mirror of
				https://github.com/alexandrebobkov/ESP-Nodes.git
				synced 2025-11-04 12:59:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			6878 lines
		
	
	
		
			221 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			6878 lines
		
	
	
		
			221 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
 | 
						|
/*! pako 2.1.0 https://github.com/nodeca/pako @license (MIT AND Zlib) */
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
/* eslint-disable space-unary-ops */
 | 
						|
 | 
						|
/* Public constants ==========================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
 | 
						|
//const Z_FILTERED          = 1;
 | 
						|
//const Z_HUFFMAN_ONLY      = 2;
 | 
						|
//const Z_RLE               = 3;
 | 
						|
const Z_FIXED$1               = 4;
 | 
						|
//const Z_DEFAULT_STRATEGY  = 0;
 | 
						|
 | 
						|
/* Possible values of the data_type field (though see inflate()) */
 | 
						|
const Z_BINARY              = 0;
 | 
						|
const Z_TEXT                = 1;
 | 
						|
//const Z_ASCII             = 1; // = Z_TEXT
 | 
						|
const Z_UNKNOWN$1             = 2;
 | 
						|
 | 
						|
/*============================================================================*/
 | 
						|
 | 
						|
 | 
						|
function zero$1(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }
 | 
						|
 | 
						|
// From zutil.h
 | 
						|
 | 
						|
const STORED_BLOCK = 0;
 | 
						|
const STATIC_TREES = 1;
 | 
						|
const DYN_TREES    = 2;
 | 
						|
/* The three kinds of block type */
 | 
						|
 | 
						|
const MIN_MATCH$1    = 3;
 | 
						|
const MAX_MATCH$1    = 258;
 | 
						|
/* The minimum and maximum match lengths */
 | 
						|
 | 
						|
// From deflate.h
 | 
						|
/* ===========================================================================
 | 
						|
 * Internal compression state.
 | 
						|
 */
 | 
						|
 | 
						|
const LENGTH_CODES$1  = 29;
 | 
						|
/* number of length codes, not counting the special END_BLOCK code */
 | 
						|
 | 
						|
const LITERALS$1      = 256;
 | 
						|
/* number of literal bytes 0..255 */
 | 
						|
 | 
						|
const L_CODES$1       = LITERALS$1 + 1 + LENGTH_CODES$1;
 | 
						|
/* number of Literal or Length codes, including the END_BLOCK code */
 | 
						|
 | 
						|
const D_CODES$1       = 30;
 | 
						|
/* number of distance codes */
 | 
						|
 | 
						|
const BL_CODES$1      = 19;
 | 
						|
/* number of codes used to transfer the bit lengths */
 | 
						|
 | 
						|
const HEAP_SIZE$1     = 2 * L_CODES$1 + 1;
 | 
						|
/* maximum heap size */
 | 
						|
 | 
						|
const MAX_BITS$1      = 15;
 | 
						|
/* All codes must not exceed MAX_BITS bits */
 | 
						|
 | 
						|
const Buf_size      = 16;
 | 
						|
/* size of bit buffer in bi_buf */
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Constants
 | 
						|
 */
 | 
						|
 | 
						|
const MAX_BL_BITS = 7;
 | 
						|
/* Bit length codes must not exceed MAX_BL_BITS bits */
 | 
						|
 | 
						|
const END_BLOCK   = 256;
 | 
						|
/* end of block literal code */
 | 
						|
 | 
						|
const REP_3_6     = 16;
 | 
						|
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
 | 
						|
 | 
						|
const REPZ_3_10   = 17;
 | 
						|
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
 | 
						|
 | 
						|
const REPZ_11_138 = 18;
 | 
						|
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
 | 
						|
 | 
						|
/* eslint-disable comma-spacing,array-bracket-spacing */
 | 
						|
const extra_lbits =   /* extra bits for each length code */
 | 
						|
  new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);
 | 
						|
 | 
						|
const extra_dbits =   /* extra bits for each distance code */
 | 
						|
  new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);
 | 
						|
 | 
						|
const extra_blbits =  /* extra bits for each bit length code */
 | 
						|
  new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);
 | 
						|
 | 
						|
const bl_order =
 | 
						|
  new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
 | 
						|
/* eslint-enable comma-spacing,array-bracket-spacing */
 | 
						|
 | 
						|
/* The lengths of the bit length codes are sent in order of decreasing
 | 
						|
 * probability, to avoid transmitting the lengths for unused bit length codes.
 | 
						|
 */
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Local data. These are initialized only once.
 | 
						|
 */
 | 
						|
 | 
						|
// We pre-fill arrays with 0 to avoid uninitialized gaps
 | 
						|
 | 
						|
const DIST_CODE_LEN = 512; /* see definition of array dist_code below */
 | 
						|
 | 
						|
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
 | 
						|
const static_ltree  = new Array((L_CODES$1 + 2) * 2);
 | 
						|
zero$1(static_ltree);
 | 
						|
/* The static literal tree. Since the bit lengths are imposed, there is no
 | 
						|
 * need for the L_CODES extra codes used during heap construction. However
 | 
						|
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 | 
						|
 * below).
 | 
						|
 */
 | 
						|
 | 
						|
const static_dtree  = new Array(D_CODES$1 * 2);
 | 
						|
zero$1(static_dtree);
 | 
						|
/* The static distance tree. (Actually a trivial tree since all codes use
 | 
						|
 * 5 bits.)
 | 
						|
 */
 | 
						|
 | 
						|
const _dist_code    = new Array(DIST_CODE_LEN);
 | 
						|
zero$1(_dist_code);
 | 
						|
/* Distance codes. The first 256 values correspond to the distances
 | 
						|
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 | 
						|
 * the 15 bit distances.
 | 
						|
 */
 | 
						|
 | 
						|
const _length_code  = new Array(MAX_MATCH$1 - MIN_MATCH$1 + 1);
 | 
						|
zero$1(_length_code);
 | 
						|
/* length code for each normalized match length (0 == MIN_MATCH) */
 | 
						|
 | 
						|
const base_length   = new Array(LENGTH_CODES$1);
 | 
						|
zero$1(base_length);
 | 
						|
/* First normalized length for each code (0 = MIN_MATCH) */
 | 
						|
 | 
						|
const base_dist     = new Array(D_CODES$1);
 | 
						|
zero$1(base_dist);
 | 
						|
/* First normalized distance for each code (0 = distance of 1) */
 | 
						|
 | 
						|
 | 
						|
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
 | 
						|
 | 
						|
  this.static_tree  = static_tree;  /* static tree or NULL */
 | 
						|
  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
 | 
						|
  this.extra_base   = extra_base;   /* base index for extra_bits */
 | 
						|
  this.elems        = elems;        /* max number of elements in the tree */
 | 
						|
  this.max_length   = max_length;   /* max bit length for the codes */
 | 
						|
 | 
						|
  // show if `static_tree` has data or dummy - needed for monomorphic objects
 | 
						|
  this.has_stree    = static_tree && static_tree.length;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
let static_l_desc;
 | 
						|
let static_d_desc;
 | 
						|
let static_bl_desc;
 | 
						|
 | 
						|
 | 
						|
function TreeDesc(dyn_tree, stat_desc) {
 | 
						|
  this.dyn_tree = dyn_tree;     /* the dynamic tree */
 | 
						|
  this.max_code = 0;            /* largest code with non zero frequency */
 | 
						|
  this.stat_desc = stat_desc;   /* the corresponding static tree */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
const d_code = (dist) => {
 | 
						|
 | 
						|
  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Output a short LSB first on the stream.
 | 
						|
 * IN assertion: there is enough room in pendingBuf.
 | 
						|
 */
 | 
						|
const put_short = (s, w) => {
 | 
						|
//    put_byte(s, (uch)((w) & 0xff));
 | 
						|
//    put_byte(s, (uch)((ush)(w) >> 8));
 | 
						|
  s.pending_buf[s.pending++] = (w) & 0xff;
 | 
						|
  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send a value on a given number of bits.
 | 
						|
 * IN assertion: length <= 16 and value fits in length bits.
 | 
						|
 */
 | 
						|
const send_bits = (s, value, length) => {
 | 
						|
 | 
						|
  if (s.bi_valid > (Buf_size - length)) {
 | 
						|
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | 
						|
    put_short(s, s.bi_buf);
 | 
						|
    s.bi_buf = value >> (Buf_size - s.bi_valid);
 | 
						|
    s.bi_valid += length - Buf_size;
 | 
						|
  } else {
 | 
						|
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | 
						|
    s.bi_valid += length;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const send_code = (s, c, tree) => {
 | 
						|
 | 
						|
  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Reverse the first len bits of a code, using straightforward code (a faster
 | 
						|
 * method would use a table)
 | 
						|
 * IN assertion: 1 <= len <= 15
 | 
						|
 */
 | 
						|
const bi_reverse = (code, len) => {
 | 
						|
 | 
						|
  let res = 0;
 | 
						|
  do {
 | 
						|
    res |= code & 1;
 | 
						|
    code >>>= 1;
 | 
						|
    res <<= 1;
 | 
						|
  } while (--len > 0);
 | 
						|
  return res >>> 1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Flush the bit buffer, keeping at most 7 bits in it.
 | 
						|
 */
 | 
						|
const bi_flush = (s) => {
 | 
						|
 | 
						|
  if (s.bi_valid === 16) {
 | 
						|
    put_short(s, s.bi_buf);
 | 
						|
    s.bi_buf = 0;
 | 
						|
    s.bi_valid = 0;
 | 
						|
 | 
						|
  } else if (s.bi_valid >= 8) {
 | 
						|
    s.pending_buf[s.pending++] = s.bi_buf & 0xff;
 | 
						|
    s.bi_buf >>= 8;
 | 
						|
    s.bi_valid -= 8;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Compute the optimal bit lengths for a tree and update the total bit length
 | 
						|
 * for the current block.
 | 
						|
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 | 
						|
 *    above are the tree nodes sorted by increasing frequency.
 | 
						|
 * OUT assertions: the field len is set to the optimal bit length, the
 | 
						|
 *     array bl_count contains the frequencies for each bit length.
 | 
						|
 *     The length opt_len is updated; static_len is also updated if stree is
 | 
						|
 *     not null.
 | 
						|
 */
 | 
						|
const gen_bitlen = (s, desc) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    tree_desc *desc;    /* the tree descriptor */
 | 
						|
 | 
						|
  const tree            = desc.dyn_tree;
 | 
						|
  const max_code        = desc.max_code;
 | 
						|
  const stree           = desc.stat_desc.static_tree;
 | 
						|
  const has_stree       = desc.stat_desc.has_stree;
 | 
						|
  const extra           = desc.stat_desc.extra_bits;
 | 
						|
  const base            = desc.stat_desc.extra_base;
 | 
						|
  const max_length      = desc.stat_desc.max_length;
 | 
						|
  let h;              /* heap index */
 | 
						|
  let n, m;           /* iterate over the tree elements */
 | 
						|
  let bits;           /* bit length */
 | 
						|
  let xbits;          /* extra bits */
 | 
						|
  let f;              /* frequency */
 | 
						|
  let overflow = 0;   /* number of elements with bit length too large */
 | 
						|
 | 
						|
  for (bits = 0; bits <= MAX_BITS$1; bits++) {
 | 
						|
    s.bl_count[bits] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* In a first pass, compute the optimal bit lengths (which may
 | 
						|
   * overflow in the case of the bit length tree).
 | 
						|
   */
 | 
						|
  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
 | 
						|
 | 
						|
  for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) {
 | 
						|
    n = s.heap[h];
 | 
						|
    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
 | 
						|
    if (bits > max_length) {
 | 
						|
      bits = max_length;
 | 
						|
      overflow++;
 | 
						|
    }
 | 
						|
    tree[n * 2 + 1]/*.Len*/ = bits;
 | 
						|
    /* We overwrite tree[n].Dad which is no longer needed */
 | 
						|
 | 
						|
    if (n > max_code) { continue; } /* not a leaf node */
 | 
						|
 | 
						|
    s.bl_count[bits]++;
 | 
						|
    xbits = 0;
 | 
						|
    if (n >= base) {
 | 
						|
      xbits = extra[n - base];
 | 
						|
    }
 | 
						|
    f = tree[n * 2]/*.Freq*/;
 | 
						|
    s.opt_len += f * (bits + xbits);
 | 
						|
    if (has_stree) {
 | 
						|
      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (overflow === 0) { return; }
 | 
						|
 | 
						|
  // Tracev((stderr,"\nbit length overflow\n"));
 | 
						|
  /* This happens for example on obj2 and pic of the Calgary corpus */
 | 
						|
 | 
						|
  /* Find the first bit length which could increase: */
 | 
						|
  do {
 | 
						|
    bits = max_length - 1;
 | 
						|
    while (s.bl_count[bits] === 0) { bits--; }
 | 
						|
    s.bl_count[bits]--;      /* move one leaf down the tree */
 | 
						|
    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
 | 
						|
    s.bl_count[max_length]--;
 | 
						|
    /* The brother of the overflow item also moves one step up,
 | 
						|
     * but this does not affect bl_count[max_length]
 | 
						|
     */
 | 
						|
    overflow -= 2;
 | 
						|
  } while (overflow > 0);
 | 
						|
 | 
						|
  /* Now recompute all bit lengths, scanning in increasing frequency.
 | 
						|
   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 | 
						|
   * lengths instead of fixing only the wrong ones. This idea is taken
 | 
						|
   * from 'ar' written by Haruhiko Okumura.)
 | 
						|
   */
 | 
						|
  for (bits = max_length; bits !== 0; bits--) {
 | 
						|
    n = s.bl_count[bits];
 | 
						|
    while (n !== 0) {
 | 
						|
      m = s.heap[--h];
 | 
						|
      if (m > max_code) { continue; }
 | 
						|
      if (tree[m * 2 + 1]/*.Len*/ !== bits) {
 | 
						|
        // Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 | 
						|
        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
 | 
						|
        tree[m * 2 + 1]/*.Len*/ = bits;
 | 
						|
      }
 | 
						|
      n--;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Generate the codes for a given tree and bit counts (which need not be
 | 
						|
 * optimal).
 | 
						|
 * IN assertion: the array bl_count contains the bit length statistics for
 | 
						|
 * the given tree and the field len is set for all tree elements.
 | 
						|
 * OUT assertion: the field code is set for all tree elements of non
 | 
						|
 *     zero code length.
 | 
						|
 */
 | 
						|
const gen_codes = (tree, max_code, bl_count) => {
 | 
						|
//    ct_data *tree;             /* the tree to decorate */
 | 
						|
//    int max_code;              /* largest code with non zero frequency */
 | 
						|
//    ushf *bl_count;            /* number of codes at each bit length */
 | 
						|
 | 
						|
  const next_code = new Array(MAX_BITS$1 + 1); /* next code value for each bit length */
 | 
						|
  let code = 0;              /* running code value */
 | 
						|
  let bits;                  /* bit index */
 | 
						|
  let n;                     /* code index */
 | 
						|
 | 
						|
  /* The distribution counts are first used to generate the code values
 | 
						|
   * without bit reversal.
 | 
						|
   */
 | 
						|
  for (bits = 1; bits <= MAX_BITS$1; bits++) {
 | 
						|
    code = (code + bl_count[bits - 1]) << 1;
 | 
						|
    next_code[bits] = code;
 | 
						|
  }
 | 
						|
  /* Check that the bit counts in bl_count are consistent. The last code
 | 
						|
   * must be all ones.
 | 
						|
   */
 | 
						|
  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | 
						|
  //        "inconsistent bit counts");
 | 
						|
  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | 
						|
 | 
						|
  for (n = 0;  n <= max_code; n++) {
 | 
						|
    let len = tree[n * 2 + 1]/*.Len*/;
 | 
						|
    if (len === 0) { continue; }
 | 
						|
    /* Now reverse the bits */
 | 
						|
    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
 | 
						|
 | 
						|
    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | 
						|
    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Initialize the various 'constant' tables.
 | 
						|
 */
 | 
						|
const tr_static_init = () => {
 | 
						|
 | 
						|
  let n;        /* iterates over tree elements */
 | 
						|
  let bits;     /* bit counter */
 | 
						|
  let length;   /* length value */
 | 
						|
  let code;     /* code value */
 | 
						|
  let dist;     /* distance index */
 | 
						|
  const bl_count = new Array(MAX_BITS$1 + 1);
 | 
						|
  /* number of codes at each bit length for an optimal tree */
 | 
						|
 | 
						|
  // do check in _tr_init()
 | 
						|
  //if (static_init_done) return;
 | 
						|
 | 
						|
  /* For some embedded targets, global variables are not initialized: */
 | 
						|
/*#ifdef NO_INIT_GLOBAL_POINTERS
 | 
						|
  static_l_desc.static_tree = static_ltree;
 | 
						|
  static_l_desc.extra_bits = extra_lbits;
 | 
						|
  static_d_desc.static_tree = static_dtree;
 | 
						|
  static_d_desc.extra_bits = extra_dbits;
 | 
						|
  static_bl_desc.extra_bits = extra_blbits;
 | 
						|
#endif*/
 | 
						|
 | 
						|
  /* Initialize the mapping length (0..255) -> length code (0..28) */
 | 
						|
  length = 0;
 | 
						|
  for (code = 0; code < LENGTH_CODES$1 - 1; code++) {
 | 
						|
    base_length[code] = length;
 | 
						|
    for (n = 0; n < (1 << extra_lbits[code]); n++) {
 | 
						|
      _length_code[length++] = code;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  //Assert (length == 256, "tr_static_init: length != 256");
 | 
						|
  /* Note that the length 255 (match length 258) can be represented
 | 
						|
   * in two different ways: code 284 + 5 bits or code 285, so we
 | 
						|
   * overwrite length_code[255] to use the best encoding:
 | 
						|
   */
 | 
						|
  _length_code[length - 1] = code;
 | 
						|
 | 
						|
  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 | 
						|
  dist = 0;
 | 
						|
  for (code = 0; code < 16; code++) {
 | 
						|
    base_dist[code] = dist;
 | 
						|
    for (n = 0; n < (1 << extra_dbits[code]); n++) {
 | 
						|
      _dist_code[dist++] = code;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  //Assert (dist == 256, "tr_static_init: dist != 256");
 | 
						|
  dist >>= 7; /* from now on, all distances are divided by 128 */
 | 
						|
  for (; code < D_CODES$1; code++) {
 | 
						|
    base_dist[code] = dist << 7;
 | 
						|
    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
 | 
						|
      _dist_code[256 + dist++] = code;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  //Assert (dist == 256, "tr_static_init: 256+dist != 512");
 | 
						|
 | 
						|
  /* Construct the codes of the static literal tree */
 | 
						|
  for (bits = 0; bits <= MAX_BITS$1; bits++) {
 | 
						|
    bl_count[bits] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  n = 0;
 | 
						|
  while (n <= 143) {
 | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | 
						|
    n++;
 | 
						|
    bl_count[8]++;
 | 
						|
  }
 | 
						|
  while (n <= 255) {
 | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 9;
 | 
						|
    n++;
 | 
						|
    bl_count[9]++;
 | 
						|
  }
 | 
						|
  while (n <= 279) {
 | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 7;
 | 
						|
    n++;
 | 
						|
    bl_count[7]++;
 | 
						|
  }
 | 
						|
  while (n <= 287) {
 | 
						|
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | 
						|
    n++;
 | 
						|
    bl_count[8]++;
 | 
						|
  }
 | 
						|
  /* Codes 286 and 287 do not exist, but we must include them in the
 | 
						|
   * tree construction to get a canonical Huffman tree (longest code
 | 
						|
   * all ones)
 | 
						|
   */
 | 
						|
  gen_codes(static_ltree, L_CODES$1 + 1, bl_count);
 | 
						|
 | 
						|
  /* The static distance tree is trivial: */
 | 
						|
  for (n = 0; n < D_CODES$1; n++) {
 | 
						|
    static_dtree[n * 2 + 1]/*.Len*/ = 5;
 | 
						|
    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now data ready and we can init static trees
 | 
						|
  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS$1 + 1, L_CODES$1, MAX_BITS$1);
 | 
						|
  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES$1, MAX_BITS$1);
 | 
						|
  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES$1, MAX_BL_BITS);
 | 
						|
 | 
						|
  //static_init_done = true;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Initialize a new block.
