10-31 11:45:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2049 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			2049 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = require('./trees');
 | |
| const adler32 = require('./adler32');
 | |
| const crc32   = require('./crc32');
 | |
| const msg     = require('./messages');
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| const {
 | |
|   Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_FULL_FLUSH, Z_FINISH, Z_BLOCK,
 | |
|   Z_OK, Z_STREAM_END, Z_STREAM_ERROR, Z_DATA_ERROR, Z_BUF_ERROR,
 | |
|   Z_DEFAULT_COMPRESSION,
 | |
|   Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY,
 | |
|   Z_UNKNOWN,
 | |
|   Z_DEFLATED
 | |
| } = require('./constants');
 | |
| 
 | |
| /*============================================================================*/
 | |
| 
 | |
| 
 | |
| const MAX_MEM_LEVEL = 9;
 | |
| /* Maximum value for memLevel in deflateInit2 */
 | |
| const MAX_WBITS = 15;
 | |
| /* 32K LZ77 window */
 | |
| const DEF_MEM_LEVEL = 8;
 | |
| 
 | |
| 
 | |
| const LENGTH_CODES  = 29;
 | |
| /* number of length codes, not counting the special END_BLOCK code */
 | |
| const LITERALS      = 256;
 | |
| /* number of literal bytes 0..255 */
 | |
| const L_CODES       = LITERALS + 1 + LENGTH_CODES;
 | |
| /* number of Literal or Length codes, including the END_BLOCK code */
 | |
| const D_CODES       = 30;
 | |
| /* number of distance codes */
 | |
| const BL_CODES      = 19;
 | |
| /* number of codes used to transfer the bit lengths */
 | |
| const HEAP_SIZE     = 2 * L_CODES + 1;
 | |
| /* maximum heap size */
 | |
| const MAX_BITS  = 15;
 | |
| /* All codes must not exceed MAX_BITS bits */
 | |
| 
 | |
| const MIN_MATCH = 3;
 | |
| const MAX_MATCH = 258;
 | |
| const MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
 | |
| 
 | |
| const PRESET_DICT = 0x20;
 | |
| 
 | |
| const INIT_STATE    =  42;    /* zlib header -> BUSY_STATE */
 | |
| //#ifdef GZIP
 | |
| const GZIP_STATE    =  57;    /* gzip header -> BUSY_STATE | EXTRA_STATE */
 | |
| //#endif
 | |
| const EXTRA_STATE   =  69;    /* gzip extra block -> NAME_STATE */
 | |
| const NAME_STATE    =  73;    /* gzip file name -> COMMENT_STATE */
 | |
| const COMMENT_STATE =  91;    /* gzip comment -> HCRC_STATE */
 | |
| const HCRC_STATE    = 103;    /* gzip header CRC -> BUSY_STATE */
 | |
| const BUSY_STATE    = 113;    /* deflate -> FINISH_STATE */
 | |
| const FINISH_STATE  = 666;    /* stream complete */
 | |
| 
 | |
| const BS_NEED_MORE      = 1; /* block not completed, need more input or more output */
 | |
| const BS_BLOCK_DONE     = 2; /* block flush performed */
 | |
| const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
 | |
| const BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */
 | |
| 
 | |
| const OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
 | |
| 
 | |
| const err = (strm, errorCode) => {
 | |
|   strm.msg = msg[errorCode];
 | |
|   return errorCode;
 | |
| };
 | |
| 
 | |
| const rank = (f) => {
 | |
|   return ((f) * 2) - ((f) > 4 ? 9 : 0);
 | |
| };
 | |
| 
 | |
| const zero = (buf) => {
 | |
|   let len = buf.length; while (--len >= 0) { buf[len] = 0; }
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Slide the hash table when sliding the window down (could be avoided with 32
 | |
|  * bit values at the expense of memory usage). We slide even when level == 0 to
 | |
|  * keep the hash table consistent if we switch back to level > 0 later.
 | |
|  */
 | |
| const slide_hash = (s) => {
 | |
|   let n, m;
 | |
|   let p;
 | |
|   let wsize = s.w_size;
 | |
| 
 | |
|   n = s.hash_size;
 | |
|   p = n;
 | |
|   do {
 | |
|     m = s.head[--p];
 | |
|     s.head[p] = (m >= wsize ? m - wsize : 0);
 | |
|   } while (--n);
 | |
|   n = wsize;
 | |
| //#ifndef FASTEST
 | |
|   p = n;
 | |
|   do {
 | |
|     m = s.prev[--p];
 | |
|     s.prev[p] = (m >= wsize ? m - wsize : 0);
 | |
|     /* If n is not on any hash chain, prev[n] is garbage but
 | |
|      * its value will never be used.
 | |
|      */
 | |
|   } while (--n);
 | |
| //#endif
 | |
| };
 | |
| 
 | |
| /* eslint-disable new-cap */
 | |
| let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask;
 | |
| // This hash causes less collisions, https://github.com/nodeca/pako/issues/135
 | |
| // But breaks binary compatibility
 | |
| //let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask;
 | |
| let HASH = HASH_ZLIB;
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Flush as much pending output as possible. All deflate() output, except for
 | |
|  * some deflate_stored() output, goes through this function so some
 | |
|  * applications may wish to modify it to avoid allocating a large
 | |
|  * strm->next_out buffer and copying into it. (See also read_buf()).
 | |
|  */
 | |
| const flush_pending = (strm) => {
 | |
|   const s = strm.state;
 | |
| 
 | |
|   //_tr_flush_bits(s);
 | |
|   let len = s.pending;
 | |
|   if (len > strm.avail_out) {
 | |
|     len = strm.avail_out;
 | |
|   }
 | |
|   if (len === 0) { return; }
 | |
| 
 | |
|   strm.output.set(s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out);
 | |
|   strm.next_out  += len;
 | |
|   s.pending_out  += len;
 | |
|   strm.total_out += len;
 | |
|   strm.avail_out -= len;
 | |
|   s.pending      -= len;
 | |
|   if (s.pending === 0) {
 | |
|     s.pending_out = 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| const flush_block_only = (s, last) => {
 | |
|   _tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
 | |
|   s.block_start = s.strstart;
 | |
|   flush_pending(s.strm);
 | |
| };
 | |
| 
 | |
| 
 | |
| const put_byte = (s, b) => {
 | |
|   s.pending_buf[s.pending++] = b;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 | |
|  * IN assertion: the stream state is correct and there is enough room in
 | |
|  * pending_buf.
 | |
|  */
 | |
| const putShortMSB = (s, b) => {
 | |
| 
 | |
|   //  put_byte(s, (Byte)(b >> 8));
 | |
| //  put_byte(s, (Byte)(b & 0xff));
 | |
|   s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
 | |
|   s.pending_buf[s.pending++] = b & 0xff;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Read a new buffer from the current input stream, update the adler32
 | |
|  * and total number of bytes read.  All deflate() input goes through
 | |
|  * this function so some applications may wish to modify it to avoid
 | |
|  * allocating a large strm->input buffer and copying from it.
 | |
|  * (See also flush_pending()).
 | |
|  */
 | |
| const read_buf = (strm, buf, start, size) => {
 | |
| 
 | |
|   let len = strm.avail_in;
 | |
| 
 | |
|   if (len > size) { len = size; }
 | |
|   if (len === 0) { return 0; }
 | |
| 
 | |
|   strm.avail_in -= len;
 | |
| 
 | |
|   // zmemcpy(buf, strm->next_in, len);
 | |
|   buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start);
 | |
|   if (strm.state.wrap === 1) {
 | |
|     strm.adler = adler32(strm.adler, buf, len, start);
 | |
|   }
 | |
| 
 | |
|   else if (strm.state.wrap === 2) {
 | |
|     strm.adler = crc32(strm.adler, buf, len, start);
 | |
|   }
 | |
| 
 | |
|   strm.next_in += len;
 | |
|   strm.total_in += len;
 | |
| 
 | |
|   return len;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Set match_start to the longest match starting at the given string and
 | |
|  * return its length. Matches shorter or equal to prev_length are discarded,
 | |
|  * in which case the result is equal to prev_length and match_start is
 | |
|  * garbage.
 | |
|  * IN assertions: cur_match is the head of the hash chain for the current
 | |
|  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 | |
|  * OUT assertion: the match length is not greater than s->lookahead.
 | |
|  */
 | |
| const longest_match = (s, cur_match) => {
 | |
| 
 | |
|   let chain_length = s.max_chain_length;      /* max hash chain length */
 | |
|   let scan = s.strstart; /* current string */
 | |
|   let match;                       /* matched string */
 | |
|   let len;                           /* length of current match */
 | |
|   let best_len = s.prev_length;              /* best match length so far */
 | |
|   let nice_match = s.nice_match;             /* stop if match long enough */
 | |
|   const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
 | |
|       s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;
 | |
| 
 | |
|   const _win = s.window; // shortcut
 | |
| 
 | |
|   const wmask = s.w_mask;
 | |
|   const prev  = s.prev;
 | |
| 
 | |
|   /* Stop when cur_match becomes <= limit. To simplify the code,
 | |
|    * we prevent matches with the string of window index 0.
 | |
|    */
 | |
| 
 | |
|   const strend = s.strstart + MAX_MATCH;
 | |
|   let scan_end1  = _win[scan + best_len - 1];
 | |
|   let scan_end   = _win[scan + best_len];
 | |
| 
 | |
|   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | |
|    * It is easy to get rid of this optimization if necessary.
 | |
|    */
 | |
|   // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 | |
| 
 | |
|   /* Do not waste too much time if we already have a good match: */
 | |
|   if (s.prev_length >= s.good_match) {
 | |
|     chain_length >>= 2;
 | |
|   }
 | |
|   /* Do not look for matches beyond the end of the input. This is necessary
 | |
|    * to make deflate deterministic.
 | |
|    */
 | |
|   if (nice_match > s.lookahead) { nice_match = s.lookahead; }
 | |
| 
 | |
|   // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 | |
| 
 | |
|   do {
 | |
|     // Assert(cur_match < s->strstart, "no future");
 | |
|     match = cur_match;
 | |
| 
 | |
|     /* Skip to next match if the match length cannot increase
 | |
|      * or if the match length is less than 2.  Note that the checks below
 | |
|      * for insufficient lookahead only occur occasionally for performance
 | |
|      * reasons.  Therefore uninitialized memory will be accessed, and
 | |
|      * conditional jumps will be made that depend on those values.
 | |
|      * However the length of the match is limited to the lookahead, so
 | |
|      * the output of deflate is not affected by the uninitialized values.
 | |
|      */
 | |
| 
 | |
|     if (_win[match + best_len]     !== scan_end  ||
 | |
|         _win[match + best_len - 1] !== scan_end1 ||
 | |
|         _win[match]                !== _win[scan] ||
 | |
|         _win[++match]              !== _win[scan + 1]) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* The check at best_len-1 can be removed because it will be made
 | |
|      * again later. (This heuristic is not always a win.)
 | |
|      * It is not necessary to compare scan[2] and match[2] since they
 | |
|      * are always equal when the other bytes match, given that
 | |
|      * the hash keys are equal and that HASH_BITS >= 8.
 | |
|      */
 | |
|     scan += 2;
 | |
|     match++;
 | |
|     // Assert(*scan == *match, "match[2]?");
 | |
| 
 | |
|     /* We check for insufficient lookahead only every 8th comparison;
 | |
|      * the 256th check will be made at strstart+258.
 | |
|      */
 | |
|     do {
 | |
|       /*jshint noempty:false*/
 | |
|     } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | |
|              scan < strend);
 | |
| 
 | |
|     // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | |
| 
 | |
|     len = MAX_MATCH - (strend - scan);
 | |
|     scan = strend - MAX_MATCH;
 | |
| 
 | |
|     if (len > best_len) {
 | |
|       s.match_start = cur_match;
 | |
|       best_len = len;
 | |
|       if (len >= nice_match) {
 | |
|         break;
 | |
|       }
 | |
|       scan_end1  = _win[scan + best_len - 1];
 | |
|       scan_end   = _win[scan + best_len];
 | |
|     }
 | |
|   } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);
 | |
| 
 | |
|   if (best_len <= s.lookahead) {
 | |
|     return best_len;
 | |
|   }
 | |
|   return s.lookahead;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Fill the window when the lookahead becomes insufficient.
 | |
|  * Updates strstart and lookahead.
 | |
|  *
 | |
|  * IN assertion: lookahead < MIN_LOOKAHEAD
 | |
|  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 | |
|  *    At least one byte has been read, or avail_in == 0; reads are
 | |
|  *    performed for at least two bytes (required for the zip translate_eol
 | |
|  *    option -- not supported here).
 | |
|  */
 | |
| const fill_window = (s) => {
 | |
| 
 | |
|   const _w_size = s.w_size;
 | |
|   let n, more, str;
 | |
| 
 | |
|   //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 | |
| 
 | |
|   do {
 | |
|     more = s.window_size - s.lookahead - s.strstart;
 | |
| 
 | |
|     // JS ints have 32 bit, block below not needed
 | |
|     /* Deal with !@#$% 64K limit: */
 | |
|     //if (sizeof(int) <= 2) {
 | |
|     //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 | |
|     //        more = wsize;
 | |
|     //
 | |
|     //  } else if (more == (unsigned)(-1)) {
 | |
|     //        /* Very unlikely, but possible on 16 bit machine if
 | |
|     //         * strstart == 0 && lookahead == 1 (input done a byte at time)
 | |
|     //         */
 | |
|     //        more--;
 | |
|     //    }
 | |
|     //}
 | |
| 
 | |
| 
 | |
|     /* If the window is almost full and there is insufficient lookahead,
 | |
|      * move the upper half to the lower one to make room in the upper half.
 | |
|      */
 | |
|     if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {
 | |
| 
 | |
|       s.window.set(s.window.subarray(_w_size, _w_size + _w_size - more), 0);
 | |
|       s.match_start -= _w_size;
 | |
|       s.strstart -= _w_size;
 | |
|       /* we now have strstart >= MAX_DIST */
 | |
|       s.block_start -= _w_size;
 | |
|       if (s.insert > s.strstart) {
 | |
|         s.insert = s.strstart;
 | |
|       }
 | |
|       slide_hash(s);
 | |
|       more += _w_size;
 | |
|     }
 | |
|     if (s.strm.avail_in === 0) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If there was no sliding:
 | |
|      *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 | |
|      *    more == window_size - lookahead - strstart
 | |
|      * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 | |
|      * => more >= window_size - 2*WSIZE + 2
 | |
|      * In the BIG_MEM or MMAP case (not yet supported),
 | |
|      *   window_size == input_size + MIN_LOOKAHEAD  &&
 | |
|      *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 | |
|      * Otherwise, window_size == 2*WSIZE so more >= 2.
 | |
|      * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 | |
|      */
 | |
|     //Assert(more >= 2, "more < 2");
 | |
|     n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
 | |
|     s.lookahead += n;
 | |
| 
 | |
|     /* Initialize the hash value now that we have some input: */
 | |
|     if (s.lookahead + s.insert >= MIN_MATCH) {
 | |
|       str = s.strstart - s.insert;
 | |
|       s.ins_h = s.window[str];
 | |
| 
 | |
|       /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
 | |
|       s.ins_h = HASH(s, s.ins_h, s.window[str + 1]);
 | |
| //#if MIN_MATCH != 3
 | |
| //        Call update_hash() MIN_MATCH-3 more times
 | |
| //#endif
 | |
|       while (s.insert) {
 | |
|         /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | |
|         s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
 | |
| 
 | |
|         s.prev[str & s.w_mask] = s.head[s.ins_h];
 | |
|         s.head[s.ins_h] = str;
 | |
|         str++;
 | |
|         s.insert--;
 | |
|         if (s.lookahead + s.insert < MIN_MATCH) {
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | |
|      * but this is not important since only literal bytes will be emitted.
 | |
|      */
 | |
| 
 | |
|   } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);
 | |
| 
 | |
|   /* If the WIN_INIT bytes after the end of the current data have never been
 | |
|    * written, then zero those bytes in order to avoid memory check reports of
 | |
|    * the use of uninitialized (or uninitialised as Julian writes) bytes by
 | |
|    * the longest match routines.  Update the high water mark for the next
 | |
|    * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 | |
|    * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 | |
|    */
 | |
| //  if (s.high_water < s.window_size) {
 | |
| //    const curr = s.strstart + s.lookahead;
 | |
| //    let init = 0;
 | |
| //
 | |
| //    if (s.high_water < curr) {
 | |
| //      /* Previous high water mark below current data -- zero WIN_INIT
 | |
| //       * bytes or up to end of window, whichever is less.
 | |
| //       */
 | |
| //      init = s.window_size - curr;
 | |
| //      if (init > WIN_INIT)
 | |
| //        init = WIN_INIT;
 | |
| //      zmemzero(s->window + curr, (unsigned)init);
 | |
| //      s->high_water = curr + init;
 | |
| //    }
 | |
| //    else if (s->high_water < (ulg)curr + WIN_INIT) {
 | |
| //      /* High water mark at or above current data, but below current data
 | |
| //       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 | |
| //       * to end of window, whichever is less.
 | |
| //       */
 | |
| //      init = (ulg)curr + WIN_INIT - s->high_water;
 | |
| //      if (init > s->window_size - s->high_water)
 | |
| //        init = s->window_size - s->high_water;
 | |
| //      zmemzero(s->window + s->high_water, (unsigned)init);
 | |
| //      s->high_water += init;
 | |
| //    }
 | |
| //  }
 | |
| //
 | |
| //  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 | |
| //    "not enough room for search");
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Copy without compression as much as possible from the input stream, return
 | |
|  * the current block state.
 | |
|  *
 | |
|  * In case deflateParams() is used to later switch to a non-zero compression
 | |
|  * level, s->matches (otherwise unused when storing) keeps track of the number
 | |
|  * of hash table slides to perform. If s->matches is 1, then one hash table
 | |
|  * slide will be done when switching. If s->matches is 2, the maximum value
 | |
|  * allowed here, then the hash table will be cleared, since two or more slides
 | |
|  * is the same as a clear.
 | |
|  *
 | |
|  * deflate_stored() is written to minimize the number of times an input byte is
 | |
|  * copied. It is most efficient with large input and output buffers, which
 | |
|  * maximizes the opportunites to have a single copy from next_in to next_out.
 | |
|  */
 | |
| const deflate_stored = (s, flush) => {
 | |
| 
 | |
|   /* Smallest worthy block size when not flushing or finishing. By default
 | |
|    * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
 | |
|    * large input and output buffers, the stored block size will be larger.
 | |
|    */
 | |
|   let min_block = s.pending_buf_size - 5 > s.w_size ? s.w_size : s.pending_buf_size - 5;
 | |
| 
 | |
|   /* Copy as many min_block or larger stored blocks directly to next_out as
 | |
|    * possible. If flushing, copy the remaining available input to next_out as
 | |
|    * stored blocks, if there is enough space.
 | |
|    */
 | |
|   let len, left, have, last = 0;
 | |
|   let used = s.strm.avail_in;
 | |
|   do {
 | |
|     /* Set len to the maximum size block that we can copy directly with the
 | |
|      * available input data and output space. Set left to how much of that
 | |
|      * would be copied from what's left in the window.