 | 
						|
 */
 | 
						|
const init_block = (s) => {
 | 
						|
 | 
						|
  let n; /* iterates over tree elements */
 | 
						|
 | 
						|
  /* Initialize the trees. */
 | 
						|
  for (n = 0; n < L_CODES$1;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
 | 
						|
  for (n = 0; n < D_CODES$1;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
 | 
						|
  for (n = 0; n < BL_CODES$1; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
 | 
						|
 | 
						|
  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
 | 
						|
  s.opt_len = s.static_len = 0;
 | 
						|
  s.sym_next = s.matches = 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Flush the bit buffer and align the output on a byte boundary
 | 
						|
 */
 | 
						|
const bi_windup = (s) =>
 | 
						|
{
 | 
						|
  if (s.bi_valid > 8) {
 | 
						|
    put_short(s, s.bi_buf);
 | 
						|
  } else if (s.bi_valid > 0) {
 | 
						|
    //put_byte(s, (Byte)s->bi_buf);
 | 
						|
    s.pending_buf[s.pending++] = s.bi_buf;
 | 
						|
  }
 | 
						|
  s.bi_buf = 0;
 | 
						|
  s.bi_valid = 0;
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Compares to subtrees, using the tree depth as tie breaker when
 | 
						|
 * the subtrees have equal frequency. This minimizes the worst case length.
 | 
						|
 */
 | 
						|
const smaller = (tree, n, m, depth) => {
 | 
						|
 | 
						|
  const _n2 = n * 2;
 | 
						|
  const _m2 = m * 2;
 | 
						|
  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
 | 
						|
         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Restore the heap property by moving down the tree starting at node k,
 | 
						|
 * exchanging a node with the smallest of its two sons if necessary, stopping
 | 
						|
 * when the heap property is re-established (each father smaller than its
 | 
						|
 * two sons).
 | 
						|
 */
 | 
						|
const pqdownheap = (s, tree, k) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    ct_data *tree;  /* the tree to restore */
 | 
						|
//    int k;               /* node to move down */
 | 
						|
 | 
						|
  const v = s.heap[k];
 | 
						|
  let j = k << 1;  /* left son of k */
 | 
						|
  while (j <= s.heap_len) {
 | 
						|
    /* Set j to the smallest of the two sons: */
 | 
						|
    if (j < s.heap_len &&
 | 
						|
      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
 | 
						|
      j++;
 | 
						|
    }
 | 
						|
    /* Exit if v is smaller than both sons */
 | 
						|
    if (smaller(tree, v, s.heap[j], s.depth)) { break; }
 | 
						|
 | 
						|
    /* Exchange v with the smallest son */
 | 
						|
    s.heap[k] = s.heap[j];
 | 
						|
    k = j;
 | 
						|
 | 
						|
    /* And continue down the tree, setting j to the left son of k */
 | 
						|
    j <<= 1;
 | 
						|
  }
 | 
						|
  s.heap[k] = v;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// inlined manually
 | 
						|
// const SMALLEST = 1;
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send the block data compressed using the given Huffman trees
 | 
						|
 */
 | 
						|
const compress_block = (s, ltree, dtree) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    const ct_data *ltree; /* literal tree */
 | 
						|
//    const ct_data *dtree; /* distance tree */
 | 
						|
 | 
						|
  let dist;           /* distance of matched string */
 | 
						|
  let lc;             /* match length or unmatched char (if dist == 0) */
 | 
						|
  let sx = 0;         /* running index in sym_buf */
 | 
						|
  let code;           /* the code to send */
 | 
						|
  let extra;          /* number of extra bits to send */
 | 
						|
 | 
						|
  if (s.sym_next !== 0) {
 | 
						|
    do {
 | 
						|
      dist = s.pending_buf[s.sym_buf + sx++] & 0xff;
 | 
						|
      dist += (s.pending_buf[s.sym_buf + sx++] & 0xff) << 8;
 | 
						|
      lc = s.pending_buf[s.sym_buf + sx++];
 | 
						|
      if (dist === 0) {
 | 
						|
        send_code(s, lc, ltree); /* send a literal byte */
 | 
						|
        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | 
						|
      } else {
 | 
						|
        /* Here, lc is the match length - MIN_MATCH */
 | 
						|
        code = _length_code[lc];
 | 
						|
        send_code(s, code + LITERALS$1 + 1, ltree); /* send the length code */
 | 
						|
        extra = extra_lbits[code];
 | 
						|
        if (extra !== 0) {
 | 
						|
          lc -= base_length[code];
 | 
						|
          send_bits(s, lc, extra);       /* send the extra length bits */
 | 
						|
        }
 | 
						|
        dist--; /* dist is now the match distance - 1 */
 | 
						|
        code = d_code(dist);
 | 
						|
        //Assert (code < D_CODES, "bad d_code");
 | 
						|
 | 
						|
        send_code(s, code, dtree);       /* send the distance code */
 | 
						|
        extra = extra_dbits[code];
 | 
						|
        if (extra !== 0) {
 | 
						|
          dist -= base_dist[code];
 | 
						|
          send_bits(s, dist, extra);   /* send the extra distance bits */
 | 
						|
        }
 | 
						|
      } /* literal or match pair ? */
 | 
						|
 | 
						|
      /* Check that the overlay between pending_buf and sym_buf is ok: */
 | 
						|
      //Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
 | 
						|
 | 
						|
    } while (sx < s.sym_next);
 | 
						|
  }
 | 
						|
 | 
						|
  send_code(s, END_BLOCK, ltree);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 | 
						|
 * Update the total bit length for the current block.
 | 
						|
 * IN assertion: the field freq is set for all tree elements.
 | 
						|
 * OUT assertions: the fields len and code are set to the optimal bit length
 | 
						|
 *     and corresponding code. The length opt_len is updated; static_len is
 | 
						|
 *     also updated if stree is not null. The field max_code is set.
 | 
						|
 */
 | 
						|
const build_tree = (s, desc) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    tree_desc *desc; /* the tree descriptor */
 | 
						|
 | 
						|
  const tree     = desc.dyn_tree;
 | 
						|
  const stree    = desc.stat_desc.static_tree;
 | 
						|
  const has_stree = desc.stat_desc.has_stree;
 | 
						|
  const elems    = desc.stat_desc.elems;
 | 
						|
  let n, m;          /* iterate over heap elements */
 | 
						|
  let max_code = -1; /* largest code with non zero frequency */
 | 
						|
  let node;          /* new node being created */
 | 
						|
 | 
						|
  /* Construct the initial heap, with least frequent element in
 | 
						|
   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 | 
						|
   * heap[0] is not used.
 | 
						|
   */
 | 
						|
  s.heap_len = 0;
 | 
						|
  s.heap_max = HEAP_SIZE$1;
 | 
						|
 | 
						|
  for (n = 0; n < elems; n++) {
 | 
						|
    if (tree[n * 2]/*.Freq*/ !== 0) {
 | 
						|
      s.heap[++s.heap_len] = max_code = n;
 | 
						|
      s.depth[n] = 0;
 | 
						|
 | 
						|
    } else {
 | 
						|
      tree[n * 2 + 1]/*.Len*/ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The pkzip format requires that at least one distance code exists,
 | 
						|
   * and that at least one bit should be sent even if there is only one
 | 
						|
   * possible code. So to avoid special checks later on we force at least
 | 
						|
   * two codes of non zero frequency.
 | 
						|
   */
 | 
						|
  while (s.heap_len < 2) {
 | 
						|
    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
 | 
						|
    tree[node * 2]/*.Freq*/ = 1;
 | 
						|
    s.depth[node] = 0;
 | 
						|
    s.opt_len--;
 | 
						|
 | 
						|
    if (has_stree) {
 | 
						|
      s.static_len -= stree[node * 2 + 1]/*.Len*/;
 | 
						|
    }
 | 
						|
    /* node is 0 or 1 so it does not have extra bits */
 | 
						|
  }
 | 
						|
  desc.max_code = max_code;
 | 
						|
 | 
						|
  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | 
						|
   * establish sub-heaps of increasing lengths:
 | 
						|
   */
 | 
						|
  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
 | 
						|
 | 
						|
  /* Construct the Huffman tree by repeatedly combining the least two
 | 
						|
   * frequent nodes.
 | 
						|
   */
 | 
						|
  node = elems;              /* next internal node of the tree */
 | 
						|
  do {
 | 
						|
    //pqremove(s, tree, n);  /* n = node of least frequency */
 | 
						|
    /*** pqremove ***/
 | 
						|
    n = s.heap[1/*SMALLEST*/];
 | 
						|
    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
 | 
						|
    pqdownheap(s, tree, 1/*SMALLEST*/);
 | 
						|
    /***/
 | 
						|
 | 
						|
    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
 | 
						|
 | 
						|
    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
 | 
						|
    s.heap[--s.heap_max] = m;
 | 
						|
 | 
						|
    /* Create a new node father of n and m */
 | 
						|
    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
 | 
						|
    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
 | 
						|
    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
 | 
						|
 | 
						|
    /* and insert the new node in the heap */
 | 
						|
    s.heap[1/*SMALLEST*/] = node++;
 | 
						|
    pqdownheap(s, tree, 1/*SMALLEST*/);
 | 
						|
 | 
						|
  } while (s.heap_len >= 2);
 | 
						|
 | 
						|
  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
 | 
						|
 | 
						|
  /* At this point, the fields freq and dad are set. We can now
 | 
						|
   * generate the bit lengths.
 | 
						|
   */
 | 
						|
  gen_bitlen(s, desc);
 | 
						|
 | 
						|
  /* The field len is now set, we can generate the bit codes */
 | 
						|
  gen_codes(tree, max_code, s.bl_count);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Scan a literal or distance tree to determine the frequencies of the codes
 | 
						|
 * in the bit length tree.
 | 
						|
 */
 | 
						|
const scan_tree = (s, tree, max_code) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    ct_data *tree;   /* the tree to be scanned */
 | 
						|
//    int max_code;    /* and its largest code of non zero frequency */
 | 
						|
 | 
						|
  let n;                     /* iterates over all tree elements */
 | 
						|
  let prevlen = -1;          /* last emitted length */
 | 
						|
  let curlen;                /* length of current code */
 | 
						|
 | 
						|
  let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | 
						|
 | 
						|
  let count = 0;             /* repeat count of the current code */
 | 
						|
  let max_count = 7;         /* max repeat count */
 | 
						|
  let min_count = 4;         /* min repeat count */
 | 
						|
 | 
						|
  if (nextlen === 0) {
 | 
						|
    max_count = 138;
 | 
						|
    min_count = 3;
 | 
						|
  }
 | 
						|
  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
 | 
						|
 | 
						|
  for (n = 0; n <= max_code; n++) {
 | 
						|
    curlen = nextlen;
 | 
						|
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | 
						|
 | 
						|
    if (++count < max_count && curlen === nextlen) {
 | 
						|
      continue;
 | 
						|
 | 
						|
    } else if (count < min_count) {
 | 
						|
      s.bl_tree[curlen * 2]/*.Freq*/ += count;
 | 
						|
 | 
						|
    } else if (curlen !== 0) {
 | 
						|
 | 
						|
      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
 | 
						|
      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
 | 
						|
 | 
						|
    } else if (count <= 10) {
 | 
						|
      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
 | 
						|
 | 
						|
    } else {
 | 
						|
      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
 | 
						|
    }
 | 
						|
 | 
						|
    count = 0;
 | 
						|
    prevlen = curlen;
 | 
						|
 | 
						|
    if (nextlen === 0) {
 | 
						|
      max_count = 138;
 | 
						|
      min_count = 3;
 | 
						|
 | 
						|
    } else if (curlen === nextlen) {
 | 
						|
      max_count = 6;
 | 
						|
      min_count = 3;
 | 
						|
 | 
						|
    } else {
 | 
						|
      max_count = 7;
 | 
						|
      min_count = 4;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send a literal or distance tree in compressed form, using the codes in
 | 
						|
 * bl_tree.
 | 
						|
 */
 | 
						|
const send_tree = (s, tree, max_code) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    ct_data *tree; /* the tree to be scanned */
 | 
						|
//    int max_code;       /* and its largest code of non zero frequency */
 | 
						|
 | 
						|
  let n;                     /* iterates over all tree elements */
 | 
						|
  let prevlen = -1;          /* last emitted length */
 | 
						|
  let curlen;                /* length of current code */
 | 
						|
 | 
						|
  let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | 
						|
 | 
						|
  let count = 0;             /* repeat count of the current code */
 | 
						|
  let max_count = 7;         /* max repeat count */
 | 
						|
  let min_count = 4;         /* min repeat count */
 | 
						|
 | 
						|
  /* tree[max_code+1].Len = -1; */  /* guard already set */
 | 
						|
  if (nextlen === 0) {
 | 
						|
    max_count = 138;
 | 
						|
    min_count = 3;
 | 
						|
  }
 | 
						|
 | 
						|
  for (n = 0; n <= max_code; n++) {
 | 
						|
    curlen = nextlen;
 | 
						|
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | 
						|
 | 
						|
    if (++count < max_count && curlen === nextlen) {
 | 
						|
      continue;
 | 
						|
 | 
						|
    } else if (count < min_count) {
 | 
						|
      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
 | 
						|
 | 
						|
    } else if (curlen !== 0) {
 | 
						|
      if (curlen !== prevlen) {
 | 
						|
        send_code(s, curlen, s.bl_tree);
 | 
						|
        count--;
 | 
						|
      }
 | 
						|
      //Assert(count >= 3 && count <= 6, " 3_6?");
 | 
						|
      send_code(s, REP_3_6, s.bl_tree);
 | 
						|
      send_bits(s, count - 3, 2);
 | 
						|
 | 
						|
    } else if (count <= 10) {
 | 
						|
      send_code(s, REPZ_3_10, s.bl_tree);
 | 
						|
      send_bits(s, count - 3, 3);
 | 
						|
 | 
						|
    } else {
 | 
						|
      send_code(s, REPZ_11_138, s.bl_tree);
 | 
						|
      send_bits(s, count - 11, 7);
 | 
						|
    }
 | 
						|
 | 
						|
    count = 0;
 | 
						|
    prevlen = curlen;
 | 
						|
    if (nextlen === 0) {
 | 
						|
      max_count = 138;
 | 
						|
      min_count = 3;
 | 
						|
 | 
						|
    } else if (curlen === nextlen) {
 | 
						|
      max_count = 6;
 | 
						|
      min_count = 3;
 | 
						|
 | 
						|
    } else {
 | 
						|
      max_count = 7;
 | 
						|
      min_count = 4;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Construct the Huffman tree for the bit lengths and return the index in
 | 
						|
 * bl_order of the last bit length code to send.
 | 
						|
 */
 | 
						|
const build_bl_tree = (s) => {
 | 
						|
 | 
						|
  let max_blindex;  /* index of last bit length code of non zero freq */
 | 
						|
 | 
						|
  /* Determine the bit length frequencies for literal and distance trees */
 | 
						|
  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
 | 
						|
  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
 | 
						|
 | 
						|
  /* Build the bit length tree: */
 | 
						|
  build_tree(s, s.bl_desc);
 | 
						|
  /* opt_len now includes the length of the tree representations, except
 | 
						|
   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | 
						|
   */
 | 
						|
 | 
						|
  /* Determine the number of bit length codes to send. The pkzip format
 | 
						|
   * requires that at least 4 bit length codes be sent. (appnote.txt says
 | 
						|
   * 3 but the actual value used is 4.)
 | 
						|
   */
 | 
						|
  for (max_blindex = BL_CODES$1 - 1; max_blindex >= 3; max_blindex--) {
 | 
						|
    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* Update opt_len to include the bit length tree and counts */
 | 
						|
  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
 | 
						|
  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | 
						|
  //        s->opt_len, s->static_len));
 | 
						|
 | 
						|
  return max_blindex;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send the header for a block using dynamic Huffman trees: the counts, the
 | 
						|
 * lengths of the bit length codes, the literal tree and the distance tree.
 | 
						|
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | 
						|
 */
 | 
						|
const send_all_trees = (s, lcodes, dcodes, blcodes) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 | 
						|
 | 
						|
  let rank;                    /* index in bl_order */
 | 
						|
 | 
						|
  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | 
						|
  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | 
						|
  //        "too many codes");
 | 
						|
  //Tracev((stderr, "\nbl counts: "));
 | 
						|
  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
 | 
						|
  send_bits(s, dcodes - 1,   5);
 | 
						|
  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
 | 
						|
  for (rank = 0; rank < blcodes; rank++) {
 | 
						|
    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | 
						|
    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
 | 
						|
  }
 | 
						|
  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 | 
						|
 | 
						|
  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
 | 
						|
  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 | 
						|
 | 
						|
  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
 | 
						|
  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Check if the data type is TEXT or BINARY, using the following algorithm:
 | 
						|
 * - TEXT if the two conditions below are satisfied:
 | 
						|
 *    a) There are no non-portable control characters belonging to the
 | 
						|
 *       "block list" (0..6, 14..25, 28..31).
 | 
						|
 *    b) There is at least one printable character belonging to the
 | 
						|
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 | 
						|
 * - BINARY otherwise.
 | 
						|
 * - The following partially-portable control characters form a
 | 
						|
 *   "gray list" that is ignored in this detection algorithm:
 | 
						|
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 | 
						|
 * IN assertion: the fields Freq of dyn_ltree are set.