 | |
|      */
 | |
|     len = 65535/* MAX_STORED */;     /* maximum deflate stored block length */
 | |
|     have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
 | |
|     if (s.strm.avail_out < have) {         /* need room for header */
 | |
|       break;
 | |
|     }
 | |
|       /* maximum stored block length that will fit in avail_out: */
 | |
|     have = s.strm.avail_out - have;
 | |
|     left = s.strstart - s.block_start;  /* bytes left in window */
 | |
|     if (len > left + s.strm.avail_in) {
 | |
|       len = left + s.strm.avail_in;   /* limit len to the input */
 | |
|     }
 | |
|     if (len > have) {
 | |
|       len = have;             /* limit len to the output */
 | |
|     }
 | |
| 
 | |
|     /* If the stored block would be less than min_block in length, or if
 | |
|      * unable to copy all of the available input when flushing, then try
 | |
|      * copying to the window and the pending buffer instead. Also don't
 | |
|      * write an empty block when flushing -- deflate() does that.
 | |
|      */
 | |
|     if (len < min_block && ((len === 0 && flush !== Z_FINISH) ||
 | |
|                         flush === Z_NO_FLUSH ||
 | |
|                         len !== left + s.strm.avail_in)) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* Make a dummy stored block in pending to get the header bytes,
 | |
|      * including any pending bits. This also updates the debugging counts.
 | |
|      */
 | |
|     last = flush === Z_FINISH && len === left + s.strm.avail_in ? 1 : 0;
 | |
|     _tr_stored_block(s, 0, 0, last);
 | |
| 
 | |
|     /* Replace the lengths in the dummy stored block with len. */
 | |
|     s.pending_buf[s.pending - 4] = len;
 | |
|     s.pending_buf[s.pending - 3] = len >> 8;
 | |
|     s.pending_buf[s.pending - 2] = ~len;
 | |
|     s.pending_buf[s.pending - 1] = ~len >> 8;
 | |
| 
 | |
|     /* Write the stored block header bytes. */
 | |
|     flush_pending(s.strm);
 | |
| 
 | |
| //#ifdef ZLIB_DEBUG
 | |
| //    /* Update debugging counts for the data about to be copied. */
 | |
| //    s->compressed_len += len << 3;
 | |
| //    s->bits_sent += len << 3;
 | |
| //#endif
 | |
| 
 | |
|     /* Copy uncompressed bytes from the window to next_out. */
 | |
|     if (left) {
 | |
|       if (left > len) {
 | |
|         left = len;
 | |
|       }
 | |
|       //zmemcpy(s->strm->next_out, s->window + s->block_start, left);
 | |
|       s.strm.output.set(s.window.subarray(s.block_start, s.block_start + left), s.strm.next_out);
 | |
|       s.strm.next_out += left;
 | |
|       s.strm.avail_out -= left;
 | |
|       s.strm.total_out += left;
 | |
|       s.block_start += left;
 | |
|       len -= left;
 | |
|     }
 | |
| 
 | |
|     /* Copy uncompressed bytes directly from next_in to next_out, updating
 | |
|      * the check value.
 | |
|      */
 | |
|     if (len) {
 | |
|       read_buf(s.strm, s.strm.output, s.strm.next_out, len);
 | |
|       s.strm.next_out += len;
 | |
|       s.strm.avail_out -= len;
 | |
|       s.strm.total_out += len;
 | |
|     }
 | |
|   } while (last === 0);
 | |
| 
 | |
|   /* Update the sliding window with the last s->w_size bytes of the copied
 | |
|    * data, or append all of the copied data to the existing window if less
 | |
|    * than s->w_size bytes were copied. Also update the number of bytes to
 | |
|    * insert in the hash tables, in the event that deflateParams() switches to
 | |
|    * a non-zero compression level.
 | |
|    */
 | |
|   used -= s.strm.avail_in;    /* number of input bytes directly copied */
 | |
|   if (used) {
 | |
|     /* If any input was used, then no unused input remains in the window,
 | |
|      * therefore s->block_start == s->strstart.
 | |
|      */
 | |
|     if (used >= s.w_size) {  /* supplant the previous history */
 | |
|       s.matches = 2;     /* clear hash */
 | |
|       //zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
 | |
|       s.window.set(s.strm.input.subarray(s.strm.next_in - s.w_size, s.strm.next_in), 0);
 | |
|       s.strstart = s.w_size;
 | |
|       s.insert = s.strstart;
 | |
|     }
 | |
|     else {
 | |
|       if (s.window_size - s.strstart <= used) {
 | |
|         /* Slide the window down. */
 | |
|         s.strstart -= s.w_size;
 | |
|         //zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | |
|         s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
 | |
|         if (s.matches < 2) {
 | |
|           s.matches++;   /* add a pending slide_hash() */
 | |
|         }
 | |
|         if (s.insert > s.strstart) {
 | |
|           s.insert = s.strstart;
 | |
|         }
 | |
|       }
 | |
|       //zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
 | |
|       s.window.set(s.strm.input.subarray(s.strm.next_in - used, s.strm.next_in), s.strstart);
 | |
|       s.strstart += used;
 | |
|       s.insert += used > s.w_size - s.insert ? s.w_size - s.insert : used;
 | |
|     }
 | |
|     s.block_start = s.strstart;
 | |
|   }
 | |
|   if (s.high_water < s.strstart) {
 | |
|     s.high_water = s.strstart;
 | |
|   }
 | |
| 
 | |
|   /* If the last block was written to next_out, then done. */
 | |
|   if (last) {
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
| 
 | |
|   /* If flushing and all input has been consumed, then done. */
 | |
|   if (flush !== Z_NO_FLUSH && flush !== Z_FINISH &&
 | |
|     s.strm.avail_in === 0 && s.strstart === s.block_start) {
 | |
|     return BS_BLOCK_DONE;
 | |
|   }
 | |
| 
 | |
|   /* Fill the window with any remaining input. */
 | |
|   have = s.window_size - s.strstart;
 | |
|   if (s.strm.avail_in > have && s.block_start >= s.w_size) {
 | |
|     /* Slide the window down. */
 | |
|     s.block_start -= s.w_size;
 | |
|     s.strstart -= s.w_size;
 | |
|     //zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | |
|     s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
 | |
|     if (s.matches < 2) {
 | |
|       s.matches++;       /* add a pending slide_hash() */
 | |
|     }
 | |
|     have += s.w_size;      /* more space now */
 | |
|     if (s.insert > s.strstart) {
 | |
|       s.insert = s.strstart;
 | |
|     }
 | |
|   }
 | |
|   if (have > s.strm.avail_in) {
 | |
|     have = s.strm.avail_in;
 | |
|   }
 | |
|   if (have) {
 | |
|     read_buf(s.strm, s.window, s.strstart, have);
 | |
|     s.strstart += have;
 | |
|     s.insert += have > s.w_size - s.insert ? s.w_size - s.insert : have;
 | |
|   }
 | |
|   if (s.high_water < s.strstart) {
 | |
|     s.high_water = s.strstart;
 | |
|   }
 | |
| 
 | |
|   /* There was not enough avail_out to write a complete worthy or flushed
 | |
|    * stored block to next_out. Write a stored block to pending instead, if we
 | |
|    * have enough input for a worthy block, or if flushing and there is enough
 | |
|    * room for the remaining input as a stored block in the pending buffer.
 | |
|    */
 | |
|   have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
 | |
|     /* maximum stored block length that will fit in pending: */
 | |
|   have = s.pending_buf_size - have > 65535/* MAX_STORED */ ? 65535/* MAX_STORED */ : s.pending_buf_size - have;
 | |
|   min_block = have > s.w_size ? s.w_size : have;
 | |
|   left = s.strstart - s.block_start;
 | |
|   if (left >= min_block ||
 | |
|      ((left || flush === Z_FINISH) && flush !== Z_NO_FLUSH &&
 | |
|      s.strm.avail_in === 0 && left <= have)) {
 | |
|     len = left > have ? have : left;
 | |
|     last = flush === Z_FINISH && s.strm.avail_in === 0 &&
 | |
|          len === left ? 1 : 0;
 | |
|     _tr_stored_block(s, s.block_start, len, last);
 | |
|     s.block_start += len;
 | |
|     flush_pending(s.strm);
 | |
|   }
 | |
| 
 | |
|   /* We've done all we can with the available input and output. */
 | |
|   return last ? BS_FINISH_STARTED : BS_NEED_MORE;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compress as much as possible from the input stream, return the current
 | |
|  * block state.
 | |
|  * This function does not perform lazy evaluation of matches and inserts
 | |
|  * new strings in the dictionary only for unmatched strings or for short
 | |
|  * matches. It is used only for the fast compression options.
 | |
|  */
 | |
| const deflate_fast = (s, flush) => {
 | |
| 
 | |
|   let hash_head;        /* head of the hash chain */
 | |
|   let bflush;           /* set if current block must be flushed */
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the next match, plus MIN_MATCH bytes to insert the
 | |
|      * string following the next match.
 | |
|      */
 | |
|     if (s.lookahead < MIN_LOOKAHEAD) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) {
 | |
|         break; /* flush the current block */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Insert the string window[strstart .. strstart+2] in the
 | |
|      * dictionary, and set hash_head to the head of the hash chain:
 | |
|      */
 | |
|     hash_head = 0/*NIL*/;
 | |
|     if (s.lookahead >= MIN_MATCH) {
 | |
|       /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|       s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | |
|       hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|       s.head[s.ins_h] = s.strstart;
 | |
|       /***/
 | |
|     }
 | |
| 
 | |
|     /* Find the longest match, discarding those <= prev_length.
 | |
|      * At this point we have always match_length < MIN_MATCH
 | |
|      */
 | |
|     if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
 | |
|       /* To simplify the code, we prevent matches with the string
 | |
|        * of window index 0 (in particular we have to avoid a match
 | |
|        * of the string with itself at the start of the input file).
 | |
|        */
 | |
|       s.match_length = longest_match(s, hash_head);
 | |
|       /* longest_match() sets match_start */
 | |
|     }
 | |
|     if (s.match_length >= MIN_MATCH) {
 | |
|       // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only
 | |
| 
 | |
|       /*** _tr_tally_dist(s, s.strstart - s.match_start,
 | |
|                      s.match_length - MIN_MATCH, bflush); ***/
 | |
|       bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);
 | |
| 
 | |
|       s.lookahead -= s.match_length;
 | |
| 
 | |
|       /* Insert new strings in the hash table only if the match length
 | |
|        * is not too large. This saves time but degrades compression.
 | |
|        */
 | |
|       if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
 | |
|         s.match_length--; /* string at strstart already in table */
 | |
|         do {
 | |
|           s.strstart++;
 | |
|           /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|           s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | |
|           hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|           s.head[s.ins_h] = s.strstart;
 | |
|           /***/
 | |
|           /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
|            * always MIN_MATCH bytes ahead.
 | |
|            */
 | |
|         } while (--s.match_length !== 0);
 | |
|         s.strstart++;
 | |
|       } else
 | |
|       {
 | |
|         s.strstart += s.match_length;
 | |
|         s.match_length = 0;
 | |
|         s.ins_h = s.window[s.strstart];
 | |
|         /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
 | |
|         s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + 1]);
 | |
| 
 | |
| //#if MIN_MATCH != 3
 | |
| //                Call UPDATE_HASH() MIN_MATCH-3 more times
 | |
| //#endif
 | |
|         /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | |
|          * matter since it will be recomputed at next deflate call.
 | |
|          */
 | |
|       }
 | |
|     } else {
 | |
|       /* No match, output a literal byte */
 | |
|       //Tracevv((stderr,"%c", s.window[s.strstart]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|       bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | |
| 
 | |
|       s.lookahead--;
 | |
|       s.strstart++;
 | |
|     }
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.sym_next) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Same as above, but achieves better compression. We use a lazy
 | |
|  * evaluation for matches: a match is finally adopted only if there is
 | |
|  * no better match at the next window position.
 | |
|  */
 | |
| const deflate_slow = (s, flush) => {
 | |
| 
 | |
|   let hash_head;          /* head of hash chain */
 | |
|   let bflush;              /* set if current block must be flushed */
 | |
| 
 | |
|   let max_insert;
 | |
| 
 | |
|   /* Process the input block. */
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the next match, plus MIN_MATCH bytes to insert the
 | |
|      * string following the next match.
 | |
|      */
 | |
|     if (s.lookahead < MIN_LOOKAHEAD) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) { break; } /* flush the current block */
 | |
|     }
 | |
| 
 | |
|     /* Insert the string window[strstart .. strstart+2] in the
 | |
|      * dictionary, and set hash_head to the head of the hash chain:
 | |
|      */
 | |
|     hash_head = 0/*NIL*/;
 | |
|     if (s.lookahead >= MIN_MATCH) {
 | |
|       /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|       s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | |
|       hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|       s.head[s.ins_h] = s.strstart;
 | |
|       /***/
 | |
|     }
 | |
| 
 | |
|     /* Find the longest match, discarding those <= prev_length.
 | |
|      */
 | |
|     s.prev_length = s.match_length;
 | |
|     s.prev_match = s.match_start;
 | |
|     s.match_length = MIN_MATCH - 1;
 | |
| 
 | |
|     if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
 | |
|         s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
 | |
|       /* To simplify the code, we prevent matches with the string
 | |
|        * of window index 0 (in particular we have to avoid a match
 | |
|        * of the string with itself at the start of the input file).
 | |
|        */
 | |
|       s.match_length = longest_match(s, hash_head);
 | |
|       /* longest_match() sets match_start */
 | |
| 
 | |
|       if (s.match_length <= 5 &&
 | |
|          (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {
 | |
| 
 | |
|         /* If prev_match is also MIN_MATCH, match_start is garbage
 | |
|          * but we will ignore the current match anyway.
 | |
|          */
 | |
|         s.match_length = MIN_MATCH - 1;
 | |
|       }
 | |
|     }
 | |
|     /* If there was a match at the previous step and the current
 | |
|      * match is not better, output the previous match:
 | |
|      */
 | |
|     if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
 | |
|       max_insert = s.strstart + s.lookahead - MIN_MATCH;
 | |
|       /* Do not insert strings in hash table beyond this. */
 | |
| 
 | |
|       //check_match(s, s.strstart-1, s.prev_match, s.prev_length);
 | |
| 
 | |
|       /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
 | |
|                      s.prev_length - MIN_MATCH, bflush);***/
 | |
|       bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
 | |
|       /* Insert in hash table all strings up to the end of the match.
 | |
|        * strstart-1 and strstart are already inserted. If there is not
 | |
|        * enough lookahead, the last two strings are not inserted in
 | |
|        * the hash table.
 | |
|        */
 | |
|       s.lookahead -= s.prev_length - 1;
 | |
|       s.prev_length -= 2;
 | |
|       do {
 | |
|         if (++s.strstart <= max_insert) {
 | |
|           /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | |
|           s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | |
|           hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | |
|           s.head[s.ins_h] = s.strstart;
 | |
|           /***/
 | |
|         }
 | |
|       } while (--s.prev_length !== 0);
 | |
|       s.match_available = 0;
 | |
|       s.match_length = MIN_MATCH - 1;
 | |
|       s.strstart++;
 | |
| 
 | |
|       if (bflush) {
 | |
|         /*** FLUSH_BLOCK(s, 0); ***/
 | |
|         flush_block_only(s, false);
 | |
|         if (s.strm.avail_out === 0) {
 | |
|           return BS_NEED_MORE;
 | |
|         }
 | |
|         /***/
 | |
|       }
 | |
| 
 | |
|     } else if (s.match_available) {
 | |
|       /* If there was no match at the previous position, output a
 | |
|        * single literal. If there was a match but the current match
 | |
|        * is longer, truncate the previous match to a single literal.
 | |
|        */
 | |
|       //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | |
|       bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
 | |
| 
 | |
|       if (bflush) {
 | |
|         /*** FLUSH_BLOCK_ONLY(s, 0) ***/
 | |
|         flush_block_only(s, false);
 | |
|         /***/
 | |
|       }
 | |
|       s.strstart++;
 | |
|       s.lookahead--;
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|     } else {
 | |
|       /* There is no previous match to compare with, wait for
 | |
|        * the next step to decide.
 | |
|        */
 | |
|       s.match_available = 1;
 | |
|       s.strstart++;
 | |
|       s.lookahead--;
 | |
|     }
 | |
|   }
 | |
|   //Assert (flush != Z_NO_FLUSH, "no flush?");
 | |
|   if (s.match_available) {
 | |
|     //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|     /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | |
|     bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
 | |
| 
 | |
|     s.match_available = 0;
 | |
|   }
 | |
|   s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.sym_next) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
| 
 | |
|   return BS_BLOCK_DONE;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 | |
|  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 | |
|  * deflate switches away from Z_RLE.)
 | |
|  */
 | |
| const deflate_rle = (s, flush) => {
 | |
| 
 | |
|   let bflush;            /* set if current block must be flushed */
 | |
|   let prev;              /* byte at distance one to match */
 | |
|   let scan, strend;      /* scan goes up to strend for length of run */
 | |
| 
 | |
|   const _win = s.window;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we always have enough lookahead, except
 | |
|      * at the end of the input file. We need MAX_MATCH bytes
 | |
|      * for the longest run, plus one for the unrolled loop.
 | |
|      */
 | |
|     if (s.lookahead <= MAX_MATCH) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       if (s.lookahead === 0) { break; } /* flush the current block */
 | |
|     }
 | |
| 
 | |
|     /* See how many times the previous byte repeats */
 | |
|     s.match_length = 0;
 | |
|     if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
 | |
|       scan = s.strstart - 1;
 | |
|       prev = _win[scan];
 | |
|       if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
 | |
|         strend = s.strstart + MAX_MATCH;
 | |
|         do {
 | |
|           /*jshint noempty:false*/
 | |
|         } while (prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  prev === _win[++scan] && prev === _win[++scan] &&
 | |
|                  scan < strend);
 | |
|         s.match_length = MAX_MATCH - (strend - scan);
 | |
|         if (s.match_length > s.lookahead) {
 | |
|           s.match_length = s.lookahead;
 | |
|         }
 | |
|       }
 | |
|       //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 | |
|     }
 | |
| 
 | |
|     /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 | |
|     if (s.match_length >= MIN_MATCH) {
 | |
|       //check_match(s, s.strstart, s.strstart - 1, s.match_length);
 | |
| 
 | |
|       /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
 | |
|       bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH);
 | |
| 
 | |
|       s.lookahead -= s.match_length;
 | |
|       s.strstart += s.match_length;
 | |
|       s.match_length = 0;
 | |
|     } else {
 | |
|       /* No match, output a literal byte */
 | |
|       //Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|       /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|       bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | |
| 
 | |
|       s.lookahead--;
 | |
|       s.strstart++;
 | |
|     }
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = 0;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.sym_next) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 | |
|  * (It will be regenerated if this run of deflate switches away from Huffman.)
 | |
|  */
 | |
| const deflate_huff = (s, flush) => {
 | |
| 
 | |
|   let bflush;             /* set if current block must be flushed */
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Make sure that we have a literal to write. */
 | |
|     if (s.lookahead === 0) {
 | |
|       fill_window(s);
 | |
|       if (s.lookahead === 0) {
 | |
|         if (flush === Z_NO_FLUSH) {
 | |
|           return BS_NEED_MORE;
 | |
|         }
 | |
|         break;      /* flush the current block */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Output a literal byte */
 | |
|     s.match_length = 0;
 | |
|     //Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|     /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | |
|     bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | |
|     s.lookahead--;
 | |
|     s.strstart++;
 | |
|     if (bflush) {
 | |
|       /*** FLUSH_BLOCK(s, 0); ***/
 | |
|       flush_block_only(s, false);
 | |
|       if (s.strm.avail_out === 0) {
 | |
|         return BS_NEED_MORE;
 | |
|       }
 | |
|       /***/
 | |
|     }
 | |
|   }
 | |
|   s.insert = 0;
 | |
|   if (flush === Z_FINISH) {
 | |
|     /*** FLUSH_BLOCK(s, 1); ***/
 | |
|     flush_block_only(s, true);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_FINISH_STARTED;
 | |
|     }
 | |
|     /***/
 | |
|     return BS_FINISH_DONE;
 | |
|   }
 | |
|   if (s.sym_next) {
 | |
|     /*** FLUSH_BLOCK(s, 0); ***/
 | |
|     flush_block_only(s, false);
 | |
|     if (s.strm.avail_out === 0) {
 | |
|       return BS_NEED_MORE;
 | |
|     }
 | |
|     /***/
 | |
|   }
 | |
|   return BS_BLOCK_DONE;
 | |
| };
 | |
| 
 | |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on
 | |
|  * the desired pack level (0..9). The values given below have been tuned to
 | |
|  * exclude worst case performance for pathological files. Better values may be
 | |
|  * found for specific files.