 | 
						|
 */
 | 
						|
const detect_data_type = (s) => {
 | 
						|
  /* block_mask is the bit mask of block-listed bytes
 | 
						|
   * set bits 0..6, 14..25, and 28..31
 | 
						|
   * 0xf3ffc07f = binary 11110011111111111100000001111111
 | 
						|
   */
 | 
						|
  let block_mask = 0xf3ffc07f;
 | 
						|
  let n;
 | 
						|
 | 
						|
  /* Check for non-textual ("block-listed") bytes. */
 | 
						|
  for (n = 0; n <= 31; n++, block_mask >>>= 1) {
 | 
						|
    if ((block_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
 | 
						|
      return Z_BINARY;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for textual ("allow-listed") bytes. */
 | 
						|
  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
 | 
						|
      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
 | 
						|
    return Z_TEXT;
 | 
						|
  }
 | 
						|
  for (n = 32; n < LITERALS$1; n++) {
 | 
						|
    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
 | 
						|
      return Z_TEXT;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* There are no "block-listed" or "allow-listed" bytes:
 | 
						|
   * this stream either is empty or has tolerated ("gray-listed") bytes only.
 | 
						|
   */
 | 
						|
  return Z_BINARY;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
let static_init_done = false;
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Initialize the tree data structures for a new zlib stream.
 | 
						|
 */
 | 
						|
const _tr_init$1 = (s) =>
 | 
						|
{
 | 
						|
 | 
						|
  if (!static_init_done) {
 | 
						|
    tr_static_init();
 | 
						|
    static_init_done = true;
 | 
						|
  }
 | 
						|
 | 
						|
  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
 | 
						|
  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
 | 
						|
  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
 | 
						|
 | 
						|
  s.bi_buf = 0;
 | 
						|
  s.bi_valid = 0;
 | 
						|
 | 
						|
  /* Initialize the first block of the first file: */
 | 
						|
  init_block(s);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send a stored block
 | 
						|
 */
 | 
						|
const _tr_stored_block$1 = (s, buf, stored_len, last) => {
 | 
						|
//DeflateState *s;
 | 
						|
//charf *buf;       /* input block */
 | 
						|
//ulg stored_len;   /* length of input block */
 | 
						|
//int last;         /* one if this is the last block for a file */
 | 
						|
 | 
						|
  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
 | 
						|
  bi_windup(s);        /* align on byte boundary */
 | 
						|
  put_short(s, stored_len);
 | 
						|
  put_short(s, ~stored_len);
 | 
						|
  if (stored_len) {
 | 
						|
    s.pending_buf.set(s.window.subarray(buf, buf + stored_len), s.pending);
 | 
						|
  }
 | 
						|
  s.pending += stored_len;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Send one empty static block to give enough lookahead for inflate.
 | 
						|
 * This takes 10 bits, of which 7 may remain in the bit buffer.
 | 
						|
 */
 | 
						|
const _tr_align$1 = (s) => {
 | 
						|
  send_bits(s, STATIC_TREES << 1, 3);
 | 
						|
  send_code(s, END_BLOCK, static_ltree);
 | 
						|
  bi_flush(s);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Determine the best encoding for the current block: dynamic trees, static
 | 
						|
 * trees or store, and write out the encoded block.
 | 
						|
 */
 | 
						|
const _tr_flush_block$1 = (s, buf, stored_len, last) => {
 | 
						|
//DeflateState *s;
 | 
						|
//charf *buf;       /* input block, or NULL if too old */
 | 
						|
//ulg stored_len;   /* length of input block */
 | 
						|
//int last;         /* one if this is the last block for a file */
 | 
						|
 | 
						|
  let opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
 | 
						|
  let max_blindex = 0;        /* index of last bit length code of non zero freq */
 | 
						|
 | 
						|
  /* Build the Huffman trees unless a stored block is forced */
 | 
						|
  if (s.level > 0) {
 | 
						|
 | 
						|
    /* Check if the file is binary or text */
 | 
						|
    if (s.strm.data_type === Z_UNKNOWN$1) {
 | 
						|
      s.strm.data_type = detect_data_type(s);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Construct the literal and distance trees */
 | 
						|
    build_tree(s, s.l_desc);
 | 
						|
    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 | 
						|
    //        s->static_len));
 | 
						|
 | 
						|
    build_tree(s, s.d_desc);
 | 
						|
    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 | 
						|
    //        s->static_len));
 | 
						|
    /* At this point, opt_len and static_len are the total bit lengths of
 | 
						|
     * the compressed block data, excluding the tree representations.
 | 
						|
     */
 | 
						|
 | 
						|
    /* Build the bit length tree for the above two trees, and get the index
 | 
						|
     * in bl_order of the last bit length code to send.
 | 
						|
     */
 | 
						|
    max_blindex = build_bl_tree(s);
 | 
						|
 | 
						|
    /* Determine the best encoding. Compute the block lengths in bytes. */
 | 
						|
    opt_lenb = (s.opt_len + 3 + 7) >>> 3;
 | 
						|
    static_lenb = (s.static_len + 3 + 7) >>> 3;
 | 
						|
 | 
						|
    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 | 
						|
    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 | 
						|
    //        s->sym_next / 3));
 | 
						|
 | 
						|
    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Assert(buf != (char*)0, "lost buf");
 | 
						|
    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 | 
						|
  }
 | 
						|
 | 
						|
  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
 | 
						|
    /* 4: two words for the lengths */
 | 
						|
 | 
						|
    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | 
						|
     * Otherwise we can't have processed more than WSIZE input bytes since
 | 
						|
     * the last block flush, because compression would have been
 | 
						|
     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | 
						|
     * transform a block into a stored block.
 | 
						|
     */
 | 
						|
    _tr_stored_block$1(s, buf, stored_len, last);
 | 
						|
 | 
						|
  } else if (s.strategy === Z_FIXED$1 || static_lenb === opt_lenb) {
 | 
						|
 | 
						|
    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
 | 
						|
    compress_block(s, static_ltree, static_dtree);
 | 
						|
 | 
						|
  } else {
 | 
						|
    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
 | 
						|
    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
 | 
						|
    compress_block(s, s.dyn_ltree, s.dyn_dtree);
 | 
						|
  }
 | 
						|
  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 | 
						|
  /* The above check is made mod 2^32, for files larger than 512 MB
 | 
						|
   * and uLong implemented on 32 bits.
 | 
						|
   */
 | 
						|
  init_block(s);
 | 
						|
 | 
						|
  if (last) {
 | 
						|
    bi_windup(s);
 | 
						|
  }
 | 
						|
  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 | 
						|
  //       s->compressed_len-7*last));
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Save the match info and tally the frequency counts. Return true if
 | 
						|
 * the current block must be flushed.
 | 
						|
 */
 | 
						|
const _tr_tally$1 = (s, dist, lc) => {
 | 
						|
//    deflate_state *s;
 | 
						|
//    unsigned dist;  /* distance of matched string */
 | 
						|
//    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 | 
						|
 | 
						|
  s.pending_buf[s.sym_buf + s.sym_next++] = dist;
 | 
						|
  s.pending_buf[s.sym_buf + s.sym_next++] = dist >> 8;
 | 
						|
  s.pending_buf[s.sym_buf + s.sym_next++] = lc;
 | 
						|
  if (dist === 0) {
 | 
						|
    /* lc is the unmatched char */
 | 
						|
    s.dyn_ltree[lc * 2]/*.Freq*/++;
 | 
						|
  } else {
 | 
						|
    s.matches++;
 | 
						|
    /* Here, lc is the match length - MIN_MATCH */
 | 
						|
    dist--;             /* dist = match distance - 1 */
 | 
						|
    //Assert((ush)dist < (ush)MAX_DIST(s) &&
 | 
						|
    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | 
						|
    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 | 
						|
 | 
						|
    s.dyn_ltree[(_length_code[lc] + LITERALS$1 + 1) * 2]/*.Freq*/++;
 | 
						|
    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
 | 
						|
  }
 | 
						|
 | 
						|
  return (s.sym_next === s.sym_end);
 | 
						|
};
 | 
						|
 | 
						|
var _tr_init_1  = _tr_init$1;
 | 
						|
var _tr_stored_block_1 = _tr_stored_block$1;
 | 
						|
var _tr_flush_block_1  = _tr_flush_block$1;
 | 
						|
var _tr_tally_1 = _tr_tally$1;
 | 
						|
var _tr_align_1 = _tr_align$1;
 | 
						|
 | 
						|
var trees = {
 | 
						|
	_tr_init: _tr_init_1,
 | 
						|
	_tr_stored_block: _tr_stored_block_1,
 | 
						|
	_tr_flush_block: _tr_flush_block_1,
 | 
						|
	_tr_tally: _tr_tally_1,
 | 
						|
	_tr_align: _tr_align_1
 | 
						|
};
 | 
						|
 | 
						|
// Note: adler32 takes 12% for level 0 and 2% for level 6.
 | 
						|
// It isn't worth it to make additional optimizations as in original.
 | 
						|
// Small size is preferable.
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
const adler32 = (adler, buf, len, pos) => {
 | 
						|
  let s1 = (adler & 0xffff) |0,
 | 
						|
      s2 = ((adler >>> 16) & 0xffff) |0,
 | 
						|
      n = 0;
 | 
						|
 | 
						|
  while (len !== 0) {
 | 
						|
    // Set limit ~ twice less than 5552, to keep
 | 
						|
    // s2 in 31-bits, because we force signed ints.
 | 
						|
    // in other case %= will fail.
 | 
						|
    n = len > 2000 ? 2000 : len;
 | 
						|
    len -= n;
 | 
						|
 | 
						|
    do {
 | 
						|
      s1 = (s1 + buf[pos++]) |0;
 | 
						|
      s2 = (s2 + s1) |0;
 | 
						|
    } while (--n);
 | 
						|
 | 
						|
    s1 %= 65521;
 | 
						|
    s2 %= 65521;
 | 
						|
  }
 | 
						|
 | 
						|
  return (s1 | (s2 << 16)) |0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
var adler32_1 = adler32;
 | 
						|
 | 
						|
// Note: we can't get significant speed boost here.
 | 
						|
// So write code to minimize size - no pregenerated tables
 | 
						|
// and array tools dependencies.
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
// Use ordinary array, since untyped makes no boost here
 | 
						|
const makeTable = () => {
 | 
						|
  let c, table = [];
 | 
						|
 | 
						|
  for (var n = 0; n < 256; n++) {
 | 
						|
    c = n;
 | 
						|
    for (var k = 0; k < 8; k++) {
 | 
						|
      c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
 | 
						|
    }
 | 
						|
    table[n] = c;
 | 
						|
  }
 | 
						|
 | 
						|
  return table;
 | 
						|
};
 | 
						|
 | 
						|
// Create table on load. Just 255 signed longs. Not a problem.
 | 
						|
const crcTable = new Uint32Array(makeTable());
 | 
						|
 | 
						|
 | 
						|
const crc32 = (crc, buf, len, pos) => {
 | 
						|
  const t = crcTable;
 | 
						|
  const end = pos + len;
 | 
						|
 | 
						|
  crc ^= -1;
 | 
						|
 | 
						|
  for (let i = pos; i < end; i++) {
 | 
						|
    crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
 | 
						|
  }
 | 
						|
 | 
						|
  return (crc ^ (-1)); // >>> 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
var crc32_1 = crc32;
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
var messages = {
 | 
						|
  2:      'need dictionary',     /* Z_NEED_DICT       2  */
 | 
						|
  1:      'stream end',          /* Z_STREAM_END      1  */
 | 
						|
  0:      '',                    /* Z_OK              0  */
 | 
						|
  '-1':   'file error',          /* Z_ERRNO         (-1) */
 | 
						|
  '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */
 | 
						|
  '-3':   'data error',          /* Z_DATA_ERROR    (-3) */
 | 
						|
  '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */
 | 
						|
  '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */
 | 
						|
  '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
var constants$2 = {
 | 
						|
 | 
						|
  /* Allowed flush values; see deflate() and inflate() below for details */
 | 
						|
  Z_NO_FLUSH:         0,
 | 
						|
  Z_PARTIAL_FLUSH:    1,
 | 
						|
  Z_SYNC_FLUSH:       2,
 | 
						|
  Z_FULL_FLUSH:       3,
 | 
						|
  Z_FINISH:           4,
 | 
						|
  Z_BLOCK:            5,
 | 
						|
  Z_TREES:            6,
 | 
						|
 | 
						|
  /* Return codes for the compression/decompression functions. Negative values
 | 
						|
  * are errors, positive values are used for special but normal events.
 | 
						|
  */
 | 
						|
  Z_OK:               0,
 | 
						|
  Z_STREAM_END:       1,
 | 
						|
  Z_NEED_DICT:        2,
 | 
						|
  Z_ERRNO:           -1,
 | 
						|
  Z_STREAM_ERROR:    -2,
 | 
						|
  Z_DATA_ERROR:      -3,
 | 
						|
  Z_MEM_ERROR:       -4,
 | 
						|
  Z_BUF_ERROR:       -5,
 | 
						|
  //Z_VERSION_ERROR: -6,
 | 
						|
 | 
						|
  /* compression levels */
 | 
						|
  Z_NO_COMPRESSION:         0,
 | 
						|
  Z_BEST_SPEED:             1,
 | 
						|
  Z_BEST_COMPRESSION:       9,
 | 
						|
  Z_DEFAULT_COMPRESSION:   -1,
 | 
						|
 | 
						|
 | 
						|
  Z_FILTERED:               1,
 | 
						|
  Z_HUFFMAN_ONLY:           2,
 | 
						|
  Z_RLE:                    3,
 | 
						|
  Z_FIXED:                  4,
 | 
						|
  Z_DEFAULT_STRATEGY:       0,
 | 
						|
 | 
						|
  /* Possible values of the data_type field (though see inflate()) */
 | 
						|
  Z_BINARY:                 0,
 | 
						|
  Z_TEXT:                   1,
 | 
						|
  //Z_ASCII:                1, // = Z_TEXT (deprecated)
 | 
						|
  Z_UNKNOWN:                2,
 | 
						|
 | 
						|
  /* The deflate compression method */
 | 
						|
  Z_DEFLATED:               8
 | 
						|
  //Z_NULL:                 null // Use -1 or null inline, depending on var type
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = trees;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Public constants ==========================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
const {
 | 
						|
  Z_NO_FLUSH: Z_NO_FLUSH$2, Z_PARTIAL_FLUSH, Z_FULL_FLUSH: Z_FULL_FLUSH$1, Z_FINISH: Z_FINISH$3, Z_BLOCK: Z_BLOCK$1,
 | 
						|
  Z_OK: Z_OK$3, Z_STREAM_END: Z_STREAM_END$3, Z_STREAM_ERROR: Z_STREAM_ERROR$2, Z_DATA_ERROR: Z_DATA_ERROR$2, Z_BUF_ERROR: Z_BUF_ERROR$1,
 | 
						|
  Z_DEFAULT_COMPRESSION: Z_DEFAULT_COMPRESSION$1,
 | 
						|
  Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY: Z_DEFAULT_STRATEGY$1,
 | 
						|
  Z_UNKNOWN,
 | 
						|
  Z_DEFLATED: Z_DEFLATED$2
 | 
						|
} = constants$2;
 | 
						|
 | 
						|
/*============================================================================*/
 | 
						|
 | 
						|
 | 
						|
const MAX_MEM_LEVEL = 9;
 | 
						|
/* Maximum value for memLevel in deflateInit2 */
 | 
						|
const MAX_WBITS$1 = 15;
 | 
						|
/* 32K LZ77 window */
 | 
						|
const DEF_MEM_LEVEL = 8;
 | 
						|
 | 
						|
 | 
						|
const LENGTH_CODES  = 29;
 | 
						|
/* number of length codes, not counting the special END_BLOCK code */
 | 
						|
const LITERALS      = 256;
 | 
						|
/* number of literal bytes 0..255 */
 | 
						|
const L_CODES       = LITERALS + 1 + LENGTH_CODES;
 | 
						|
/* number of Literal or Length codes, including the END_BLOCK code */
 | 
						|
const D_CODES       = 30;
 | 
						|
/* number of distance codes */
 | 
						|
const BL_CODES      = 19;
 | 
						|
/* number of codes used to transfer the bit lengths */
 | 
						|
const HEAP_SIZE     = 2 * L_CODES + 1;
 | 
						|
/* maximum heap size */
 | 
						|
const MAX_BITS  = 15;
 | 
						|
/* All codes must not exceed MAX_BITS bits */
 | 
						|
 | 
						|
const MIN_MATCH = 3;
 | 
						|
const MAX_MATCH = 258;
 | 
						|
const MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
 | 
						|
 | 
						|
const PRESET_DICT = 0x20;
 | 
						|
 | 
						|
const INIT_STATE    =  42;    /* zlib header -> BUSY_STATE */
 | 
						|
//#ifdef GZIP
 | 
						|
const GZIP_STATE    =  57;    /* gzip header -> BUSY_STATE | EXTRA_STATE */
 | 
						|
//#endif
 | 
						|
const EXTRA_STATE   =  69;    /* gzip extra block -> NAME_STATE */
 | 
						|
const NAME_STATE    =  73;    /* gzip file name -> COMMENT_STATE */
 | 
						|
const COMMENT_STATE =  91;    /* gzip comment -> HCRC_STATE */
 | 
						|
const HCRC_STATE    = 103;    /* gzip header CRC -> BUSY_STATE */
 | 
						|
const BUSY_STATE    = 113;    /* deflate -> FINISH_STATE */
 | 
						|
const FINISH_STATE  = 666;    /* stream complete */
 | 
						|
 | 
						|
const BS_NEED_MORE      = 1; /* block not completed, need more input or more output */
 | 
						|
const BS_BLOCK_DONE     = 2; /* block flush performed */
 | 
						|
const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
 | 
						|
const BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */
 | 
						|
 | 
						|
const OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
 | 
						|
 | 
						|
const err = (strm, errorCode) => {
 | 
						|
  strm.msg = messages[errorCode];
 | 
						|
  return errorCode;
 | 
						|
};
 | 
						|
 | 
						|
const rank = (f) => {
 | 
						|
  return ((f) * 2) - ((f) > 4 ? 9 : 0);
 | 
						|
};
 | 
						|
 | 
						|
const zero = (buf) => {
 | 
						|
  let len = buf.length; while (--len >= 0) { buf[len] = 0; }
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Slide the hash table when sliding the window down (could be avoided with 32
 | 
						|
 * bit values at the expense of memory usage). We slide even when level == 0 to
 | 
						|
 * keep the hash table consistent if we switch back to level > 0 later.
 | 
						|
 */
 | 
						|
const slide_hash = (s) => {
 | 
						|
  let n, m;
 | 
						|
  let p;
 | 
						|
  let wsize = s.w_size;
 | 
						|
 | 
						|
  n = s.hash_size;
 | 
						|
  p = n;
 | 
						|
  do {
 | 
						|
    m = s.head[--p];
 | 
						|
    s.head[p] = (m >= wsize ? m - wsize : 0);
 | 
						|
  } while (--n);
 | 
						|
  n = wsize;
 | 
						|
//#ifndef FASTEST
 | 
						|
  p = n;
 | 
						|
  do {
 | 
						|
    m = s.prev[--p];
 | 
						|
    s.prev[p] = (m >= wsize ? m - wsize : 0);
 | 
						|
    /* If n is not on any hash chain, prev[n] is garbage but
 | 
						|
     * its value will never be used.
 | 
						|
     */
 | 
						|
  } while (--n);
 | 
						|
//#endif
 | 
						|
};
 | 
						|
 | 
						|
/* eslint-disable new-cap */
 | 
						|
let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask;
 | 
						|
// This hash causes less collisions, https://github.com/nodeca/pako/issues/135
 | 
						|
// But breaks binary compatibility
 | 
						|
//let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask;
 | 
						|
let HASH = HASH_ZLIB;
 | 
						|
 | 
						|
 | 
						|
/* =========================================================================
 | 
						|
 * Flush as much pending output as possible. All deflate() output, except for
 | 
						|
 * some deflate_stored() output, goes through this function so some
 | 
						|
 * applications may wish to modify it to avoid allocating a large
 | 
						|
 * strm->next_out buffer and copying into it. (See also read_buf()).
 | 
						|
 */
 | 
						|
const flush_pending = (strm) => {
 | 
						|
  const s = strm.state;
 | 
						|
 | 
						|
  //_tr_flush_bits(s);
 | 
						|
  let len = s.pending;
 | 
						|
  if (len > strm.avail_out) {
 | 
						|
    len = strm.avail_out;
 | 
						|
  }
 | 
						|
  if (len === 0) { return; }
 | 
						|
 | 
						|
  strm.output.set(s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out);
 | 
						|
  strm.next_out  += len;
 | 
						|
  s.pending_out  += len;
 | 
						|
  strm.total_out += len;
 | 
						|
  strm.avail_out -= len;
 | 
						|
  s.pending      -= len;
 | 
						|
  if (s.pending === 0) {
 | 
						|
    s.pending_out = 0;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const flush_block_only = (s, last) => {
 | 
						|
  _tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
 | 
						|
  s.block_start = s.strstart;
 | 
						|
  flush_pending(s.strm);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const put_byte = (s, b) => {
 | 
						|
  s.pending_buf[s.pending++] = b;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* =========================================================================
 | 
						|
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 | 
						|
 * IN assertion: the stream state is correct and there is enough room in
 | 
						|
 * pending_buf.
 | 
						|
 */
 | 
						|
const putShortMSB = (s, b) => {
 | 
						|
 | 
						|
  //  put_byte(s, (Byte)(b >> 8));
 | 
						|
//  put_byte(s, (Byte)(b & 0xff));
 | 
						|
  s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
 | 
						|
  s.pending_buf[s.pending++] = b & 0xff;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Read a new buffer from the current input stream, update the adler32
 | 
						|
 * and total number of bytes read.  All deflate() input goes through
 | 
						|
 * this function so some applications may wish to modify it to avoid
 | 
						|
 * allocating a large strm->input buffer and copying from it.
 | 
						|
 * (See also flush_pending()).
 | 
						|
 */
 | 
						|
const read_buf = (strm, buf, start, size) => {
 | 
						|
 | 
						|
  let len = strm.avail_in;
 | 
						|
 | 
						|
  if (len > size) { len = size; }
 | 
						|
  if (len === 0) { return 0; }
 | 
						|
 | 
						|
  strm.avail_in -= len;
 | 
						|
 | 
						|
  // zmemcpy(buf, strm->next_in, len);
 | 
						|
  buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start);
 | 
						|
  if (strm.state.wrap === 1) {
 | 
						|
    strm.adler = adler32_1(strm.adler, buf, len, start);
 | 
						|
  }
 | 
						|
 | 
						|
  else if (strm.state.wrap === 2) {
 | 
						|
    strm.adler = crc32_1(strm.adler, buf, len, start);
 | 
						|
  }
 | 
						|
 | 
						|
  strm.next_in += len;
 | 
						|
  strm.total_in += len;
 | 
						|
 | 
						|
  return len;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Set match_start to the longest match starting at the given string and
 | 
						|
 * return its length. Matches shorter or equal to prev_length are discarded,
 | 
						|
 * in which case the result is equal to prev_length and match_start is
 | 
						|
 * garbage.
 | 
						|
 * IN assertions: cur_match is the head of the hash chain for the current
 | 
						|
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 | 
						|
 * OUT assertion: the match length is not greater than s->lookahead.
 | 
						|
 */
 | 
						|
const longest_match = (s, cur_match) => {
 | 
						|
 | 
						|
  let chain_length = s.max_chain_length;      /* max hash chain length */
 | 
						|
  let scan = s.strstart; /* current string */
 | 
						|
  let match;                       /* matched string */
 | 
						|
  let len;                           /* length of current match */
 | 
						|
  let best_len = s.prev_length;              /* best match length so far */
 | 
						|
  let nice_match = s.nice_match;             /* stop if match long enough */
 | 
						|
  const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
 | 
						|
      s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;
 | 
						|
 | 
						|
  const _win = s.window; // shortcut
 | 
						|
 | 
						|
  const wmask = s.w_mask;
 | 
						|
  const prev  = s.prev;
 | 
						|
 | 
						|
  /* Stop when cur_match becomes <= limit. To simplify the code,
 | 
						|
   * we prevent matches with the string of window index 0.
 | 
						|
   */
 | 
						|
 | 
						|
  const strend = s.strstart + MAX_MATCH;
 | 
						|
  let scan_end1  = _win[scan + best_len - 1];
 | 
						|
  let scan_end   = _win[scan + best_len];
 | 
						|
 | 
						|
  /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | 
						|
   * It is easy to get rid of this optimization if necessary.
 | 
						|
   */
 | 
						|
  // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 | 
						|
 | 
						|
  /* Do not waste too much time if we already have a good match: */
 | 
						|
  if (s.prev_length >= s.good_match) {
 | 
						|
    chain_length >>= 2;
 | 
						|
  }
 | 
						|
  /* Do not look for matches beyond the end of the input. This is necessary
 | 
						|
   * to make deflate deterministic.
 | 
						|
   */
 | 
						|
  if (nice_match > s.lookahead) { nice_match = s.lookahead; }
 | 
						|
 | 
						|
  // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 | 
						|
 | 
						|
  do {
 | 
						|
    // Assert(cur_match < s->strstart, "no future");
 | 
						|
    match = cur_match;
 | 
						|
 | 
						|
    /* Skip to next match if the match length cannot increase
 | 
						|
     * or if the match length is less than 2.  Note that the checks below
 | 
						|
     * for insufficient lookahead only occur occasionally for performance
 | 
						|
     * reasons.  Therefore uninitialized memory will be accessed, and
 | 
						|
     * conditional jumps will be made that depend on those values.
 | 
						|
     * However the length of the match is limited to the lookahead, so
 | 
						|
     * the output of deflate is not affected by the uninitialized values.
 | 
						|
     */
 | 
						|
 | 
						|
    if (_win[match + best_len]     !== scan_end  ||
 | 
						|
        _win[match + best_len - 1] !== scan_end1 ||
 | 
						|
        _win[match]                !== _win[scan] ||
 | 
						|
        _win[++match]              !== _win[scan + 1]) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The check at best_len-1 can be removed because it will be made
 | 
						|
     * again later. (This heuristic is not always a win.)
 | 
						|
     * It is not necessary to compare scan[2] and match[2] since they
 | 
						|
     * are always equal when the other bytes match, given that
 | 
						|
     * the hash keys are equal and that HASH_BITS >= 8.
 | 
						|
     */
 | 
						|
    scan += 2;
 | 
						|
    match++;
 | 
						|
    // Assert(*scan == *match, "match[2]?");
 | 
						|
 | 
						|
    /* We check for insufficient lookahead only every 8th comparison;
 | 
						|
     * the 256th check will be made at strstart+258.
 | 
						|
     */
 | 
						|
    do {
 | 
						|
      /*jshint noempty:false*/
 | 
						|
    } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | 
						|
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
 | 
						|
             scan < strend);
 | 
						|
 | 
						|
    // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | 
						|
 | 
						|
    len = MAX_MATCH - (strend - scan);
 | 
						|
    scan = strend - MAX_MATCH;
 | 
						|
 | 
						|
    if (len > best_len) {
 | 
						|
      s.match_start = cur_match;
 | 
						|
      best_len = len;
 | 
						|
      if (len >= nice_match) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      scan_end1  = _win[scan + best_len - 1];
 | 
						|
      scan_end   = _win[scan + best_len];
 | 
						|
    }
 | 
						|
  } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);
 | 
						|
 | 
						|
  if (best_len <= s.lookahead) {
 | 
						|
    return best_len;
 | 
						|
  }
 | 
						|
  return s.lookahead;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Fill the window when the lookahead becomes insufficient.
 | 
						|
 * Updates strstart and lookahead.
 | 
						|
 *
 | 
						|
 * IN assertion: lookahead < MIN_LOOKAHEAD
 | 
						|
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 | 
						|
 *    At least one byte has been read, or avail_in == 0; reads are
 | 
						|
 *    performed for at least two bytes (required for the zip translate_eol
 | 
						|
 *    option -- not supported here).
 | 
						|
 */
 | 
						|
const fill_window = (s) => {
 | 
						|
 | 
						|
  const _w_size = s.w_size;
 | 
						|
  let n, more, str;
 | 
						|
 | 
						|
  //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 | 
						|
 | 
						|
  do {
 | 
						|
    more = s.window_size - s.lookahead - s.strstart;
 | 
						|
 | 
						|
    // JS ints have 32 bit, block below not needed
 | 
						|
    /* Deal with !@#$% 64K limit: */
 | 
						|
    //if (sizeof(int) <= 2) {
 | 
						|
    //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 | 
						|
    //        more = wsize;
 | 
						|
    //
 | 
						|
    //  } else if (more == (unsigned)(-1)) {
 | 
						|
    //        /* Very unlikely, but possible on 16 bit machine if
 | 
						|
    //         * strstart == 0 && lookahead == 1 (input done a byte at time)
 | 
						|
    //         */
 | 
						|
    //        more--;
 | 
						|
    //    }
 | 
						|
    //}
 | 
						|
 | 
						|
 | 
						|
    /* If the window is almost full and there is insufficient lookahead,
 | 
						|
     * move the upper half to the lower one to make room in the upper half.
 | 
						|
     */
 | 
						|
    if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {
 | 
						|
 | 
						|
      s.window.set(s.window.subarray(_w_size, _w_size + _w_size - more), 0);
 | 
						|
      s.match_start -= _w_size;
 | 
						|
      s.strstart -= _w_size;
 | 
						|
      /* we now have strstart >= MAX_DIST */
 | 
						|
      s.block_start -= _w_size;
 | 
						|
      if (s.insert > s.strstart) {
 | 
						|
        s.insert = s.strstart;
 | 
						|
      }
 | 
						|
      slide_hash(s);
 | 
						|
      more += _w_size;
 | 
						|
    }
 | 
						|
    if (s.strm.avail_in === 0) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If there was no sliding:
 | 
						|
     *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 | 
						|
     *    more == window_size - lookahead - strstart
 | 
						|
     * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 | 
						|
     * => more >= window_size - 2*WSIZE + 2
 | 
						|
     * In the BIG_MEM or MMAP case (not yet supported),
 | 
						|
     *   window_size == input_size + MIN_LOOKAHEAD  &&
 | 
						|
     *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 | 
						|
     * Otherwise, window_size == 2*WSIZE so more >= 2.
 | 
						|
     * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 | 
						|
     */
 | 
						|
    //Assert(more >= 2, "more < 2");
 | 
						|
    n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
 | 
						|
    s.lookahead += n;
 | 
						|
 | 
						|
    /* Initialize the hash value now that we have some input: */
 | 
						|
    if (s.lookahead + s.insert >= MIN_MATCH) {
 | 
						|
      str = s.strstart - s.insert;
 | 
						|
      s.ins_h = s.window[str];
 | 
						|
 | 
						|
      /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
 | 
						|
      s.ins_h = HASH(s, s.ins_h, s.window[str + 1]);
 | 
						|
//#if MIN_MATCH != 3
 | 
						|
//        Call update_hash() MIN_MATCH-3 more times
 | 
						|
//#endif
 | 
						|
      while (s.insert) {
 | 
						|
        /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | 
						|
        s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
 | 
						|
 | 
						|
        s.prev[str & s.w_mask] = s.head[s.ins_h];
 | 
						|
        s.head[s.ins_h] = str;
 | 
						|
        str++;
 | 
						|
        s.insert--;
 | 
						|
        if (s.lookahead + s.insert < MIN_MATCH) {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | 
						|
     * but this is not important since only literal bytes will be emitted.
 | 
						|
     */
 | 
						|
 | 
						|
  } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);
 | 
						|
 | 
						|
  /* If the WIN_INIT bytes after the end of the current data have never been
 | 
						|
   * written, then zero those bytes in order to avoid memory check reports of
 | 
						|
   * the use of uninitialized (or uninitialised as Julian writes) bytes by
 | 
						|
   * the longest match routines.  Update the high water mark for the next
 | 
						|
   * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 | 
						|
   * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 | 
						|
   */
 | 
						|
//  if (s.high_water < s.window_size) {
 | 
						|
//    const curr = s.strstart + s.lookahead;
 | 
						|
//    let init = 0;
 | 
						|
//
 | 
						|
//    if (s.high_water < curr) {
 | 
						|
//      /* Previous high water mark below current data -- zero WIN_INIT
 | 
						|
//       * bytes or up to end of window, whichever is less.
 | 
						|
//       */
 | 
						|
//      init = s.window_size - curr;
 | 
						|
//      if (init > WIN_INIT)
 | 
						|
//        init = WIN_INIT;
 | 
						|
//      zmemzero(s->window + curr, (unsigned)init);
 | 
						|
//      s->high_water = curr + init;
 | 
						|
//    }
 | 
						|
//    else if (s->high_water < (ulg)curr + WIN_INIT) {
 | 
						|
//      /* High water mark at or above current data, but below current data
 | 
						|
//       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 | 
						|
//       * to end of window, whichever is less.
 | 
						|
//       */
 | 
						|
//      init = (ulg)curr + WIN_INIT - s->high_water;
 | 
						|
//      if (init > s->window_size - s->high_water)
 | 
						|
//        init = s->window_size - s->high_water;
 | 
						|
//      zmemzero(s->window + s->high_water, (unsigned)init);
 | 
						|
//      s->high_water += init;
 | 
						|
//    }
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 | 
						|
//    "not enough room for search");
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Copy without compression as much as possible from the input stream, return
 | 
						|
 * the current block state.
 | 
						|
 *
 | 
						|
 * In case deflateParams() is used to later switch to a non-zero compression
 | 
						|
 * level, s->matches (otherwise unused when storing) keeps track of the number
 | 
						|
 * of hash table slides to perform. If s->matches is 1, then one hash table
 | 
						|
 * slide will be done when switching. If s->matches is 2, the maximum value
 | 
						|
 * allowed here, then the hash table will be cleared, since two or more slides
 | 
						|
 * is the same as a clear.
 | 
						|
 *
 | 
						|
 * deflate_stored() is written to minimize the number of times an input byte is
 | 
						|
 * copied. It is most efficient with large input and output buffers, which
 | 
						|
 * maximizes the opportunites to have a single copy from next_in to next_out.
 | 
						|
 */
 | 
						|
const deflate_stored = (s, flush) => {
 | 
						|
 | 
						|
  /* Smallest worthy block size when not flushing or finishing. By default
 | 
						|
   * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
 | 
						|
   * large input and output buffers, the stored block size will be larger.
 | 
						|
   */
 | 
						|
  let min_block = s.pending_buf_size - 5 > s.w_size ? s.w_size : s.pending_buf_size - 5;
 | 
						|
 | 
						|
  /* Copy as many min_block or larger stored blocks directly to next_out as
 | 
						|
   * possible. If flushing, copy the remaining available input to next_out as
 | 
						|
   * stored blocks, if there is enough space.
 | 
						|
   */
 | 
						|
  let len, left, have, last = 0;
 | 
						|
  let used = s.strm.avail_in;
 | 
						|
  do {
 | 
						|
    /* Set len to the maximum size block that we can copy directly with the
 | 
						|
     * available input data and output space. Set left to how much of that
 | 
						|
     * would be copied from what's left in the window.
 | 
						|
     */
 | 
						|
    len = 65535/* MAX_STORED */;     /* maximum deflate stored block length */
 | 
						|
    have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
 | 
						|
    if (s.strm.avail_out < have) {         /* need room for header */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      /* maximum stored block length that will fit in avail_out: */
 | 
						|
    have = s.strm.avail_out - have;
 | 
						|
    left = s.strstart - s.block_start;  /* bytes left in window */
 | 
						|
    if (len > left + s.strm.avail_in) {
 | 
						|
      len = left + s.strm.avail_in;   /* limit len to the input */
 | 
						|
    }
 | 
						|
    if (len > have) {
 | 
						|
      len = have;             /* limit len to the output */
 | 
						|
    }
 | 
						|
 | 
						|
    /* If the stored block would be less than min_block in length, or if
 | 
						|
     * unable to copy all of the available input when flushing, then try
 | 
						|
     * copying to the window and the pending buffer instead. Also don't
 | 
						|
     * write an empty block when flushing -- deflate() does that.
 | 
						|
     */
 | 
						|
    if (len < min_block && ((len === 0 && flush !== Z_FINISH$3) ||
 | 
						|
                        flush === Z_NO_FLUSH$2 ||
 | 
						|
                        len !== left + s.strm.avail_in)) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make a dummy stored block in pending to get the header bytes,
 | 
						|
     * including any pending bits. This also updates the debugging counts.
 | 
						|
     */
 | 
						|
    last = flush === Z_FINISH$3 && len === left + s.strm.avail_in ? 1 : 0;
 | 
						|
    _tr_stored_block(s, 0, 0, last);
 | 
						|
 | 
						|
    /* Replace the lengths in the dummy stored block with len. */
 | 
						|
    s.pending_buf[s.pending - 4] = len;
 | 
						|
    s.pending_buf[s.pending - 3] = len >> 8;
 | 
						|
    s.pending_buf[s.pending - 2] = ~len;
 | 
						|
    s.pending_buf[s.pending - 1] = ~len >> 8;
 | 
						|
 | 
						|
    /* Write the stored block header bytes. */
 | 
						|
    flush_pending(s.strm);
 | 
						|
 | 
						|
//#ifdef ZLIB_DEBUG
 | 
						|
//    /* Update debugging counts for the data about to be copied. */
 | 
						|
//    s->compressed_len += len << 3;
 | 
						|
//    s->bits_sent += len << 3;
 | 
						|
//#endif
 | 
						|
 | 
						|
    /* Copy uncompressed bytes from the window to next_out. */
 | 
						|
    if (left) {
 | 
						|
      if (left > len) {
 | 
						|
        left = len;
 | 
						|
      }
 | 
						|
      //zmemcpy(s->strm->next_out, s->window + s->block_start, left);
 | 
						|
      s.strm.output.set(s.window.subarray(s.block_start, s.block_start + left), s.strm.next_out);
 | 
						|
      s.strm.next_out += left;
 | 
						|
      s.strm.avail_out -= left;
 | 
						|
      s.strm.total_out += left;
 | 
						|
      s.block_start += left;
 | 
						|
      len -= left;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Copy uncompressed bytes directly from next_in to next_out, updating
 | 
						|
     * the check value.