 | |
|  */
 | |
| function Config(good_length, max_lazy, nice_length, max_chain, func) {
 | |
| 
 | |
|   this.good_length = good_length;
 | |
|   this.max_lazy = max_lazy;
 | |
|   this.nice_length = nice_length;
 | |
|   this.max_chain = max_chain;
 | |
|   this.func = func;
 | |
| }
 | |
| 
 | |
| const configuration_table = [
 | |
|   /*      good lazy nice chain */
 | |
|   new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */
 | |
|   new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */
 | |
|   new Config(4, 5, 16, 8, deflate_fast),           /* 2 */
 | |
|   new Config(4, 6, 32, 32, deflate_fast),          /* 3 */
 | |
| 
 | |
|   new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */
 | |
|   new Config(8, 16, 32, 32, deflate_slow),         /* 5 */
 | |
|   new Config(8, 16, 128, 128, deflate_slow),       /* 6 */
 | |
|   new Config(8, 32, 128, 256, deflate_slow),       /* 7 */
 | |
|   new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */
 | |
|   new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */
 | |
| ];
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the "longest match" routines for a new zlib stream
 | |
|  */
 | |
| const lm_init = (s) => {
 | |
| 
 | |
|   s.window_size = 2 * s.w_size;
 | |
| 
 | |
|   /*** CLEAR_HASH(s); ***/
 | |
|   zero(s.head); // Fill with NIL (= 0);
 | |
| 
 | |
|   /* Set the default configuration parameters:
 | |
|    */
 | |
|   s.max_lazy_match = configuration_table[s.level].max_lazy;
 | |
|   s.good_match = configuration_table[s.level].good_length;
 | |
|   s.nice_match = configuration_table[s.level].nice_length;
 | |
|   s.max_chain_length = configuration_table[s.level].max_chain;
 | |
| 
 | |
|   s.strstart = 0;
 | |
|   s.block_start = 0;
 | |
|   s.lookahead = 0;
 | |
|   s.insert = 0;
 | |
|   s.match_length = s.prev_length = MIN_MATCH - 1;
 | |
|   s.match_available = 0;
 | |
|   s.ins_h = 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| function DeflateState() {
 | |
|   this.strm = null;            /* pointer back to this zlib stream */
 | |
|   this.status = 0;            /* as the name implies */
 | |
|   this.pending_buf = null;      /* output still pending */
 | |
|   this.pending_buf_size = 0;  /* size of pending_buf */
 | |
|   this.pending_out = 0;       /* next pending byte to output to the stream */
 | |
|   this.pending = 0;           /* nb of bytes in the pending buffer */
 | |
|   this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
 | |
|   this.gzhead = null;         /* gzip header information to write */
 | |
|   this.gzindex = 0;           /* where in extra, name, or comment */
 | |
|   this.method = Z_DEFLATED; /* can only be DEFLATED */
 | |
|   this.last_flush = -1;   /* value of flush param for previous deflate call */
 | |
| 
 | |
|   this.w_size = 0;  /* LZ77 window size (32K by default) */
 | |
|   this.w_bits = 0;  /* log2(w_size)  (8..16) */
 | |
|   this.w_mask = 0;  /* w_size - 1 */
 | |
| 
 | |
|   this.window = null;
 | |
|   /* Sliding window. Input bytes are read into the second half of the window,
 | |
|    * and move to the first half later to keep a dictionary of at least wSize
 | |
|    * bytes. With this organization, matches are limited to a distance of
 | |
|    * wSize-MAX_MATCH bytes, but this ensures that IO is always
 | |
|    * performed with a length multiple of the block size.
 | |
|    */
 | |
| 
 | |
|   this.window_size = 0;
 | |
|   /* Actual size of window: 2*wSize, except when the user input buffer
 | |
|    * is directly used as sliding window.
 | |
|    */
 | |
| 
 | |
|   this.prev = null;
 | |
|   /* Link to older string with same hash index. To limit the size of this
 | |
|    * array to 64K, this link is maintained only for the last 32K strings.
 | |
|    * An index in this array is thus a window index modulo 32K.
 | |
|    */
 | |
| 
 | |
|   this.head = null;   /* Heads of the hash chains or NIL. */
 | |
| 
 | |
|   this.ins_h = 0;       /* hash index of string to be inserted */
 | |
|   this.hash_size = 0;   /* number of elements in hash table */
 | |
|   this.hash_bits = 0;   /* log2(hash_size) */
 | |
|   this.hash_mask = 0;   /* hash_size-1 */
 | |
| 
 | |
|   this.hash_shift = 0;
 | |
|   /* Number of bits by which ins_h must be shifted at each input
 | |
|    * step. It must be such that after MIN_MATCH steps, the oldest
 | |
|    * byte no longer takes part in the hash key, that is:
 | |
|    *   hash_shift * MIN_MATCH >= hash_bits
 | |
|    */
 | |
| 
 | |
|   this.block_start = 0;
 | |
|   /* Window position at the beginning of the current output block. Gets
 | |
|    * negative when the window is moved backwards.
 | |
|    */
 | |
| 
 | |
|   this.match_length = 0;      /* length of best match */
 | |
|   this.prev_match = 0;        /* previous match */
 | |
|   this.match_available = 0;   /* set if previous match exists */
 | |
|   this.strstart = 0;          /* start of string to insert */
 | |
|   this.match_start = 0;       /* start of matching string */
 | |
|   this.lookahead = 0;         /* number of valid bytes ahead in window */
 | |
| 
 | |
|   this.prev_length = 0;
 | |
|   /* Length of the best match at previous step. Matches not greater than this
 | |
|    * are discarded. This is used in the lazy match evaluation.
 | |
|    */
 | |
| 
 | |
|   this.max_chain_length = 0;
 | |
|   /* To speed up deflation, hash chains are never searched beyond this
 | |
|    * length.  A higher limit improves compression ratio but degrades the
 | |
|    * speed.
 | |
|    */
 | |
| 
 | |
|   this.max_lazy_match = 0;
 | |
|   /* Attempt to find a better match only when the current match is strictly
 | |
|    * smaller than this value. This mechanism is used only for compression
 | |
|    * levels >= 4.
 | |
|    */
 | |
|   // That's alias to max_lazy_match, don't use directly
 | |
|   //this.max_insert_length = 0;
 | |
|   /* Insert new strings in the hash table only if the match length is not
 | |
|    * greater than this length. This saves time but degrades compression.
 | |
|    * max_insert_length is used only for compression levels <= 3.
 | |
|    */
 | |
| 
 | |
|   this.level = 0;     /* compression level (1..9) */
 | |
|   this.strategy = 0;  /* favor or force Huffman coding*/
 | |
| 
 | |
|   this.good_match = 0;
 | |
|   /* Use a faster search when the previous match is longer than this */
 | |
| 
 | |
|   this.nice_match = 0; /* Stop searching when current match exceeds this */
 | |
| 
 | |
|               /* used by trees.c: */
 | |
| 
 | |
|   /* Didn't use ct_data typedef below to suppress compiler warning */
 | |
| 
 | |
|   // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 | |
|   // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
 | |
|   // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
 | |
| 
 | |
|   // Use flat array of DOUBLE size, with interleaved fata,
 | |
|   // because JS does not support effective
 | |
|   this.dyn_ltree  = new Uint16Array(HEAP_SIZE * 2);
 | |
|   this.dyn_dtree  = new Uint16Array((2 * D_CODES + 1) * 2);
 | |
|   this.bl_tree    = new Uint16Array((2 * BL_CODES + 1) * 2);
 | |
|   zero(this.dyn_ltree);
 | |
|   zero(this.dyn_dtree);
 | |
|   zero(this.bl_tree);
 | |
| 
 | |
|   this.l_desc   = null;         /* desc. for literal tree */
 | |
|   this.d_desc   = null;         /* desc. for distance tree */
 | |
|   this.bl_desc  = null;         /* desc. for bit length tree */
 | |
| 
 | |
|   //ush bl_count[MAX_BITS+1];
 | |
|   this.bl_count = new Uint16Array(MAX_BITS + 1);
 | |
|   /* number of codes at each bit length for an optimal tree */
 | |
| 
 | |
|   //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
 | |
|   this.heap = new Uint16Array(2 * L_CODES + 1);  /* heap used to build the Huffman trees */
 | |
|   zero(this.heap);
 | |
| 
 | |
|   this.heap_len = 0;               /* number of elements in the heap */
 | |
|   this.heap_max = 0;               /* element of largest frequency */
 | |
|   /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 | |
|    * The same heap array is used to build all trees.
 | |
|    */
 | |
| 
 | |
|   this.depth = new Uint16Array(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
 | |
|   zero(this.depth);
 | |
|   /* Depth of each subtree used as tie breaker for trees of equal frequency
 | |
|    */
 | |
| 
 | |
|   this.sym_buf = 0;        /* buffer for distances and literals/lengths */
 | |
| 
 | |
|   this.lit_bufsize = 0;
 | |
|   /* Size of match buffer for literals/lengths.  There are 4 reasons for
 | |
|    * limiting lit_bufsize to 64K:
 | |
|    *   - frequencies can be kept in 16 bit counters
 | |
|    *   - if compression is not successful for the first block, all input
 | |
|    *     data is still in the window so we can still emit a stored block even
 | |
|    *     when input comes from standard input.  (This can also be done for
 | |
|    *     all blocks if lit_bufsize is not greater than 32K.)
 | |
|    *   - if compression is not successful for a file smaller than 64K, we can
 | |
|    *     even emit a stored file instead of a stored block (saving 5 bytes).
 | |
|    *     This is applicable only for zip (not gzip or zlib).
 | |
|    *   - creating new Huffman trees less frequently may not provide fast
 | |
|    *     adaptation to changes in the input data statistics. (Take for
 | |
|    *     example a binary file with poorly compressible code followed by
 | |
|    *     a highly compressible string table.) Smaller buffer sizes give
 | |
|    *     fast adaptation but have of course the overhead of transmitting
 | |
|    *     trees more frequently.
 | |
|    *   - I can't count above 4
 | |
|    */
 | |
| 
 | |
|   this.sym_next = 0;      /* running index in sym_buf */
 | |
|   this.sym_end = 0;       /* symbol table full when sym_next reaches this */
 | |
| 
 | |
|   this.opt_len = 0;       /* bit length of current block with optimal trees */
 | |
|   this.static_len = 0;    /* bit length of current block with static trees */
 | |
|   this.matches = 0;       /* number of string matches in current block */
 | |
|   this.insert = 0;        /* bytes at end of window left to insert */
 | |
| 
 | |
| 
 | |
|   this.bi_buf = 0;
 | |
|   /* Output buffer. bits are inserted starting at the bottom (least
 | |
|    * significant bits).
 | |
|    */
 | |
|   this.bi_valid = 0;
 | |
|   /* Number of valid bits in bi_buf.  All bits above the last valid bit
 | |
|    * are always zero.
 | |
|    */
 | |
| 
 | |
|   // Used for window memory init. We safely ignore it for JS. That makes
 | |
|   // sense only for pointers and memory check tools.
 | |
|   //this.high_water = 0;
 | |
|   /* High water mark offset in window for initialized bytes -- bytes above
 | |
|    * this are set to zero in order to avoid memory check warnings when
 | |
|    * longest match routines access bytes past the input.  This is then
 | |
|    * updated to the new high water mark.
 | |
|    */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 | |
|  */
 | |
| const deflateStateCheck = (strm) => {
 | |
| 
 | |
|   if (!strm) {
 | |
|     return 1;
 | |
|   }
 | |
|   const s = strm.state;
 | |
|   if (!s || s.strm !== strm || (s.status !== INIT_STATE &&
 | |
| //#ifdef GZIP
 | |
|                                 s.status !== GZIP_STATE &&
 | |
| //#endif
 | |
|                                 s.status !== EXTRA_STATE &&
 | |
|                                 s.status !== NAME_STATE &&
 | |
|                                 s.status !== COMMENT_STATE &&
 | |
|                                 s.status !== HCRC_STATE &&
 | |
|                                 s.status !== BUSY_STATE &&
 | |
|                                 s.status !== FINISH_STATE)) {
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| const deflateResetKeep = (strm) => {
 | |
| 
 | |
|   if (deflateStateCheck(strm)) {
 | |
|     return err(strm, Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
|   strm.total_in = strm.total_out = 0;
 | |
|   strm.data_type = Z_UNKNOWN;
 | |
| 
 | |
|   const s = strm.state;
 | |
|   s.pending = 0;
 | |
|   s.pending_out = 0;
 | |
| 
 | |
|   if (s.wrap < 0) {
 | |
|     s.wrap = -s.wrap;
 | |
|     /* was made negative by deflate(..., Z_FINISH); */
 | |
|   }
 | |
|   s.status =
 | |
| //#ifdef GZIP
 | |
|     s.wrap === 2 ? GZIP_STATE :
 | |
| //#endif
 | |
|     s.wrap ? INIT_STATE : BUSY_STATE;
 | |
|   strm.adler = (s.wrap === 2) ?
 | |
|     0  // crc32(0, Z_NULL, 0)
 | |
|   :
 | |
|     1; // adler32(0, Z_NULL, 0)
 | |
|   s.last_flush = -2;
 | |
|   _tr_init(s);
 | |
|   return Z_OK;
 | |
| };
 | |
| 
 | |
| 
 | |
| const deflateReset = (strm) => {
 | |
| 
 | |
|   const ret = deflateResetKeep(strm);
 | |
|   if (ret === Z_OK) {
 | |
|     lm_init(strm.state);
 | |
|   }
 | |
|   return ret;
 | |
| };
 | |
| 
 | |
| 
 | |
| const deflateSetHeader = (strm, head) => {
 | |
| 
 | |
|   if (deflateStateCheck(strm) || strm.state.wrap !== 2) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
|   strm.state.gzhead = head;
 | |
|   return Z_OK;
 | |
| };
 | |
| 
 | |
| 
 | |
| const deflateInit2 = (strm, level, method, windowBits, memLevel, strategy) => {
 | |
| 
 | |
|   if (!strm) { // === Z_NULL
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
|   let wrap = 1;
 | |
| 
 | |
|   if (level === Z_DEFAULT_COMPRESSION) {
 | |
|     level = 6;
 | |
|   }
 | |
| 
 | |
|   if (windowBits < 0) { /* suppress zlib wrapper */
 | |
|     wrap = 0;
 | |
|     windowBits = -windowBits;
 | |
|   }
 | |
| 
 | |
|   else if (windowBits > 15) {
 | |
|     wrap = 2;           /* write gzip wrapper instead */
 | |
|     windowBits -= 16;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
 | |
|     windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 | |
|     strategy < 0 || strategy > Z_FIXED || (windowBits === 8 && wrap !== 1)) {
 | |
|     return err(strm, Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (windowBits === 8) {
 | |
|     windowBits = 9;
 | |
|   }
 | |
|   /* until 256-byte window bug fixed */
 | |
| 
 | |
|   const s = new DeflateState();
 | |
| 
 | |
|   strm.state = s;
 | |
|   s.strm = strm;
 | |
|   s.status = INIT_STATE;     /* to pass state test in deflateReset() */
 | |
| 
 | |
|   s.wrap = wrap;
 | |
|   s.gzhead = null;
 | |
|   s.w_bits = windowBits;
 | |
|   s.w_size = 1 << s.w_bits;
 | |
|   s.w_mask = s.w_size - 1;
 | |
| 
 | |
|   s.hash_bits = memLevel + 7;
 | |
|   s.hash_size = 1 << s.hash_bits;
 | |
|   s.hash_mask = s.hash_size - 1;
 | |
|   s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);
 | |
| 
 | |
|   s.window = new Uint8Array(s.w_size * 2);
 | |
|   s.head = new Uint16Array(s.hash_size);
 | |
|   s.prev = new Uint16Array(s.w_size);
 | |
| 
 | |
|   // Don't need mem init magic for JS.
 | |
|   //s.high_water = 0;  /* nothing written to s->window yet */
 | |
| 
 | |
|   s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 | |
| 
 | |
|   /* We overlay pending_buf and sym_buf. This works since the average size
 | |
|    * for length/distance pairs over any compressed block is assured to be 31
 | |
|    * bits or less.
 | |
|    *
 | |
|    * Analysis: The longest fixed codes are a length code of 8 bits plus 5
 | |
|    * extra bits, for lengths 131 to 257. The longest fixed distance codes are
 | |
|    * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
 | |
|    * possible fixed-codes length/distance pair is then 31 bits total.
 | |
|    *
 | |
|    * sym_buf starts one-fourth of the way into pending_buf. So there are
 | |
|    * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
 | |
|    * in sym_buf is three bytes -- two for the distance and one for the
 | |
|    * literal/length. As each symbol is consumed, the pointer to the next
 | |
|    * sym_buf value to read moves forward three bytes. From that symbol, up to
 | |
|    * 31 bits are written to pending_buf. The closest the written pending_buf
 | |
|    * bits gets to the next sym_buf symbol to read is just before the last
 | |
|    * code is written. At that time, 31*(n-2) bits have been written, just
 | |
|    * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
 | |
|    * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
 | |
|    * symbols are written.) The closest the writing gets to what is unread is
 | |
|    * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
 | |
|    * can range from 128 to 32768.
 | |
|    *
 | |
|    * Therefore, at a minimum, there are 142 bits of space between what is
 | |
|    * written and what is read in the overlain buffers, so the symbols cannot
 | |
|    * be overwritten by the compressed data. That space is actually 139 bits,
 | |
|    * due to the three-bit fixed-code block header.
 | |
|    *
 | |
|    * That covers the case where either Z_FIXED is specified, forcing fixed
 | |
|    * codes, or when the use of fixed codes is chosen, because that choice
 | |
|    * results in a smaller compressed block than dynamic codes. That latter
 | |
|    * condition then assures that the above analysis also covers all dynamic
 | |
|    * blocks. A dynamic-code block will only be chosen to be emitted if it has
 | |
|    * fewer bits than a fixed-code block would for the same set of symbols.
 | |
|    * Therefore its average symbol length is assured to be less than 31. So
 | |
|    * the compressed data for a dynamic block also cannot overwrite the
 | |
|    * symbols from which it is being constructed.
 | |
|    */
 | |
| 
 | |
|   s.pending_buf_size = s.lit_bufsize * 4;
 | |
|   s.pending_buf = new Uint8Array(s.pending_buf_size);
 | |
| 
 | |
|   // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
 | |
|   //s->sym_buf = s->pending_buf + s->lit_bufsize;
 | |
|   s.sym_buf = s.lit_bufsize;
 | |
| 
 | |
|   //s->sym_end = (s->lit_bufsize - 1) * 3;
 | |
|   s.sym_end = (s.lit_bufsize - 1) * 3;
 | |
|   /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
 | |
|    * on 16 bit machines and because stored blocks are restricted to
 | |
|    * 64K-1 bytes.