 | 
						|
     */
 | 
						|
    if (len) {
 | 
						|
      read_buf(s.strm, s.strm.output, s.strm.next_out, len);
 | 
						|
      s.strm.next_out += len;
 | 
						|
      s.strm.avail_out -= len;
 | 
						|
      s.strm.total_out += len;
 | 
						|
    }
 | 
						|
  } while (last === 0);
 | 
						|
 | 
						|
  /* Update the sliding window with the last s->w_size bytes of the copied
 | 
						|
   * data, or append all of the copied data to the existing window if less
 | 
						|
   * than s->w_size bytes were copied. Also update the number of bytes to
 | 
						|
   * insert in the hash tables, in the event that deflateParams() switches to
 | 
						|
   * a non-zero compression level.
 | 
						|
   */
 | 
						|
  used -= s.strm.avail_in;    /* number of input bytes directly copied */
 | 
						|
  if (used) {
 | 
						|
    /* If any input was used, then no unused input remains in the window,
 | 
						|
     * therefore s->block_start == s->strstart.
 | 
						|
     */
 | 
						|
    if (used >= s.w_size) {  /* supplant the previous history */
 | 
						|
      s.matches = 2;     /* clear hash */
 | 
						|
      //zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
 | 
						|
      s.window.set(s.strm.input.subarray(s.strm.next_in - s.w_size, s.strm.next_in), 0);
 | 
						|
      s.strstart = s.w_size;
 | 
						|
      s.insert = s.strstart;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (s.window_size - s.strstart <= used) {
 | 
						|
        /* Slide the window down. */
 | 
						|
        s.strstart -= s.w_size;
 | 
						|
        //zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | 
						|
        s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
 | 
						|
        if (s.matches < 2) {
 | 
						|
          s.matches++;   /* add a pending slide_hash() */
 | 
						|
        }
 | 
						|
        if (s.insert > s.strstart) {
 | 
						|
          s.insert = s.strstart;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      //zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
 | 
						|
      s.window.set(s.strm.input.subarray(s.strm.next_in - used, s.strm.next_in), s.strstart);
 | 
						|
      s.strstart += used;
 | 
						|
      s.insert += used > s.w_size - s.insert ? s.w_size - s.insert : used;
 | 
						|
    }
 | 
						|
    s.block_start = s.strstart;
 | 
						|
  }
 | 
						|
  if (s.high_water < s.strstart) {
 | 
						|
    s.high_water = s.strstart;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the last block was written to next_out, then done. */
 | 
						|
  if (last) {
 | 
						|
    return BS_FINISH_DONE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If flushing and all input has been consumed, then done. */
 | 
						|
  if (flush !== Z_NO_FLUSH$2 && flush !== Z_FINISH$3 &&
 | 
						|
    s.strm.avail_in === 0 && s.strstart === s.block_start) {
 | 
						|
    return BS_BLOCK_DONE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Fill the window with any remaining input. */
 | 
						|
  have = s.window_size - s.strstart;
 | 
						|
  if (s.strm.avail_in > have && s.block_start >= s.w_size) {
 | 
						|
    /* Slide the window down. */
 | 
						|
    s.block_start -= s.w_size;
 | 
						|
    s.strstart -= s.w_size;
 | 
						|
    //zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | 
						|
    s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
 | 
						|
    if (s.matches < 2) {
 | 
						|
      s.matches++;       /* add a pending slide_hash() */
 | 
						|
    }
 | 
						|
    have += s.w_size;      /* more space now */
 | 
						|
    if (s.insert > s.strstart) {
 | 
						|
      s.insert = s.strstart;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (have > s.strm.avail_in) {
 | 
						|
    have = s.strm.avail_in;
 | 
						|
  }
 | 
						|
  if (have) {
 | 
						|
    read_buf(s.strm, s.window, s.strstart, have);
 | 
						|
    s.strstart += have;
 | 
						|
    s.insert += have > s.w_size - s.insert ? s.w_size - s.insert : have;
 | 
						|
  }
 | 
						|
  if (s.high_water < s.strstart) {
 | 
						|
    s.high_water = s.strstart;
 | 
						|
  }
 | 
						|
 | 
						|
  /* There was not enough avail_out to write a complete worthy or flushed
 | 
						|
   * stored block to next_out. Write a stored block to pending instead, if we
 | 
						|
   * have enough input for a worthy block, or if flushing and there is enough
 | 
						|
   * room for the remaining input as a stored block in the pending buffer.
 | 
						|
   */
 | 
						|
  have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
 | 
						|
    /* maximum stored block length that will fit in pending: */
 | 
						|
  have = s.pending_buf_size - have > 65535/* MAX_STORED */ ? 65535/* MAX_STORED */ : s.pending_buf_size - have;
 | 
						|
  min_block = have > s.w_size ? s.w_size : have;
 | 
						|
  left = s.strstart - s.block_start;
 | 
						|
  if (left >= min_block ||
 | 
						|
     ((left || flush === Z_FINISH$3) && flush !== Z_NO_FLUSH$2 &&
 | 
						|
     s.strm.avail_in === 0 && left <= have)) {
 | 
						|
    len = left > have ? have : left;
 | 
						|
    last = flush === Z_FINISH$3 && s.strm.avail_in === 0 &&
 | 
						|
         len === left ? 1 : 0;
 | 
						|
    _tr_stored_block(s, s.block_start, len, last);
 | 
						|
    s.block_start += len;
 | 
						|
    flush_pending(s.strm);
 | 
						|
  }
 | 
						|
 | 
						|
  /* We've done all we can with the available input and output. */
 | 
						|
  return last ? BS_FINISH_STARTED : BS_NEED_MORE;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Compress as much as possible from the input stream, return the current
 | 
						|
 * block state.
 | 
						|
 * This function does not perform lazy evaluation of matches and inserts
 | 
						|
 * new strings in the dictionary only for unmatched strings or for short
 | 
						|
 * matches. It is used only for the fast compression options.
 | 
						|
 */
 | 
						|
const deflate_fast = (s, flush) => {
 | 
						|
 | 
						|
  let hash_head;        /* head of the hash chain */
 | 
						|
  let bflush;           /* set if current block must be flushed */
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* Make sure that we always have enough lookahead, except
 | 
						|
     * at the end of the input file. We need MAX_MATCH bytes
 | 
						|
     * for the next match, plus MIN_MATCH bytes to insert the
 | 
						|
     * string following the next match.
 | 
						|
     */
 | 
						|
    if (s.lookahead < MIN_LOOKAHEAD) {
 | 
						|
      fill_window(s);
 | 
						|
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$2) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      if (s.lookahead === 0) {
 | 
						|
        break; /* flush the current block */
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Insert the string window[strstart .. strstart+2] in the
 | 
						|
     * dictionary, and set hash_head to the head of the hash chain:
 | 
						|
     */
 | 
						|
    hash_head = 0/*NIL*/;
 | 
						|
    if (s.lookahead >= MIN_MATCH) {
 | 
						|
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | 
						|
      s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | 
						|
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | 
						|
      s.head[s.ins_h] = s.strstart;
 | 
						|
      /***/
 | 
						|
    }
 | 
						|
 | 
						|
    /* Find the longest match, discarding those <= prev_length.
 | 
						|
     * At this point we have always match_length < MIN_MATCH
 | 
						|
     */
 | 
						|
    if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
 | 
						|
      /* To simplify the code, we prevent matches with the string
 | 
						|
       * of window index 0 (in particular we have to avoid a match
 | 
						|
       * of the string with itself at the start of the input file).
 | 
						|
       */
 | 
						|
      s.match_length = longest_match(s, hash_head);
 | 
						|
      /* longest_match() sets match_start */
 | 
						|
    }
 | 
						|
    if (s.match_length >= MIN_MATCH) {
 | 
						|
      // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only
 | 
						|
 | 
						|
      /*** _tr_tally_dist(s, s.strstart - s.match_start,
 | 
						|
                     s.match_length - MIN_MATCH, bflush); ***/
 | 
						|
      bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);
 | 
						|
 | 
						|
      s.lookahead -= s.match_length;
 | 
						|
 | 
						|
      /* Insert new strings in the hash table only if the match length
 | 
						|
       * is not too large. This saves time but degrades compression.
 | 
						|
       */
 | 
						|
      if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
 | 
						|
        s.match_length--; /* string at strstart already in table */
 | 
						|
        do {
 | 
						|
          s.strstart++;
 | 
						|
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | 
						|
          s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | 
						|
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | 
						|
          s.head[s.ins_h] = s.strstart;
 | 
						|
          /***/
 | 
						|
          /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | 
						|
           * always MIN_MATCH bytes ahead.
 | 
						|
           */
 | 
						|
        } while (--s.match_length !== 0);
 | 
						|
        s.strstart++;
 | 
						|
      } else
 | 
						|
      {
 | 
						|
        s.strstart += s.match_length;
 | 
						|
        s.match_length = 0;
 | 
						|
        s.ins_h = s.window[s.strstart];
 | 
						|
        /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
 | 
						|
        s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + 1]);
 | 
						|
 | 
						|
//#if MIN_MATCH != 3
 | 
						|
//                Call UPDATE_HASH() MIN_MATCH-3 more times
 | 
						|
//#endif
 | 
						|
        /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | 
						|
         * matter since it will be recomputed at next deflate call.
 | 
						|
         */
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      /* No match, output a literal byte */
 | 
						|
      //Tracevv((stderr,"%c", s.window[s.strstart]));
 | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | 
						|
      bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | 
						|
 | 
						|
      s.lookahead--;
 | 
						|
      s.strstart++;
 | 
						|
    }
 | 
						|
    if (bflush) {
 | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
      flush_block_only(s, false);
 | 
						|
      if (s.strm.avail_out === 0) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      /***/
 | 
						|
    }
 | 
						|
  }
 | 
						|
  s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
 | 
						|
  if (flush === Z_FINISH$3) {
 | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/
 | 
						|
    flush_block_only(s, true);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_FINISH_STARTED;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
    return BS_FINISH_DONE;
 | 
						|
  }
 | 
						|
  if (s.sym_next) {
 | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
    flush_block_only(s, false);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_NEED_MORE;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
  }
 | 
						|
  return BS_BLOCK_DONE;
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Same as above, but achieves better compression. We use a lazy
 | 
						|
 * evaluation for matches: a match is finally adopted only if there is
 | 
						|
 * no better match at the next window position.
 | 
						|
 */
 | 
						|
const deflate_slow = (s, flush) => {
 | 
						|
 | 
						|
  let hash_head;          /* head of hash chain */
 | 
						|
  let bflush;              /* set if current block must be flushed */
 | 
						|
 | 
						|
  let max_insert;
 | 
						|
 | 
						|
  /* Process the input block. */
 | 
						|
  for (;;) {
 | 
						|
    /* Make sure that we always have enough lookahead, except
 | 
						|
     * at the end of the input file. We need MAX_MATCH bytes
 | 
						|
     * for the next match, plus MIN_MATCH bytes to insert the
 | 
						|
     * string following the next match.
 | 
						|
     */
 | 
						|
    if (s.lookahead < MIN_LOOKAHEAD) {
 | 
						|
      fill_window(s);
 | 
						|
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$2) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      if (s.lookahead === 0) { break; } /* flush the current block */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Insert the string window[strstart .. strstart+2] in the
 | 
						|
     * dictionary, and set hash_head to the head of the hash chain:
 | 
						|
     */
 | 
						|
    hash_head = 0/*NIL*/;
 | 
						|
    if (s.lookahead >= MIN_MATCH) {
 | 
						|
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | 
						|
      s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | 
						|
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | 
						|
      s.head[s.ins_h] = s.strstart;
 | 
						|
      /***/
 | 
						|
    }
 | 
						|
 | 
						|
    /* Find the longest match, discarding those <= prev_length.
 | 
						|
     */
 | 
						|
    s.prev_length = s.match_length;
 | 
						|
    s.prev_match = s.match_start;
 | 
						|
    s.match_length = MIN_MATCH - 1;
 | 
						|
 | 
						|
    if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
 | 
						|
        s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
 | 
						|
      /* To simplify the code, we prevent matches with the string
 | 
						|
       * of window index 0 (in particular we have to avoid a match
 | 
						|
       * of the string with itself at the start of the input file).
 | 
						|
       */
 | 
						|
      s.match_length = longest_match(s, hash_head);
 | 
						|
      /* longest_match() sets match_start */
 | 
						|
 | 
						|
      if (s.match_length <= 5 &&
 | 
						|
         (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {
 | 
						|
 | 
						|
        /* If prev_match is also MIN_MATCH, match_start is garbage
 | 
						|
         * but we will ignore the current match anyway.
 | 
						|
         */
 | 
						|
        s.match_length = MIN_MATCH - 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* If there was a match at the previous step and the current
 | 
						|
     * match is not better, output the previous match:
 | 
						|
     */
 | 
						|
    if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
 | 
						|
      max_insert = s.strstart + s.lookahead - MIN_MATCH;
 | 
						|
      /* Do not insert strings in hash table beyond this. */
 | 
						|
 | 
						|
      //check_match(s, s.strstart-1, s.prev_match, s.prev_length);
 | 
						|
 | 
						|
      /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
 | 
						|
                     s.prev_length - MIN_MATCH, bflush);***/
 | 
						|
      bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
 | 
						|
      /* Insert in hash table all strings up to the end of the match.
 | 
						|
       * strstart-1 and strstart are already inserted. If there is not
 | 
						|
       * enough lookahead, the last two strings are not inserted in
 | 
						|
       * the hash table.
 | 
						|
       */
 | 
						|
      s.lookahead -= s.prev_length - 1;
 | 
						|
      s.prev_length -= 2;
 | 
						|
      do {
 | 
						|
        if (++s.strstart <= max_insert) {
 | 
						|
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
 | 
						|
          s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
 | 
						|
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
 | 
						|
          s.head[s.ins_h] = s.strstart;
 | 
						|
          /***/
 | 
						|
        }
 | 
						|
      } while (--s.prev_length !== 0);
 | 
						|
      s.match_available = 0;
 | 
						|
      s.match_length = MIN_MATCH - 1;
 | 
						|
      s.strstart++;
 | 
						|
 | 
						|
      if (bflush) {
 | 
						|
        /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
        flush_block_only(s, false);
 | 
						|
        if (s.strm.avail_out === 0) {
 | 
						|
          return BS_NEED_MORE;
 | 
						|
        }
 | 
						|
        /***/
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (s.match_available) {
 | 
						|
      /* If there was no match at the previous position, output a
 | 
						|
       * single literal. If there was a match but the current match
 | 
						|
       * is longer, truncate the previous match to a single literal.
 | 
						|
       */
 | 
						|
      //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | 
						|
      bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
 | 
						|
 | 
						|
      if (bflush) {
 | 
						|
        /*** FLUSH_BLOCK_ONLY(s, 0) ***/
 | 
						|
        flush_block_only(s, false);
 | 
						|
        /***/
 | 
						|
      }
 | 
						|
      s.strstart++;
 | 
						|
      s.lookahead--;
 | 
						|
      if (s.strm.avail_out === 0) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      /* There is no previous match to compare with, wait for
 | 
						|
       * the next step to decide.
 | 
						|
       */
 | 
						|
      s.match_available = 1;
 | 
						|
      s.strstart++;
 | 
						|
      s.lookahead--;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  //Assert (flush != Z_NO_FLUSH, "no flush?");
 | 
						|
  if (s.match_available) {
 | 
						|
    //Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | 
						|
    /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
 | 
						|
    bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
 | 
						|
 | 
						|
    s.match_available = 0;
 | 
						|
  }
 | 
						|
  s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
 | 
						|
  if (flush === Z_FINISH$3) {
 | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/
 | 
						|
    flush_block_only(s, true);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_FINISH_STARTED;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
    return BS_FINISH_DONE;
 | 
						|
  }
 | 
						|
  if (s.sym_next) {
 | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
    flush_block_only(s, false);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_NEED_MORE;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
  }
 | 
						|
 | 
						|
  return BS_BLOCK_DONE;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 | 
						|
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 | 
						|
 * deflate switches away from Z_RLE.)
 | 
						|
 */
 | 
						|
const deflate_rle = (s, flush) => {
 | 
						|
 | 
						|
  let bflush;            /* set if current block must be flushed */
 | 
						|
  let prev;              /* byte at distance one to match */
 | 
						|
  let scan, strend;      /* scan goes up to strend for length of run */
 | 
						|
 | 
						|
  const _win = s.window;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* Make sure that we always have enough lookahead, except
 | 
						|
     * at the end of the input file. We need MAX_MATCH bytes
 | 
						|
     * for the longest run, plus one for the unrolled loop.