 | |
|    */
 | |
| 
 | |
|   s.level = level;
 | |
|   s.strategy = strategy;
 | |
|   s.method = method;
 | |
| 
 | |
|   return deflateReset(strm);
 | |
| };
 | |
| 
 | |
| const deflateInit = (strm, level) => {
 | |
| 
 | |
|   return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ========================================================================= */
 | |
| const deflate = (strm, flush) => {
 | |
| 
 | |
|   if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
 | |
|     return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   const s = strm.state;
 | |
| 
 | |
|   if (!strm.output ||
 | |
|       (strm.avail_in !== 0 && !strm.input) ||
 | |
|       (s.status === FINISH_STATE && flush !== Z_FINISH)) {
 | |
|     return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
 | |
|   }
 | |
| 
 | |
|   const old_flush = s.last_flush;
 | |
|   s.last_flush = flush;
 | |
| 
 | |
|   /* Flush as much pending output as possible */
 | |
|   if (s.pending !== 0) {
 | |
|     flush_pending(strm);
 | |
|     if (strm.avail_out === 0) {
 | |
|       /* Since avail_out is 0, deflate will be called again with
 | |
|        * more output space, but possibly with both pending and
 | |
|        * avail_in equal to zero. There won't be anything to do,
 | |
|        * but this is not an error situation so make sure we
 | |
|        * return OK instead of BUF_ERROR at next call of deflate:
 | |
|        */
 | |
|       s.last_flush = -1;
 | |
|       return Z_OK;
 | |
|     }
 | |
| 
 | |
|     /* Make sure there is something to do and avoid duplicate consecutive
 | |
|      * flushes. For repeated and useless calls with Z_FINISH, we keep
 | |
|      * returning Z_STREAM_END instead of Z_BUF_ERROR.
 | |
|      */
 | |
|   } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
 | |
|     flush !== Z_FINISH) {
 | |
|     return err(strm, Z_BUF_ERROR);
 | |
|   }
 | |
| 
 | |
|   /* User must not provide more input after the first FINISH: */
 | |
|   if (s.status === FINISH_STATE && strm.avail_in !== 0) {
 | |
|     return err(strm, Z_BUF_ERROR);
 | |
|   }
 | |
| 
 | |
|   /* Write the header */
 | |
|   if (s.status === INIT_STATE && s.wrap === 0) {
 | |
|     s.status = BUSY_STATE;
 | |
|   }
 | |
|   if (s.status === INIT_STATE) {
 | |
|     /* zlib header */
 | |
|     let header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
 | |
|     let level_flags = -1;
 | |
| 
 | |
|     if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
 | |
|       level_flags = 0;
 | |
|     } else if (s.level < 6) {
 | |
|       level_flags = 1;
 | |
|     } else if (s.level === 6) {
 | |
|       level_flags = 2;
 | |
|     } else {
 | |
|       level_flags = 3;
 | |
|     }
 | |
|     header |= (level_flags << 6);
 | |
|     if (s.strstart !== 0) { header |= PRESET_DICT; }
 | |
|     header += 31 - (header % 31);
 | |
| 
 | |
|     putShortMSB(s, header);
 | |
| 
 | |
|     /* Save the adler32 of the preset dictionary: */
 | |
|     if (s.strstart !== 0) {
 | |
|       putShortMSB(s, strm.adler >>> 16);
 | |
|       putShortMSB(s, strm.adler & 0xffff);
 | |
|     }
 | |
|     strm.adler = 1; // adler32(0L, Z_NULL, 0);
 | |
|     s.status = BUSY_STATE;
 | |
| 
 | |
|     /* Compression must start with an empty pending buffer */
 | |
|     flush_pending(strm);
 | |
|     if (s.pending !== 0) {
 | |
|       s.last_flush = -1;
 | |
|       return Z_OK;
 | |
|     }
 | |
|   }
 | |
| //#ifdef GZIP
 | |
|   if (s.status === GZIP_STATE) {
 | |
|     /* gzip header */
 | |
|     strm.adler = 0;  //crc32(0L, Z_NULL, 0);
 | |
|     put_byte(s, 31);
 | |
|     put_byte(s, 139);
 | |
|     put_byte(s, 8);
 | |
|     if (!s.gzhead) { // s->gzhead == Z_NULL
 | |
|       put_byte(s, 0);
 | |
|       put_byte(s, 0);
 | |
|       put_byte(s, 0);
 | |
|       put_byte(s, 0);
 | |
|       put_byte(s, 0);
 | |
|       put_byte(s, s.level === 9 ? 2 :
 | |
|                   (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | |
|                    4 : 0));
 | |
|       put_byte(s, OS_CODE);
 | |
|       s.status = BUSY_STATE;
 | |
| 
 | |
|       /* Compression must start with an empty pending buffer */
 | |
|       flush_pending(strm);
 | |
|       if (s.pending !== 0) {
 | |
|         s.last_flush = -1;
 | |
|         return Z_OK;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       put_byte(s, (s.gzhead.text ? 1 : 0) +
 | |
|                   (s.gzhead.hcrc ? 2 : 0) +
 | |
|                   (!s.gzhead.extra ? 0 : 4) +
 | |
|                   (!s.gzhead.name ? 0 : 8) +
 | |
|                   (!s.gzhead.comment ? 0 : 16)
 | |
|       );
 | |
|       put_byte(s, s.gzhead.time & 0xff);
 | |
|       put_byte(s, (s.gzhead.time >> 8) & 0xff);
 | |
|       put_byte(s, (s.gzhead.time >> 16) & 0xff);
 | |
|       put_byte(s, (s.gzhead.time >> 24) & 0xff);
 | |
|       put_byte(s, s.level === 9 ? 2 :
 | |
|                   (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | |
|                    4 : 0));
 | |
|       put_byte(s, s.gzhead.os & 0xff);
 | |
|       if (s.gzhead.extra && s.gzhead.extra.length) {
 | |
|         put_byte(s, s.gzhead.extra.length & 0xff);
 | |
|         put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
 | |
|       }
 | |
|       if (s.gzhead.hcrc) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
 | |
|       }
 | |
|       s.gzindex = 0;
 | |
|       s.status = EXTRA_STATE;
 | |
|     }
 | |
|   }
 | |
|   if (s.status === EXTRA_STATE) {
 | |
|     if (s.gzhead.extra/* != Z_NULL*/) {
 | |
|       let beg = s.pending;   /* start of bytes to update crc */
 | |
|       let left = (s.gzhead.extra.length & 0xffff) - s.gzindex;
 | |
|       while (s.pending + left > s.pending_buf_size) {
 | |
|         let copy = s.pending_buf_size - s.pending;
 | |
|         // zmemcpy(s.pending_buf + s.pending,
 | |
|         //    s.gzhead.extra + s.gzindex, copy);
 | |
|         s.pending_buf.set(s.gzhead.extra.subarray(s.gzindex, s.gzindex + copy), s.pending);
 | |
|         s.pending = s.pending_buf_size;
 | |
|         //--- HCRC_UPDATE(beg) ---//
 | |
|         if (s.gzhead.hcrc && s.pending > beg) {
 | |
|           strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|         }
 | |
|         //---//
 | |
|         s.gzindex += copy;
 | |
|         flush_pending(strm);
 | |
|         if (s.pending !== 0) {
 | |
|           s.last_flush = -1;
 | |
|           return Z_OK;
 | |
|         }
 | |
|         beg = 0;
 | |
|         left -= copy;
 | |
|       }
 | |
|       // JS specific: s.gzhead.extra may be TypedArray or Array for backward compatibility
 | |
|       //              TypedArray.slice and TypedArray.from don't exist in IE10-IE11
 | |
|       let gzhead_extra = new Uint8Array(s.gzhead.extra);
 | |
|       // zmemcpy(s->pending_buf + s->pending,
 | |
|       //     s->gzhead->extra + s->gzindex, left);
 | |
|       s.pending_buf.set(gzhead_extra.subarray(s.gzindex, s.gzindex + left), s.pending);
 | |
|       s.pending += left;
 | |
|       //--- HCRC_UPDATE(beg) ---//
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       //---//
 | |
|       s.gzindex = 0;
 | |
|     }
 | |
|     s.status = NAME_STATE;
 | |
|   }
 | |
|   if (s.status === NAME_STATE) {
 | |
|     if (s.gzhead.name/* != Z_NULL*/) {
 | |
|       let beg = s.pending;   /* start of bytes to update crc */
 | |
|       let val;
 | |
|       do {
 | |
|         if (s.pending === s.pending_buf_size) {
 | |
|           //--- HCRC_UPDATE(beg) ---//
 | |
|           if (s.gzhead.hcrc && s.pending > beg) {
 | |
|             strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|           }
 | |
|           //---//
 | |
|           flush_pending(strm);
 | |
|           if (s.pending !== 0) {
 | |
|             s.last_flush = -1;
 | |
|             return Z_OK;
 | |
|           }
 | |
|           beg = 0;
 | |
|         }
 | |
|         // JS specific: little magic to add zero terminator to end of string
 | |
|         if (s.gzindex < s.gzhead.name.length) {
 | |
|           val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
 | |
|         } else {
 | |
|           val = 0;
 | |
|         }
 | |
|         put_byte(s, val);
 | |
|       } while (val !== 0);
 | |
|       //--- HCRC_UPDATE(beg) ---//
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       //---//
 | |
|       s.gzindex = 0;
 | |
|     }
 | |
|     s.status = COMMENT_STATE;
 | |
|   }
 | |
|   if (s.status === COMMENT_STATE) {
 | |
|     if (s.gzhead.comment/* != Z_NULL*/) {
 | |
|       let beg = s.pending;   /* start of bytes to update crc */
 | |
|       let val;
 | |
|       do {
 | |
|         if (s.pending === s.pending_buf_size) {
 | |
|           //--- HCRC_UPDATE(beg) ---//
 | |
|           if (s.gzhead.hcrc && s.pending > beg) {
 | |
|             strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|           }
 | |
|           //---//
 | |
|           flush_pending(strm);
 | |
|           if (s.pending !== 0) {
 | |
|             s.last_flush = -1;
 | |
|             return Z_OK;
 | |
|           }
 | |
|           beg = 0;
 | |
|         }
 | |
|         // JS specific: little magic to add zero terminator to end of string
 | |
|         if (s.gzindex < s.gzhead.comment.length) {
 | |
|           val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
 | |
|         } else {
 | |
|           val = 0;
 | |
|         }
 | |
|         put_byte(s, val);
 | |
|       } while (val !== 0);
 | |
|       //--- HCRC_UPDATE(beg) ---//
 | |
|       if (s.gzhead.hcrc && s.pending > beg) {
 | |
|         strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
 | |
|       }
 | |
|       //---//
 | |
|     }
 | |
|     s.status = HCRC_STATE;
 | |
|   }
 | |
|   if (s.status === HCRC_STATE) {
 | |
|     if (s.gzhead.hcrc) {
 | |
|       if (s.pending + 2 > s.pending_buf_size) {
 | |
|         flush_pending(strm);
 | |
|         if (s.pending !== 0) {
 | |
|           s.last_flush = -1;
 | |
|           return Z_OK;
 | |
|         }
 | |
|       }
 | |
|       put_byte(s, strm.adler & 0xff);
 | |
|       put_byte(s, (strm.adler >> 8) & 0xff);
 | |
|       strm.adler = 0; //crc32(0L, Z_NULL, 0);
 | |
|     }
 | |
|     s.status = BUSY_STATE;
 | |
| 
 | |
|     /* Compression must start with an empty pending buffer */
 | |
|     flush_pending(strm);
 | |
|     if (s.pending !== 0) {
 | |
|       s.last_flush = -1;
 | |
|       return Z_OK;
 | |
|     }
 | |
|   }
 | |
| //#endif
 | |
| 
 | |
|   /* Start a new block or continue the current one.
 | |
|    */
 | |
|   if (strm.avail_in !== 0 || s.lookahead !== 0 ||
 | |
|     (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
 | |
|     let bstate = s.level === 0 ? deflate_stored(s, flush) :
 | |
|                  s.strategy === Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
 | |
|                  s.strategy === Z_RLE ? deflate_rle(s, flush) :
 | |
|                  configuration_table[s.level].func(s, flush);
 | |
| 
 | |
|     if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
 | |
|       s.status = FINISH_STATE;
 | |
|     }
 | |
|     if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
 | |
|       if (strm.avail_out === 0) {
 | |
|         s.last_flush = -1;
 | |
|         /* avoid BUF_ERROR next call, see above */
 | |
|       }
 | |
|       return Z_OK;
 | |
|       /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | |
|        * of deflate should use the same flush parameter to make sure
 | |
|        * that the flush is complete. So we don't have to output an
 | |
|        * empty block here, this will be done at next call. This also
 | |
|        * ensures that for a very small output buffer, we emit at most
 | |
|        * one empty block.
 | |
|        */
 | |
|     }
 | |
|     if (bstate === BS_BLOCK_DONE) {
 | |
|       if (flush === Z_PARTIAL_FLUSH) {
 | |
|         _tr_align(s);
 | |
|       }
 | |
|       else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
 | |
| 
 | |
|         _tr_stored_block(s, 0, 0, false);
 | |
|         /* For a full flush, this empty block will be recognized
 | |
|          * as a special marker by inflate_sync().
 | |
|          */
 | |
|         if (flush === Z_FULL_FLUSH) {
 | |
|           /*** CLEAR_HASH(s); ***/             /* forget history */
 | |
|           zero(s.head); // Fill with NIL (= 0);
 | |
| 
 | |
|           if (s.lookahead === 0) {
 | |
|             s.strstart = 0;
 | |
|             s.block_start = 0;
 | |
|             s.insert = 0;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       flush_pending(strm);
 | |
|       if (strm.avail_out === 0) {
 | |
|         s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 | |
|         return Z_OK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (flush !== Z_FINISH) { return Z_OK; }
 | |
|   if (s.wrap <= 0) { return Z_STREAM_END; }
 | |
| 
 | |
|   /* Write the trailer */
 | |
|   if (s.wrap === 2) {
 | |
|     put_byte(s, strm.adler & 0xff);
 | |
|     put_byte(s, (strm.adler >> 8) & 0xff);
 | |
|     put_byte(s, (strm.adler >> 16) & 0xff);
 | |
|     put_byte(s, (strm.adler >> 24) & 0xff);
 | |
|     put_byte(s, strm.total_in & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 8) & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 16) & 0xff);
 | |
|     put_byte(s, (strm.total_in >> 24) & 0xff);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     putShortMSB(s, strm.adler >>> 16);
 | |
|     putShortMSB(s, strm.adler & 0xffff);
 | |
|   }
 | |
| 
 | |
|   flush_pending(strm);
 | |
|   /* If avail_out is zero, the application will call deflate again
 | |
|    * to flush the rest.
 | |
|    */
 | |
|   if (s.wrap > 0) { s.wrap = -s.wrap; }
 | |
|   /* write the trailer only once! */
 | |
|   return s.pending !== 0 ? Z_OK : Z_STREAM_END;
 | |
| };
 | |
| 
 | |
| 
 | |
| const deflateEnd = (strm) => {
 | |
| 
 | |
|   if (deflateStateCheck(strm)) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   const status = strm.state.status;
 | |
| 
 | |
|   strm.state = null;
 | |
| 
 | |
|   return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Initializes the compression dictionary from the given byte
 | |
|  * sequence without producing any compressed output.
 | |
|  */
 | |
| const deflateSetDictionary = (strm, dictionary) => {
 | |
| 
 | |
|   let dictLength = dictionary.length;
 | |
| 
 | |
|   if (deflateStateCheck(strm)) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   const s = strm.state;
 | |
|   const wrap = s.wrap;
 | |
| 
 | |
|   if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
 | |
|     return Z_STREAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* when using zlib wrappers, compute Adler-32 for provided dictionary */
 | |
|   if (wrap === 1) {
 | |
|     /* adler32(strm->adler, dictionary, dictLength); */
 | |
|     strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
 | |
|   }
 | |
| 
 | |
|   s.wrap = 0;   /* avoid computing Adler-32 in read_buf */
 | |
| 
 | |
|   /* if dictionary would fill window, just replace the history */
 | |
|   if (dictLength >= s.w_size) {
 | |
|     if (wrap === 0) {            /* already empty otherwise */
 | |
|       /*** CLEAR_HASH(s); ***/
 | |
|       zero(s.head); // Fill with NIL (= 0);
 | |
|       s.strstart = 0;
 | |
|       s.block_start = 0;
 | |
|       s.insert = 0;
 | |
|     }
 | |
|     /* use the tail */
 | |
|     // dictionary = dictionary.slice(dictLength - s.w_size);
 | |
|     let tmpDict = new Uint8Array(s.w_size);
 | |
|     tmpDict.set(dictionary.subarray(dictLength - s.w_size, dictLength), 0);
 | |
|     dictionary = tmpDict;
 | |
|     dictLength = s.w_size;
 | |
|   }
 | |
|   /* insert dictionary into window and hash */
 | |
|   const avail = strm.avail_in;
 | |
|   const next = strm.next_in;
 | |
|   const input = strm.input;
 | |
|   strm.avail_in = dictLength;
 | |
|   strm.next_in = 0;
 | |
|   strm.input = dictionary;
 | |
|   fill_window(s);
 | |
|   while (s.lookahead >= MIN_MATCH) {
 | |
|     let str = s.strstart;
 | |
|     let n = s.lookahead - (MIN_MATCH - 1);
 | |
|     do {
 | |
|       /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | |
|       s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
 | |
| 
 | |
|       s.prev[str & s.w_mask] = s.head[s.ins_h];
 | |
| 
 | |
|       s.head[s.ins_h] = str;
 | |
|       str++;
 | |
|     } while (--n);
 | |
|     s.strstart = str;
 | |
|     s.lookahead = MIN_MATCH - 1;
 | |
|     fill_window(s);
 | |
|   }
 | |
|   s.strstart += s.lookahead;
 | |
|   s.block_start = s.strstart;
 | |
|   s.insert = s.lookahead;
 | |
|   s.lookahead = 0;
 | |
|   s.match_length = s.prev_length = MIN_MATCH - 1;
 | |
|   s.match_available = 0;
 | |
|   strm.next_in = next;
 | |
|   strm.input = input;
 | |
|   strm.avail_in = avail;
 | |
|   s.wrap = wrap;
 | |
|   return Z_OK;
 | |
| };
 | |
| 
 | |
| 
 | |
| module.exports.deflateInit = deflateInit;
 | |
| module.exports.deflateInit2 = deflateInit2;
 | |
| module.exports.deflateReset = deflateReset;
 | |
| module.exports.deflateResetKeep = deflateResetKeep;
 | |
| module.exports.deflateSetHeader = deflateSetHeader;
 | |
| module.exports.deflate = deflate;
 | |
| module.exports.deflateEnd = deflateEnd;
 | |
| module.exports.deflateSetDictionary = deflateSetDictionary;
 | |
| module.exports.deflateInfo = 'pako deflate (from Nodeca project)';
 | |
| 
 | |
| /* Not implemented
 | |
| module.exports.deflateBound = deflateBound;
 | |
| module.exports.deflateCopy = deflateCopy;
 | |
| module.exports.deflateGetDictionary = deflateGetDictionary;
 | |
| module.exports.deflateParams = deflateParams;
 | |
| module.exports.deflatePending = deflatePending;
 | |
| module.exports.deflatePrime = deflatePrime;
 | |
| module.exports.deflateTune = deflateTune;
 | |
| */
 |