 | 
						|
     */
 | 
						|
    if (s.lookahead <= MAX_MATCH) {
 | 
						|
      fill_window(s);
 | 
						|
      if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH$2) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      if (s.lookahead === 0) { break; } /* flush the current block */
 | 
						|
    }
 | 
						|
 | 
						|
    /* See how many times the previous byte repeats */
 | 
						|
    s.match_length = 0;
 | 
						|
    if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
 | 
						|
      scan = s.strstart - 1;
 | 
						|
      prev = _win[scan];
 | 
						|
      if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
 | 
						|
        strend = s.strstart + MAX_MATCH;
 | 
						|
        do {
 | 
						|
          /*jshint noempty:false*/
 | 
						|
        } while (prev === _win[++scan] && prev === _win[++scan] &&
 | 
						|
                 prev === _win[++scan] && prev === _win[++scan] &&
 | 
						|
                 prev === _win[++scan] && prev === _win[++scan] &&
 | 
						|
                 prev === _win[++scan] && prev === _win[++scan] &&
 | 
						|
                 scan < strend);
 | 
						|
        s.match_length = MAX_MATCH - (strend - scan);
 | 
						|
        if (s.match_length > s.lookahead) {
 | 
						|
          s.match_length = s.lookahead;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 | 
						|
    }
 | 
						|
 | 
						|
    /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 | 
						|
    if (s.match_length >= MIN_MATCH) {
 | 
						|
      //check_match(s, s.strstart, s.strstart - 1, s.match_length);
 | 
						|
 | 
						|
      /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
 | 
						|
      bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH);
 | 
						|
 | 
						|
      s.lookahead -= s.match_length;
 | 
						|
      s.strstart += s.match_length;
 | 
						|
      s.match_length = 0;
 | 
						|
    } else {
 | 
						|
      /* No match, output a literal byte */
 | 
						|
      //Tracevv((stderr,"%c", s->window[s->strstart]));
 | 
						|
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | 
						|
      bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | 
						|
 | 
						|
      s.lookahead--;
 | 
						|
      s.strstart++;
 | 
						|
    }
 | 
						|
    if (bflush) {
 | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
      flush_block_only(s, false);
 | 
						|
      if (s.strm.avail_out === 0) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      /***/
 | 
						|
    }
 | 
						|
  }
 | 
						|
  s.insert = 0;
 | 
						|
  if (flush === Z_FINISH$3) {
 | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/
 | 
						|
    flush_block_only(s, true);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_FINISH_STARTED;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
    return BS_FINISH_DONE;
 | 
						|
  }
 | 
						|
  if (s.sym_next) {
 | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
    flush_block_only(s, false);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_NEED_MORE;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
  }
 | 
						|
  return BS_BLOCK_DONE;
 | 
						|
};
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 | 
						|
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 | 
						|
 */
 | 
						|
const deflate_huff = (s, flush) => {
 | 
						|
 | 
						|
  let bflush;             /* set if current block must be flushed */
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* Make sure that we have a literal to write. */
 | 
						|
    if (s.lookahead === 0) {
 | 
						|
      fill_window(s);
 | 
						|
      if (s.lookahead === 0) {
 | 
						|
        if (flush === Z_NO_FLUSH$2) {
 | 
						|
          return BS_NEED_MORE;
 | 
						|
        }
 | 
						|
        break;      /* flush the current block */
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Output a literal byte */
 | 
						|
    s.match_length = 0;
 | 
						|
    //Tracevv((stderr,"%c", s->window[s->strstart]));
 | 
						|
    /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
 | 
						|
    bflush = _tr_tally(s, 0, s.window[s.strstart]);
 | 
						|
    s.lookahead--;
 | 
						|
    s.strstart++;
 | 
						|
    if (bflush) {
 | 
						|
      /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
      flush_block_only(s, false);
 | 
						|
      if (s.strm.avail_out === 0) {
 | 
						|
        return BS_NEED_MORE;
 | 
						|
      }
 | 
						|
      /***/
 | 
						|
    }
 | 
						|
  }
 | 
						|
  s.insert = 0;
 | 
						|
  if (flush === Z_FINISH$3) {
 | 
						|
    /*** FLUSH_BLOCK(s, 1); ***/
 | 
						|
    flush_block_only(s, true);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_FINISH_STARTED;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
    return BS_FINISH_DONE;
 | 
						|
  }
 | 
						|
  if (s.sym_next) {
 | 
						|
    /*** FLUSH_BLOCK(s, 0); ***/
 | 
						|
    flush_block_only(s, false);
 | 
						|
    if (s.strm.avail_out === 0) {
 | 
						|
      return BS_NEED_MORE;
 | 
						|
    }
 | 
						|
    /***/
 | 
						|
  }
 | 
						|
  return BS_BLOCK_DONE;
 | 
						|
};
 | 
						|
 | 
						|
/* Values for max_lazy_match, good_match and max_chain_length, depending on
 | 
						|
 * the desired pack level (0..9). The values given below have been tuned to
 | 
						|
 * exclude worst case performance for pathological files. Better values may be
 | 
						|
 * found for specific files.
 | 
						|
 */
 | 
						|
function Config(good_length, max_lazy, nice_length, max_chain, func) {
 | 
						|
 | 
						|
  this.good_length = good_length;
 | 
						|
  this.max_lazy = max_lazy;
 | 
						|
  this.nice_length = nice_length;
 | 
						|
  this.max_chain = max_chain;
 | 
						|
  this.func = func;
 | 
						|
}
 | 
						|
 | 
						|
const configuration_table = [
 | 
						|
  /*      good lazy nice chain */
 | 
						|
  new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */
 | 
						|
  new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */
 | 
						|
  new Config(4, 5, 16, 8, deflate_fast),           /* 2 */
 | 
						|
  new Config(4, 6, 32, 32, deflate_fast),          /* 3 */
 | 
						|
 | 
						|
  new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */
 | 
						|
  new Config(8, 16, 32, 32, deflate_slow),         /* 5 */
 | 
						|
  new Config(8, 16, 128, 128, deflate_slow),       /* 6 */
 | 
						|
  new Config(8, 32, 128, 256, deflate_slow),       /* 7 */
 | 
						|
  new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */
 | 
						|
  new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */
 | 
						|
];
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Initialize the "longest match" routines for a new zlib stream
 | 
						|
 */
 | 
						|
const lm_init = (s) => {
 | 
						|
 | 
						|
  s.window_size = 2 * s.w_size;
 | 
						|
 | 
						|
  /*** CLEAR_HASH(s); ***/
 | 
						|
  zero(s.head); // Fill with NIL (= 0);
 | 
						|
 | 
						|
  /* Set the default configuration parameters:
 | 
						|
   */
 | 
						|
  s.max_lazy_match = configuration_table[s.level].max_lazy;
 | 
						|
  s.good_match = configuration_table[s.level].good_length;
 | 
						|
  s.nice_match = configuration_table[s.level].nice_length;
 | 
						|
  s.max_chain_length = configuration_table[s.level].max_chain;
 | 
						|
 | 
						|
  s.strstart = 0;
 | 
						|
  s.block_start = 0;
 | 
						|
  s.lookahead = 0;
 | 
						|
  s.insert = 0;
 | 
						|
  s.match_length = s.prev_length = MIN_MATCH - 1;
 | 
						|
  s.match_available = 0;
 | 
						|
  s.ins_h = 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
function DeflateState() {
 | 
						|
  this.strm = null;            /* pointer back to this zlib stream */
 | 
						|
  this.status = 0;            /* as the name implies */
 | 
						|
  this.pending_buf = null;      /* output still pending */
 | 
						|
  this.pending_buf_size = 0;  /* size of pending_buf */
 | 
						|
  this.pending_out = 0;       /* next pending byte to output to the stream */
 | 
						|
  this.pending = 0;           /* nb of bytes in the pending buffer */
 | 
						|
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
 | 
						|
  this.gzhead = null;         /* gzip header information to write */
 | 
						|
  this.gzindex = 0;           /* where in extra, name, or comment */
 | 
						|
  this.method = Z_DEFLATED$2; /* can only be DEFLATED */
 | 
						|
  this.last_flush = -1;   /* value of flush param for previous deflate call */
 | 
						|
 | 
						|
  this.w_size = 0;  /* LZ77 window size (32K by default) */
 | 
						|
  this.w_bits = 0;  /* log2(w_size)  (8..16) */
 | 
						|
  this.w_mask = 0;  /* w_size - 1 */
 | 
						|
 | 
						|
  this.window = null;
 | 
						|
  /* Sliding window. Input bytes are read into the second half of the window,
 | 
						|
   * and move to the first half later to keep a dictionary of at least wSize
 | 
						|
   * bytes. With this organization, matches are limited to a distance of
 | 
						|
   * wSize-MAX_MATCH bytes, but this ensures that IO is always
 | 
						|
   * performed with a length multiple of the block size.
 | 
						|
   */
 | 
						|
 | 
						|
  this.window_size = 0;
 | 
						|
  /* Actual size of window: 2*wSize, except when the user input buffer
 | 
						|
   * is directly used as sliding window.
 | 
						|
   */
 | 
						|
 | 
						|
  this.prev = null;
 | 
						|
  /* Link to older string with same hash index. To limit the size of this
 | 
						|
   * array to 64K, this link is maintained only for the last 32K strings.
 | 
						|
   * An index in this array is thus a window index modulo 32K.
 | 
						|
   */
 | 
						|
 | 
						|
  this.head = null;   /* Heads of the hash chains or NIL. */
 | 
						|
 | 
						|
  this.ins_h = 0;       /* hash index of string to be inserted */
 | 
						|
  this.hash_size = 0;   /* number of elements in hash table */
 | 
						|
  this.hash_bits = 0;   /* log2(hash_size) */
 | 
						|
  this.hash_mask = 0;   /* hash_size-1 */
 | 
						|
 | 
						|
  this.hash_shift = 0;
 | 
						|
  /* Number of bits by which ins_h must be shifted at each input
 | 
						|
   * step. It must be such that after MIN_MATCH steps, the oldest
 | 
						|
   * byte no longer takes part in the hash key, that is:
 | 
						|
   *   hash_shift * MIN_MATCH >= hash_bits
 | 
						|
   */
 | 
						|
 | 
						|
  this.block_start = 0;
 | 
						|
  /* Window position at the beginning of the current output block. Gets
 | 
						|
   * negative when the window is moved backwards.
 | 
						|
   */
 | 
						|
 | 
						|
  this.match_length = 0;      /* length of best match */
 | 
						|
  this.prev_match = 0;        /* previous match */
 | 
						|
  this.match_available = 0;   /* set if previous match exists */
 | 
						|
  this.strstart = 0;          /* start of string to insert */
 | 
						|
  this.match_start = 0;       /* start of matching string */
 | 
						|
  this.lookahead = 0;         /* number of valid bytes ahead in window */
 | 
						|
 | 
						|
  this.prev_length = 0;
 | 
						|
  /* Length of the best match at previous step. Matches not greater than this
 | 
						|
   * are discarded. This is used in the lazy match evaluation.
 | 
						|
   */
 | 
						|
 | 
						|
  this.max_chain_length = 0;
 | 
						|
  /* To speed up deflation, hash chains are never searched beyond this
 | 
						|
   * length.  A higher limit improves compression ratio but degrades the
 | 
						|
   * speed.
 | 
						|
   */
 | 
						|
 | 
						|
  this.max_lazy_match = 0;
 | 
						|
  /* Attempt to find a better match only when the current match is strictly
 | 
						|
   * smaller than this value. This mechanism is used only for compression
 | 
						|
   * levels >= 4.
 | 
						|
   */
 | 
						|
  // That's alias to max_lazy_match, don't use directly
 | 
						|
  //this.max_insert_length = 0;
 | 
						|
  /* Insert new strings in the hash table only if the match length is not
 | 
						|
   * greater than this length. This saves time but degrades compression.
 | 
						|
   * max_insert_length is used only for compression levels <= 3.
 | 
						|
   */
 | 
						|
 | 
						|
  this.level = 0;     /* compression level (1..9) */
 | 
						|
  this.strategy = 0;  /* favor or force Huffman coding*/
 | 
						|
 | 
						|
  this.good_match = 0;
 | 
						|
  /* Use a faster search when the previous match is longer than this */
 | 
						|
 | 
						|
  this.nice_match = 0; /* Stop searching when current match exceeds this */
 | 
						|
 | 
						|
              /* used by trees.c: */
 | 
						|
 | 
						|
  /* Didn't use ct_data typedef below to suppress compiler warning */
 | 
						|
 | 
						|
  // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 | 
						|
  // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
 | 
						|
  // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
 | 
						|
 | 
						|
  // Use flat array of DOUBLE size, with interleaved fata,
 | 
						|
  // because JS does not support effective
 | 
						|
  this.dyn_ltree  = new Uint16Array(HEAP_SIZE * 2);
 | 
						|
  this.dyn_dtree  = new Uint16Array((2 * D_CODES + 1) * 2);
 | 
						|
  this.bl_tree    = new Uint16Array((2 * BL_CODES + 1) * 2);
 | 
						|
  zero(this.dyn_ltree);
 | 
						|
  zero(this.dyn_dtree);
 | 
						|
  zero(this.bl_tree);
 | 
						|
 | 
						|
  this.l_desc   = null;         /* desc. for literal tree */
 | 
						|
  this.d_desc   = null;         /* desc. for distance tree */
 | 
						|
  this.bl_desc  = null;         /* desc. for bit length tree */
 | 
						|
 | 
						|
  //ush bl_count[MAX_BITS+1];
 | 
						|
  this.bl_count = new Uint16Array(MAX_BITS + 1);
 | 
						|
  /* number of codes at each bit length for an optimal tree */
 | 
						|
 | 
						|
  //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
 | 
						|
  this.heap = new Uint16Array(2 * L_CODES + 1);  /* heap used to build the Huffman trees */
 | 
						|
  zero(this.heap);
 | 
						|
 | 
						|
  this.heap_len = 0;               /* number of elements in the heap */
 | 
						|
  this.heap_max = 0;               /* element of largest frequency */
 | 
						|
  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 | 
						|
   * The same heap array is used to build all trees.
 | 
						|
   */
 | 
						|
 | 
						|
  this.depth = new Uint16Array(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
 | 
						|
  zero(this.depth);
 | 
						|
  /* Depth of each subtree used as tie breaker for trees of equal frequency
 | 
						|
   */
 | 
						|
 | 
						|
  this.sym_buf = 0;        /* buffer for distances and literals/lengths */
 | 
						|
 | 
						|
  this.lit_bufsize = 0;
 | 
						|
  /* Size of match buffer for literals/lengths.  There are 4 reasons for
 | 
						|
   * limiting lit_bufsize to 64K:
 | 
						|
   *   - frequencies can be kept in 16 bit counters
 | 
						|
   *   - if compression is not successful for the first block, all input
 | 
						|
   *     data is still in the window so we can still emit a stored block even
 | 
						|
   *     when input comes from standard input.  (This can also be done for
 | 
						|
   *     all blocks if lit_bufsize is not greater than 32K.)
 | 
						|
   *   - if compression is not successful for a file smaller than 64K, we can
 | 
						|
   *     even emit a stored file instead of a stored block (saving 5 bytes).
 | 
						|
   *     This is applicable only for zip (not gzip or zlib).
 | 
						|
   *   - creating new Huffman trees less frequently may not provide fast
 | 
						|
   *     adaptation to changes in the input data statistics. (Take for
 | 
						|
   *     example a binary file with poorly compressible code followed by
 | 
						|
   *     a highly compressible string table.) Smaller buffer sizes give
 | 
						|
   *     fast adaptation but have of course the overhead of transmitting
 | 
						|
   *     trees more frequently.
 | 
						|
   *   - I can't count above 4
 | 
						|
   */
 | 
						|
 | 
						|
  this.sym_next = 0;      /* running index in sym_buf */
 | 
						|
  this.sym_end = 0;       /* symbol table full when sym_next reaches this */
 | 
						|
 | 
						|
  this.opt_len = 0;       /* bit length of current block with optimal trees */
 | 
						|
  this.static_len = 0;    /* bit length of current block with static trees */
 | 
						|
  this.matches = 0;       /* number of string matches in current block */
 | 
						|
  this.insert = 0;        /* bytes at end of window left to insert */
 | 
						|
 | 
						|
 | 
						|
  this.bi_buf = 0;
 | 
						|
  /* Output buffer. bits are inserted starting at the bottom (least
 | 
						|
   * significant bits).
 | 
						|
   */
 | 
						|
  this.bi_valid = 0;
 | 
						|
  /* Number of valid bits in bi_buf.  All bits above the last valid bit
 | 
						|
   * are always zero.
 | 
						|
   */
 | 
						|
 | 
						|
  // Used for window memory init. We safely ignore it for JS. That makes
 | 
						|
  // sense only for pointers and memory check tools.
 | 
						|
  //this.high_water = 0;
 | 
						|
  /* High water mark offset in window for initialized bytes -- bytes above
 | 
						|
   * this are set to zero in order to avoid memory check warnings when
 | 
						|
   * longest match routines access bytes past the input.  This is then
 | 
						|
   * updated to the new high water mark.
 | 
						|
   */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* =========================================================================
 | 
						|
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 | 
						|
 */
 | 
						|
const deflateStateCheck = (strm) => {
 | 
						|
 | 
						|
  if (!strm) {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  const s = strm.state;
 | 
						|
  if (!s || s.strm !== strm || (s.status !== INIT_STATE &&
 | 
						|
//#ifdef GZIP
 | 
						|
                                s.status !== GZIP_STATE &&
 | 
						|
//#endif
 | 
						|
                                s.status !== EXTRA_STATE &&
 | 
						|
                                s.status !== NAME_STATE &&
 | 
						|
                                s.status !== COMMENT_STATE &&
 | 
						|
                                s.status !== HCRC_STATE &&
 | 
						|
                                s.status !== BUSY_STATE &&
 | 
						|
                                s.status !== FINISH_STATE)) {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const deflateResetKeep = (strm) => {
 | 
						|
 | 
						|
  if (deflateStateCheck(strm)) {
 | 
						|
    return err(strm, Z_STREAM_ERROR$2);
 | 
						|
  }
 | 
						|
 | 
						|
  strm.total_in = strm.total_out = 0;
 | 
						|
  strm.data_type = Z_UNKNOWN;
 | 
						|
 | 
						|
  const s = strm.state;
 | 
						|
  s.pending = 0;
 | 
						|
  s.pending_out = 0;
 | 
						|
 | 
						|
  if (s.wrap < 0) {
 | 
						|
    s.wrap = -s.wrap;
 | 
						|
    /* was made negative by deflate(..., Z_FINISH); */
 | 
						|
  }
 | 
						|
  s.status =
 | 
						|
//#ifdef GZIP
 | 
						|
    s.wrap === 2 ? GZIP_STATE :
 | 
						|
//#endif
 | 
						|
    s.wrap ? INIT_STATE : BUSY_STATE;
 | 
						|
  strm.adler = (s.wrap === 2) ?
 | 
						|
    0  // crc32(0, Z_NULL, 0)
 | 
						|
  :
 | 
						|
    1; // adler32(0, Z_NULL, 0)
 | 
						|
  s.last_flush = -2;
 | 
						|
  _tr_init(s);
 | 
						|
  return Z_OK$3;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const deflateReset = (strm) => {
 | 
						|
 | 
						|
  const ret = deflateResetKeep(strm);
 | 
						|
  if (ret === Z_OK$3) {
 | 
						|
    lm_init(strm.state);
 | 
						|
  }
 | 
						|
  return ret;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const deflateSetHeader = (strm, head) => {
 | 
						|
 | 
						|
  if (deflateStateCheck(strm) || strm.state.wrap !== 2) {
 | 
						|
    return Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
  strm.state.gzhead = head;
 | 
						|
  return Z_OK$3;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const deflateInit2 = (strm, level, method, windowBits, memLevel, strategy) => {
 | 
						|
 | 
						|
  if (!strm) { // === Z_NULL
 | 
						|
    return Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
  let wrap = 1;
 | 
						|
 | 
						|
  if (level === Z_DEFAULT_COMPRESSION$1) {
 | 
						|
    level = 6;
 | 
						|
  }
 | 
						|
 | 
						|
  if (windowBits < 0) { /* suppress zlib wrapper */
 | 
						|
    wrap = 0;
 | 
						|
    windowBits = -windowBits;
 | 
						|
  }
 | 
						|
 | 
						|
  else if (windowBits > 15) {
 | 
						|
    wrap = 2;           /* write gzip wrapper instead */
 | 
						|
    windowBits -= 16;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED$2 ||
 | 
						|
    windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 | 
						|
    strategy < 0 || strategy > Z_FIXED || (windowBits === 8 && wrap !== 1)) {
 | 
						|
    return err(strm, Z_STREAM_ERROR$2);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (windowBits === 8) {
 | 
						|
    windowBits = 9;
 | 
						|
  }
 | 
						|
  /* until 256-byte window bug fixed */
 | 
						|
 | 
						|
  const s = new DeflateState();
 | 
						|
 | 
						|
  strm.state = s;
 | 
						|
  s.strm = strm;
 | 
						|
  s.status = INIT_STATE;     /* to pass state test in deflateReset() */
 | 
						|
 | 
						|
  s.wrap = wrap;
 | 
						|
  s.gzhead = null;
 | 
						|
  s.w_bits = windowBits;
 | 
						|
  s.w_size = 1 << s.w_bits;
 | 
						|
  s.w_mask = s.w_size - 1;
 | 
						|
 | 
						|
  s.hash_bits = memLevel + 7;
 | 
						|
  s.hash_size = 1 << s.hash_bits;
 | 
						|
  s.hash_mask = s.hash_size - 1;
 | 
						|
  s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);
 | 
						|
 | 
						|
  s.window = new Uint8Array(s.w_size * 2);
 | 
						|
  s.head = new Uint16Array(s.hash_size);
 | 
						|
  s.prev = new Uint16Array(s.w_size);
 | 
						|
 | 
						|
  // Don't need mem init magic for JS.
 | 
						|
  //s.high_water = 0;  /* nothing written to s->window yet */
 | 
						|
 | 
						|
  s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 | 
						|
 | 
						|
  /* We overlay pending_buf and sym_buf. This works since the average size
 | 
						|
   * for length/distance pairs over any compressed block is assured to be 31
 | 
						|
   * bits or less.
 | 
						|
   *
 | 
						|
   * Analysis: The longest fixed codes are a length code of 8 bits plus 5
 | 
						|
   * extra bits, for lengths 131 to 257. The longest fixed distance codes are
 | 
						|
   * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
 | 
						|
   * possible fixed-codes length/distance pair is then 31 bits total.
 | 
						|
   *
 | 
						|
   * sym_buf starts one-fourth of the way into pending_buf. So there are
 | 
						|
   * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
 | 
						|
   * in sym_buf is three bytes -- two for the distance and one for the
 | 
						|
   * literal/length. As each symbol is consumed, the pointer to the next
 | 
						|
   * sym_buf value to read moves forward three bytes. From that symbol, up to
 | 
						|
   * 31 bits are written to pending_buf. The closest the written pending_buf
 | 
						|
   * bits gets to the next sym_buf symbol to read is just before the last
 | 
						|
   * code is written. At that time, 31*(n-2) bits have been written, just
 | 
						|
   * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
 | 
						|
   * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
 | 
						|
   * symbols are written.) The closest the writing gets to what is unread is
 | 
						|
   * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
 | 
						|
   * can range from 128 to 32768.
 | 
						|
   *
 | 
						|
   * Therefore, at a minimum, there are 142 bits of space between what is
 | 
						|
   * written and what is read in the overlain buffers, so the symbols cannot
 | 
						|
   * be overwritten by the compressed data. That space is actually 139 bits,
 | 
						|
   * due to the three-bit fixed-code block header.
 | 
						|
   *
 | 
						|
   * That covers the case where either Z_FIXED is specified, forcing fixed
 | 
						|
   * codes, or when the use of fixed codes is chosen, because that choice
 | 
						|
   * results in a smaller compressed block than dynamic codes. That latter
 | 
						|
   * condition then assures that the above analysis also covers all dynamic
 | 
						|
   * blocks. A dynamic-code block will only be chosen to be emitted if it has
 | 
						|
   * fewer bits than a fixed-code block would for the same set of symbols.
 | 
						|
   * Therefore its average symbol length is assured to be less than 31. So
 | 
						|
   * the compressed data for a dynamic block also cannot overwrite the
 | 
						|
   * symbols from which it is being constructed.
 | 
						|
   */
 | 
						|
 | 
						|
  s.pending_buf_size = s.lit_bufsize * 4;
 | 
						|
  s.pending_buf = new Uint8Array(s.pending_buf_size);
 | 
						|
 | 
						|
  // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
 | 
						|
  //s->sym_buf = s->pending_buf + s->lit_bufsize;
 | 
						|
  s.sym_buf = s.lit_bufsize;
 | 
						|
 | 
						|
  //s->sym_end = (s->lit_bufsize - 1) * 3;
 | 
						|
  s.sym_end = (s.lit_bufsize - 1) * 3;
 | 
						|
  /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
 | 
						|
   * on 16 bit machines and because stored blocks are restricted to
 | 
						|
   * 64K-1 bytes.
 | 
						|
   */
 | 
						|
 | 
						|
  s.level = level;
 | 
						|
  s.strategy = strategy;
 | 
						|
  s.method = method;
 | 
						|
 | 
						|
  return deflateReset(strm);
 | 
						|
};
 | 
						|
 | 
						|
const deflateInit = (strm, level) => {
 | 
						|
 | 
						|
  return deflateInit2(strm, level, Z_DEFLATED$2, MAX_WBITS$1, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY$1);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ========================================================================= */
 | 
						|
const deflate$2 = (strm, flush) => {
 | 
						|
 | 
						|
  if (deflateStateCheck(strm) || flush > Z_BLOCK$1 || flush < 0) {
 | 
						|
    return strm ? err(strm, Z_STREAM_ERROR$2) : Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
 | 
						|
  const s = strm.state;
 | 
						|
 | 
						|
  if (!strm.output ||
 | 
						|
      (strm.avail_in !== 0 && !strm.input) ||
 | 
						|
      (s.status === FINISH_STATE && flush !== Z_FINISH$3)) {
 | 
						|
    return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR$1 : Z_STREAM_ERROR$2);
 | 
						|
  }
 | 
						|
 | 
						|
  const old_flush = s.last_flush;
 | 
						|
  s.last_flush = flush;
 | 
						|
 | 
						|
  /* Flush as much pending output as possible */
 | 
						|
  if (s.pending !== 0) {
 | 
						|
    flush_pending(strm);
 | 
						|
    if (strm.avail_out === 0) {
 | 
						|
      /* Since avail_out is 0, deflate will be called again with
 | 
						|
       * more output space, but possibly with both pending and
 | 
						|
       * avail_in equal to zero. There won't be anything to do,
 | 
						|
       * but this is not an error situation so make sure we
 | 
						|
       * return OK instead of BUF_ERROR at next call of deflate:
 | 
						|
       */
 | 
						|
      s.last_flush = -1;
 | 
						|
      return Z_OK$3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make sure there is something to do and avoid duplicate consecutive
 | 
						|
     * flushes. For repeated and useless calls with Z_FINISH, we keep
 | 
						|
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
 | 
						|
     */
 | 
						|
  } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
 | 
						|
    flush !== Z_FINISH$3) {
 | 
						|
    return err(strm, Z_BUF_ERROR$1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* User must not provide more input after the first FINISH: */
 | 
						|
  if (s.status === FINISH_STATE && strm.avail_in !== 0) {
 | 
						|
    return err(strm, Z_BUF_ERROR$1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Write the header */
 | 
						|
  if (s.status === INIT_STATE && s.wrap === 0) {
 | 
						|
    s.status = BUSY_STATE;
 | 
						|
  }
 | 
						|
  if (s.status === INIT_STATE) {
 | 
						|
    /* zlib header */
 | 
						|
    let header = (Z_DEFLATED$2 + ((s.w_bits - 8) << 4)) << 8;
 | 
						|
    let level_flags = -1;
 | 
						|
 | 
						|
    if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
 | 
						|
      level_flags = 0;
 | 
						|
    } else if (s.level < 6) {
 | 
						|
      level_flags = 1;
 | 
						|
    } else if (s.level === 6) {
 | 
						|
      level_flags = 2;
 | 
						|
    } else {
 | 
						|
      level_flags = 3;
 | 
						|
    }
 | 
						|
    header |= (level_flags << 6);
 | 
						|
    if (s.strstart !== 0) { header |= PRESET_DICT; }
 | 
						|
    header += 31 - (header % 31);
 | 
						|
 | 
						|
    putShortMSB(s, header);
 | 
						|
 | 
						|
    /* Save the adler32 of the preset dictionary: */
 | 
						|
    if (s.strstart !== 0) {
 | 
						|
      putShortMSB(s, strm.adler >>> 16);
 | 
						|
      putShortMSB(s, strm.adler & 0xffff);
 | 
						|
    }
 | 
						|
    strm.adler = 1; // adler32(0L, Z_NULL, 0);
 | 
						|
    s.status = BUSY_STATE;
 | 
						|
 | 
						|
    /* Compression must start with an empty pending buffer */
 | 
						|
    flush_pending(strm);
 | 
						|
    if (s.pending !== 0) {
 | 
						|
      s.last_flush = -1;
 | 
						|
      return Z_OK$3;
 | 
						|
    }
 | 
						|
  }
 | 
						|
//#ifdef GZIP
 | 
						|
  if (s.status === GZIP_STATE) {
 | 
						|
    /* gzip header */
 | 
						|
    strm.adler = 0;  //crc32(0L, Z_NULL, 0);
 | 
						|
    put_byte(s, 31);
 | 
						|
    put_byte(s, 139);
 | 
						|
    put_byte(s, 8);
 | 
						|
    if (!s.gzhead) { // s->gzhead == Z_NULL
 | 
						|
      put_byte(s, 0);
 | 
						|
      put_byte(s, 0);
 | 
						|
      put_byte(s, 0);
 | 
						|
      put_byte(s, 0);
 | 
						|
      put_byte(s, 0);
 | 
						|
      put_byte(s, s.level === 9 ? 2 :
 | 
						|
                  (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | 
						|
                   4 : 0));
 | 
						|
      put_byte(s, OS_CODE);
 | 
						|
      s.status = BUSY_STATE;
 | 
						|
 | 
						|
      /* Compression must start with an empty pending buffer */
 | 
						|
      flush_pending(strm);
 | 
						|
      if (s.pending !== 0) {
 | 
						|
        s.last_flush = -1;
 | 
						|
        return Z_OK$3;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      put_byte(s, (s.gzhead.text ? 1 : 0) +
 | 
						|
                  (s.gzhead.hcrc ? 2 : 0) +
 | 
						|
                  (!s.gzhead.extra ? 0 : 4) +
 | 
						|
                  (!s.gzhead.name ? 0 : 8) +
 | 
						|
                  (!s.gzhead.comment ? 0 : 16)
 | 
						|
      );
 | 
						|
      put_byte(s, s.gzhead.time & 0xff);
 | 
						|
      put_byte(s, (s.gzhead.time >> 8) & 0xff);
 | 
						|
      put_byte(s, (s.gzhead.time >> 16) & 0xff);
 | 
						|
      put_byte(s, (s.gzhead.time >> 24) & 0xff);
 | 
						|
      put_byte(s, s.level === 9 ? 2 :
 | 
						|
                  (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
 | 
						|
                   4 : 0));
 | 
						|
      put_byte(s, s.gzhead.os & 0xff);
 | 
						|
      if (s.gzhead.extra && s.gzhead.extra.length) {
 | 
						|
        put_byte(s, s.gzhead.extra.length & 0xff);
 | 
						|
        put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
 | 
						|
      }
 | 
						|
      if (s.gzhead.hcrc) {
 | 
						|
        strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending, 0);
 | 
						|
      }
 | 
						|
      s.gzindex = 0;
 | 
						|
      s.status = EXTRA_STATE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (s.status === EXTRA_STATE) {
 | 
						|
    if (s.gzhead.extra/* != Z_NULL*/) {
 | 
						|
      let beg = s.pending;   /* start of bytes to update crc */
 | 
						|
      let left = (s.gzhead.extra.length & 0xffff) - s.gzindex;
 | 
						|
      while (s.pending + left > s.pending_buf_size) {
 | 
						|
        let copy = s.pending_buf_size - s.pending;
 | 
						|
        // zmemcpy(s.pending_buf + s.pending,
 | 
						|
        //    s.gzhead.extra + s.gzindex, copy);
 | 
						|
        s.pending_buf.set(s.gzhead.extra.subarray(s.gzindex, s.gzindex + copy), s.pending);
 | 
						|
        s.pending = s.pending_buf_size;
 | 
						|
        //--- HCRC_UPDATE(beg) ---//
 | 
						|
        if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
          strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
        }
 | 
						|
        //---//
 | 
						|
        s.gzindex += copy;
 | 
						|
        flush_pending(strm);
 | 
						|
        if (s.pending !== 0) {
 | 
						|
          s.last_flush = -1;
 | 
						|
          return Z_OK$3;
 | 
						|
        }
 | 
						|
        beg = 0;
 | 
						|
        left -= copy;
 | 
						|
      }
 | 
						|
      // JS specific: s.gzhead.extra may be TypedArray or Array for backward compatibility
 | 
						|
      //              TypedArray.slice and TypedArray.from don't exist in IE10-IE11
 | 
						|
      let gzhead_extra = new Uint8Array(s.gzhead.extra);
 | 
						|
      // zmemcpy(s->pending_buf + s->pending,
 | 
						|
      //     s->gzhead->extra + s->gzindex, left);
 | 
						|
      s.pending_buf.set(gzhead_extra.subarray(s.gzindex, s.gzindex + left), s.pending);
 | 
						|
      s.pending += left;
 | 
						|
      //--- HCRC_UPDATE(beg) ---//
 | 
						|
      if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
        strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
      }
 | 
						|
      //---//
 | 
						|
      s.gzindex = 0;
 | 
						|
    }
 | 
						|
    s.status = NAME_STATE;
 | 
						|
  }
 | 
						|
  if (s.status === NAME_STATE) {
 | 
						|
    if (s.gzhead.name/* != Z_NULL*/) {
 | 
						|
      let beg = s.pending;   /* start of bytes to update crc */
 | 
						|
      let val;
 | 
						|
      do {
 | 
						|
        if (s.pending === s.pending_buf_size) {
 | 
						|
          //--- HCRC_UPDATE(beg) ---//
 | 
						|
          if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
            strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
          }
 | 
						|
          //---//
 | 
						|
          flush_pending(strm);
 | 
						|
          if (s.pending !== 0) {
 | 
						|
            s.last_flush = -1;
 | 
						|
            return Z_OK$3;
 | 
						|
          }
 | 
						|
          beg = 0;
 | 
						|
        }
 | 
						|
        // JS specific: little magic to add zero terminator to end of string
 | 
						|
        if (s.gzindex < s.gzhead.name.length) {
 | 
						|
          val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
 | 
						|
        } else {
 | 
						|
          val = 0;
 | 
						|
        }
 | 
						|
        put_byte(s, val);
 | 
						|
      } while (val !== 0);
 | 
						|
      //--- HCRC_UPDATE(beg) ---//
 | 
						|
      if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
        strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
      }
 | 
						|
      //---//
 | 
						|
      s.gzindex = 0;
 | 
						|
    }
 | 
						|
    s.status = COMMENT_STATE;
 | 
						|
  }
 | 
						|
  if (s.status === COMMENT_STATE) {
 | 
						|
    if (s.gzhead.comment/* != Z_NULL*/) {
 | 
						|
      let beg = s.pending;   /* start of bytes to update crc */
 | 
						|
      let val;
 | 
						|
      do {
 | 
						|
        if (s.pending === s.pending_buf_size) {
 | 
						|
          //--- HCRC_UPDATE(beg) ---//
 | 
						|
          if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
            strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
          }
 | 
						|
          //---//
 | 
						|
          flush_pending(strm);
 | 
						|
          if (s.pending !== 0) {
 | 
						|
            s.last_flush = -1;
 | 
						|
            return Z_OK$3;
 | 
						|
          }
 | 
						|
          beg = 0;
 | 
						|
        }
 | 
						|
        // JS specific: little magic to add zero terminator to end of string
 | 
						|
        if (s.gzindex < s.gzhead.comment.length) {
 | 
						|
          val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
 | 
						|
        } else {
 | 
						|
          val = 0;
 | 
						|
        }
 | 
						|
        put_byte(s, val);
 | 
						|
      } while (val !== 0);
 | 
						|
      //--- HCRC_UPDATE(beg) ---//
 | 
						|
      if (s.gzhead.hcrc && s.pending > beg) {
 | 
						|
        strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg);
 | 
						|
      }
 | 
						|
      //---//
 | 
						|
    }
 | 
						|
    s.status = HCRC_STATE;
 | 
						|
  }
 | 
						|
  if (s.status === HCRC_STATE) {
 | 
						|
    if (s.gzhead.hcrc) {
 | 
						|
      if (s.pending + 2 > s.pending_buf_size) {
 | 
						|
        flush_pending(strm);
 | 
						|
        if (s.pending !== 0) {
 | 
						|
          s.last_flush = -1;
 | 
						|
          return Z_OK$3;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      put_byte(s, strm.adler & 0xff);
 | 
						|
      put_byte(s, (strm.adler >> 8) & 0xff);
 | 
						|
      strm.adler = 0; //crc32(0L, Z_NULL, 0);
 | 
						|
    }
 | 
						|
    s.status = BUSY_STATE;
 | 
						|
 | 
						|
    /* Compression must start with an empty pending buffer */
 | 
						|
    flush_pending(strm);
 | 
						|
    if (s.pending !== 0) {
 | 
						|
      s.last_flush = -1;
 | 
						|
      return Z_OK$3;
 | 
						|
    }
 | 
						|
  }
 | 
						|
//#endif
 | 
						|
 | 
						|
  /* Start a new block or continue the current one.
 | 
						|
   */
 | 
						|
  if (strm.avail_in !== 0 || s.lookahead !== 0 ||
 | 
						|
    (flush !== Z_NO_FLUSH$2 && s.status !== FINISH_STATE)) {
 | 
						|
    let bstate = s.level === 0 ? deflate_stored(s, flush) :
 | 
						|
                 s.strategy === Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
 | 
						|
                 s.strategy === Z_RLE ? deflate_rle(s, flush) :
 | 
						|
                 configuration_table[s.level].func(s, flush);
 | 
						|
 | 
						|
    if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
 | 
						|
      s.status = FINISH_STATE;
 | 
						|
    }
 | 
						|
    if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
 | 
						|
      if (strm.avail_out === 0) {
 | 
						|
        s.last_flush = -1;
 | 
						|
        /* avoid BUF_ERROR next call, see above */
 | 
						|
      }
 | 
						|
      return Z_OK$3;
 | 
						|
      /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | 
						|
       * of deflate should use the same flush parameter to make sure
 | 
						|
       * that the flush is complete. So we don't have to output an
 | 
						|
       * empty block here, this will be done at next call. This also
 | 
						|
       * ensures that for a very small output buffer, we emit at most
 | 
						|
       * one empty block.
 | 
						|
       */
 | 
						|
    }
 | 
						|
    if (bstate === BS_BLOCK_DONE) {
 | 
						|
      if (flush === Z_PARTIAL_FLUSH) {
 | 
						|
        _tr_align(s);
 | 
						|
      }
 | 
						|
      else if (flush !== Z_BLOCK$1) { /* FULL_FLUSH or SYNC_FLUSH */
 | 
						|
 | 
						|
        _tr_stored_block(s, 0, 0, false);
 | 
						|
        /* For a full flush, this empty block will be recognized
 | 
						|
         * as a special marker by inflate_sync().
 | 
						|
         */
 | 
						|
        if (flush === Z_FULL_FLUSH$1) {
 | 
						|
          /*** CLEAR_HASH(s); ***/             /* forget history */
 | 
						|
          zero(s.head); // Fill with NIL (= 0);
 | 
						|
 | 
						|
          if (s.lookahead === 0) {
 | 
						|
            s.strstart = 0;
 | 
						|
            s.block_start = 0;
 | 
						|
            s.insert = 0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      flush_pending(strm);
 | 
						|
      if (strm.avail_out === 0) {
 | 
						|
        s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 | 
						|
        return Z_OK$3;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (flush !== Z_FINISH$3) { return Z_OK$3; }
 | 
						|
  if (s.wrap <= 0) { return Z_STREAM_END$3; }
 | 
						|
 | 
						|
  /* Write the trailer */
 | 
						|
  if (s.wrap === 2) {
 | 
						|
    put_byte(s, strm.adler & 0xff);
 | 
						|
    put_byte(s, (strm.adler >> 8) & 0xff);
 | 
						|
    put_byte(s, (strm.adler >> 16) & 0xff);
 | 
						|
    put_byte(s, (strm.adler >> 24) & 0xff);
 | 
						|
    put_byte(s, strm.total_in & 0xff);
 | 
						|
    put_byte(s, (strm.total_in >> 8) & 0xff);
 | 
						|
    put_byte(s, (strm.total_in >> 16) & 0xff);
 | 
						|
    put_byte(s, (strm.total_in >> 24) & 0xff);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    putShortMSB(s, strm.adler >>> 16);
 | 
						|
    putShortMSB(s, strm.adler & 0xffff);
 | 
						|
  }
 | 
						|
 | 
						|
  flush_pending(strm);
 | 
						|
  /* If avail_out is zero, the application will call deflate again
 | 
						|
   * to flush the rest.
 | 
						|
   */
 | 
						|
  if (s.wrap > 0) { s.wrap = -s.wrap; }
 | 
						|
  /* write the trailer only once! */
 | 
						|
  return s.pending !== 0 ? Z_OK$3 : Z_STREAM_END$3;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const deflateEnd = (strm) => {
 | 
						|
 | 
						|
  if (deflateStateCheck(strm)) {
 | 
						|
    return Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
 | 
						|
  const status = strm.state.status;
 | 
						|
 | 
						|
  strm.state = null;
 | 
						|
 | 
						|
  return status === BUSY_STATE ? err(strm, Z_DATA_ERROR$2) : Z_OK$3;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* =========================================================================
 | 
						|
 * Initializes the compression dictionary from the given byte
 | 
						|
 * sequence without producing any compressed output.
 | 
						|
 */
 | 
						|
const deflateSetDictionary = (strm, dictionary) => {
 | 
						|
 | 
						|
  let dictLength = dictionary.length;
 | 
						|
 | 
						|
  if (deflateStateCheck(strm)) {
 | 
						|
    return Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
 | 
						|
  const s = strm.state;
 | 
						|
  const wrap = s.wrap;
 | 
						|
 | 
						|
  if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
 | 
						|
    return Z_STREAM_ERROR$2;
 | 
						|
  }
 | 
						|
 | 
						|
  /* when using zlib wrappers, compute Adler-32 for provided dictionary */
 | 
						|
  if (wrap === 1) {
 | 
						|
    /* adler32(strm->adler, dictionary, dictLength); */
 | 
						|
    strm.adler = adler32_1(strm.adler, dictionary, dictLength, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  s.wrap = 0;   /* avoid computing Adler-32 in read_buf */
 | 
						|
 | 
						|
  /* if dictionary would fill window, just replace the history */
 | 
						|
  if (dictLength >= s.w_size) {
 | 
						|
    if (wrap === 0) {            /* already empty otherwise */
 | 
						|
      /*** CLEAR_HASH(s); ***/
 | 
						|
      zero(s.head); // Fill with NIL (= 0);
 | 
						|
      s.strstart = 0;
 | 
						|
      s.block_start = 0;
 | 
						|
      s.insert = 0;
 | 
						|
    }
 | 
						|
    /* use the tail */
 | 
						|
    // dictionary = dictionary.slice(dictLength - s.w_size);
 | 
						|
    let tmpDict = new Uint8Array(s.w_size);
 | 
						|
    tmpDict.set(dictionary.subarray(dictLength - s.w_size, dictLength), 0);
 | 
						|
    dictionary = tmpDict;
 | 
						|
    dictLength = s.w_size;
 | 
						|
  }
 | 
						|
  /* insert dictionary into window and hash */
 | 
						|
  const avail = strm.avail_in;
 | 
						|
  const next = strm.next_in;
 | 
						|
  const input = strm.input;
 | 
						|
  strm.avail_in = dictLength;
 | 
						|
  strm.next_in = 0;
 | 
						|
  strm.input = dictionary;
 | 
						|
  fill_window(s);
 | 
						|
  while (s.lookahead >= MIN_MATCH) {
 | 
						|
    let str = s.strstart;
 | 
						|
    let n = s.lookahead - (MIN_MATCH - 1);
 | 
						|
    do {
 | 
						|
      /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
 | 
						|
      s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
 | 
						|
 | 
						|
      s.prev[str & s.w_mask] = s.head[s.ins_h];
 | 
						|
 | 
						|
      s.head[s.ins_h] = str;
 | 
						|
      str++;
 | 
						|
    } while (--n);
 | 
						|
    s.strstart = str;
 | 
						|
    s.lookahead = MIN_MATCH - 1;
 | 
						|
    fill_window(s);
 | 
						|
  }
 | 
						|
  s.strstart += s.lookahead;
 | 
						|
  s.block_start = s.strstart;
 | 
						|
  s.insert = s.lookahead;
 | 
						|
  s.lookahead = 0;
 | 
						|
  s.match_length = s.prev_length = MIN_MATCH - 1;
 | 
						|
  s.match_available = 0;
 | 
						|
  strm.next_in = next;
 | 
						|
  strm.input = input;
 | 
						|
  strm.avail_in = avail;
 | 
						|
  s.wrap = wrap;
 | 
						|
  return Z_OK$3;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
var deflateInit_1 = deflateInit;
 | 
						|
var deflateInit2_1 = deflateInit2;
 | 
						|
var deflateReset_1 = deflateReset;
 | 
						|
var deflateResetKeep_1 = deflateResetKeep;
 | 
						|
var deflateSetHeader_1 = deflateSetHeader;
 | 
						|
var deflate_2$1 = deflate$2;
 | 
						|
var deflateEnd_1 = deflateEnd;
 | 
						|
var deflateSetDictionary_1 = deflateSetDictionary;
 | 
						|
var deflateInfo = 'pako deflate (from Nodeca project)';
 | 
						|
 | 
						|
/* Not implemented
 | 
						|
module.exports.deflateBound = deflateBound;
 | 
						|
module.exports.deflateCopy = deflateCopy;
 | 
						|
module.exports.deflateGetDictionary = deflateGetDictionary;
 | 
						|
module.exports.deflateParams = deflateParams;
 | 
						|
module.exports.deflatePending = deflatePending;
 | 
						|
module.exports.deflatePrime = deflatePrime;
 | 
						|
module.exports.deflateTune = deflateTune;
 | 
						|
*/
 | 
						|
 | 
						|
var deflate_1$2 = {
 | 
						|
	deflateInit: deflateInit_1,
 | 
						|
	deflateInit2: deflateInit2_1,
 | 
						|
	deflateReset: deflateReset_1,
 | 
						|
	deflateResetKeep: deflateResetKeep_1,
 | 
						|
	deflateSetHeader: deflateSetHeader_1,
 | 
						|
	deflate: deflate_2$1,
 | 
						|
	deflateEnd: deflateEnd_1,
 | 
						|
	deflateSetDictionary: deflateSetDictionary_1,
 | 
						|
	deflateInfo: deflateInfo
 | 
						|
};
 | 
						|
 | 
						|
const _has = (obj, key) => {
 | 
						|
  return Object.prototype.hasOwnProperty.call(obj, key);
 | 
						|
};
 | 
						|
 | 
						|
var assign = function (obj /*from1, from2, from3, ...*/) {
 | 
						|
  const sources = Array.prototype.slice.call(arguments, 1);
 | 
						|
  while (sources.length) {
 | 
						|
    const source = sources.shift();
 | 
						|
    if (!source) { continue; }
 | 
						|
 | 
						|
    if (typeof source !== 'object') {
 | 
						|
      throw new TypeError(source + 'must be non-object');
 | 
						|
    }
 | 
						|
 | 
						|
    for (const p in source) {
 | 
						|
      if (_has(source, p)) {
 | 
						|
        obj[p] = source[p];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return obj;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Join array of chunks to single array.
 | 
						|
var flattenChunks = (chunks) => {
 | 
						|
  // calculate data length
 | 
						|
  let len = 0;
 | 
						|
 | 
						|
  for (let i = 0, l = chunks.length; i < l; i++) {
 | 
						|
    len += chunks[i].length;
 | 
						|
  }
 | 
						|
 | 
						|
  // join chunks
 | 
						|
  const result = new Uint8Array(len);
 | 
						|
 | 
						|
  for (let i = 0, pos = 0, l = chunks.length; i < l; i++) {
 | 
						|
    let chunk = chunks[i];
 | 
						|
    result.set(chunk, pos);
 | 
						|
    pos += chunk.length;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
};
 | 
						|
 | 
						|
var common = {
 | 
						|
	assign: assign,
 | 
						|
	flattenChunks: flattenChunks
 | 
						|
};
 | 
						|
 | 
						|
// String encode/decode helpers
 | 
						|
 | 
						|
 | 
						|
// Quick check if we can use fast array to bin string conversion
 | 
						|
//
 | 
						|
// - apply(Array) can fail on Android 2.2
 | 
						|
// - apply(Uint8Array) can fail on iOS 5.1 Safari
 | 
						|
//
 | 
						|
let STR_APPLY_UIA_OK = true;
 | 
						|
 | 
						|
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }
 | 
						|
 | 
						|
 | 
						|
// Table with utf8 lengths (calculated by first byte of sequence)
 | 
						|
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
 | 
						|
// because max possible codepoint is 0x10ffff
 | 
						|
const _utf8len = new Uint8Array(256);
 | 
						|
for (let q = 0; q < 256; q++) {
 | 
						|
  _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
 | 
						|
}
 | 
						|
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start
 | 
						|
 | 
						|
 | 
						|
// convert string to array (typed, when possible)
 | 
						|
var string2buf = (str) => {
 | 
						|
  if (typeof TextEncoder === 'function' && TextEncoder.prototype.encode) {
 | 
						|
    return new TextEncoder().encode(str);
 | 
						|
  }
 | 
						|
 | 
						|
  let buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;
 | 
						|
 | 
						|
  // count binary size
 | 
						|
  for (m_pos = 0; m_pos < str_len; m_pos++) {
 | 
						|
    c = str.charCodeAt(m_pos);
 | 
						|
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
 | 
						|
      c2 = str.charCodeAt(m_pos + 1);
 | 
						|
      if ((c2 & 0xfc00) === 0xdc00) {
 | 
						|
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
 | 
						|
        m_pos++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
 | 
						|
  }
 | 
						|
 | 
						|
  // allocate buffer
 | 
						|
  buf = new Uint8Array(buf_len);
 | 
						|
 | 
						|
  // convert
 | 
						|
  for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
 | 
						|
    c = str.charCodeAt(m_pos);
 | 
						|
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
 | 
						|
      c2 = str.charCodeAt(m_pos + 1);
 | 
						|
      if ((c2 & 0xfc00) === 0xdc00) {
 | 
						|
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
 | 
						|
        m_pos++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (c < 0x80) {
 | 
						|
      /* one byte */
 | 
						|
      buf[i++] = c;
 | 
						|
    } else if (c < 0x800) {
 | 
						|
      /* two bytes */
 | 
						|
      buf[i++] = 0xC0 | (c >>> 6);
 | 
						|
      buf[i++] = 0x80 | (c & 0x3f);
 | 
						|
    } else if (c < 0x10000) {
 | 
						|
      /* three bytes */
 | 
						|
      buf[i++] = 0xE0 | (c >>> 12);
 | 
						|
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
 | 
						|
      buf[i++] = 0x80 | (c & 0x3f);
 | 
						|
    } else {
 | 
						|
      /* four bytes */
 | 
						|
      buf[i++] = 0xf0 | (c >>> 18);
 | 
						|
      buf[i++] = 0x80 | (c >>> 12 & 0x3f);
 | 
						|
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
 | 
						|
      buf[i++] = 0x80 | (c & 0x3f);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return buf;
 | 
						|
};
 | 
						|
 | 
						|
// Helper
 | 
						|
const buf2binstring = (buf, len) => {
 | 
						|
  // On Chrome, the arguments in a function call that are allowed is `65534`.
 | 
						|
  // If the length of the buffer is smaller than that, we can use this optimization,
 | 
						|
  // otherwise we will take a slower path.
 | 
						|
  if (len < 65534) {
 | 
						|
    if (buf.subarray && STR_APPLY_UIA_OK) {
 | 
						|
      return String.fromCharCode.apply(null, buf.length === len ? buf : buf.subarray(0, len));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  let result = '';
 | 
						|
  for (let i = 0; i < len; i++) {
 | 
						|
    result += String.fromCharCode(buf[i]);
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// convert array to string
 | 
						|
var buf2string = (buf, max) => {
 | 
						|
  const len = max || buf.length;
 | 
						|
 | 
						|
  if (typeof TextDecoder === 'function' && TextDecoder.prototype.decode) {
 | 
						|
    return new TextDecoder().decode(buf.subarray(0, max));
 | 
						|
  }
 | 
						|
 | 
						|
  let i, out;
 | 
						|
 | 
						|
  // Reserve max possible length (2 words per char)
 | 
						|
  // NB: by unknown reasons, Array is significantly faster for
 | 
						|
  //     String.fromCharCode.apply than Uint16Array.
 | 
						|
  const utf16buf = new Array(len * 2);
 | 
						|
 | 
						|
  for (out = 0, i = 0; i < len;) {
 | 
						|
    let c = buf[i++];
 | 
						|
    // quick process ascii
 | 
						|
    if (c < 0x80) { utf16buf[out++] = c; continue; }
 | 
						|
 | 
						|
    let c_len = _utf8len[c];
 | 
						|
    // skip 5 & 6 byte codes
 | 
						|
    if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }
 | 
						|
 | 
						|
    // apply mask on first byte
 | 
						|
    c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
 | 
						|
    // join the rest
 | 
						|
    while (c_len > 1 && i < len) {
 | 
						|
      c = (c << 6) | (buf[i++] & 0x3f);
 | 
						|
      c_len--;
 | 
						|
    }
 | 
						|
 | 
						|
    // terminated by end of string?
 | 
						|
    if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }
 | 
						|
 | 
						|
    if (c < 0x10000) {
 | 
						|
      utf16buf[out++] = c;
 | 
						|
    } else {
 | 
						|
      c -= 0x10000;
 | 
						|
      utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
 | 
						|
      utf16buf[out++] = 0xdc00 | (c & 0x3ff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return buf2binstring(utf16buf, out);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Calculate max possible position in utf8 buffer,
 | 
						|
// that will not break sequence. If that's not possible
 | 
						|
// - (very small limits) return max size as is.
 | 
						|
//
 | 
						|
// buf[] - utf8 bytes array
 | 
						|
// max   - length limit (mandatory);
 | 
						|
var utf8border = (buf, max) => {
 | 
						|
 | 
						|
  max = max || buf.length;
 | 
						|
  if (max > buf.length) { max = buf.length; }
 | 
						|
 | 
						|
  // go back from last position, until start of sequence found
 | 
						|
  let pos = max - 1;
 | 
						|
  while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }
 | 
						|
 | 
						|
  // Very small and broken sequence,
 | 
						|
  // return max, because we should return something anyway.
 | 
						|
  if (pos < 0) { return max; }
 | 
						|
 | 
						|
  // If we came to start of buffer - that means buffer is too small,
 | 
						|
  // return max too.
 | 
						|
  if (pos === 0) { return max; }
 | 
						|
 | 
						|
  return (pos + _utf8len[buf[pos]] > max) ? pos : max;
 | 
						|
};
 | 
						|
 | 
						|
var strings = {
 | 
						|
	string2buf: string2buf,
 | 
						|
	buf2string: buf2string,
 | 
						|
	utf8border: utf8border
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
function ZStream() {
 | 
						|
  /* next input byte */
 | 
						|
  this.input = null; // JS specific, because we have no pointers
 | 
						|
  this.next_in = 0;
 | 
						|
  /* number of bytes available at input */
 | 
						|
  this.avail_in = 0;
 | 
						|
  /* total number of input bytes read so far */
 | 
						|
  this.total_in = 0;
 | 
						|
  /* next output byte should be put there */
 | 
						|
  this.output = null; // JS specific, because we have no pointers
 | 
						|
  this.next_out = 0;
 | 
						|
  /* remaining free space at output */
 | 
						|
  this.avail_out = 0;
 | 
						|
  /* total number of bytes output so far */
 | 
						|
  this.total_out = 0;
 | 
						|
  /* last error message, NULL if no error */
 | 
						|
  this.msg = ''/*Z_NULL*/;
 | 
						|
  /* not visible by applications */
 | 
						|
  this.state = null;
 | 
						|
  /* best guess about the data type: binary or text */
 | 
						|
  this.data_type = 2/*Z_UNKNOWN*/;
 | 
						|
  /* adler32 value of the uncompressed data */
 | 
						|
  this.adler = 0;
 | 
						|
}
 | 
						|
 | 
						|
var zstream = ZStream;
 | 
						|
 | 
						|
const toString$1 = Object.prototype.toString;
 | 
						|
 | 
						|
/* Public constants ==========================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
const {
 | 
						|
  Z_NO_FLUSH: Z_NO_FLUSH$1, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH: Z_FINISH$2,
 | 
						|
  Z_OK: Z_OK$2, Z_STREAM_END: Z_STREAM_END$2,
 | 
						|
  Z_DEFAULT_COMPRESSION,
 | 
						|
  Z_DEFAULT_STRATEGY,
 | 
						|
  Z_DEFLATED: Z_DEFLATED$1
 | 
						|
} = constants$2;
 | 
						|
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * class Deflate
 | 
						|
 *
 | 
						|
 * Generic JS-style wrapper for zlib calls. If you don't need
 | 
						|
 * streaming behaviour - use more simple functions: [[deflate]],
 | 
						|
 * [[deflateRaw]] and [[gzip]].
 | 
						|
 **/
 | 
						|
 | 
						|
/* internal
 | 
						|
 * Deflate.chunks -> Array
 | 
						|
 *
 | 
						|
 * Chunks of output data, if [[Deflate#onData]] not overridden.
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate.result -> Uint8Array
 | 
						|
 *
 | 
						|
 * Compressed result, generated by default [[Deflate#onData]]
 | 
						|
 * and [[Deflate#onEnd]] handlers. Filled after you push last chunk
 | 
						|
 * (call [[Deflate#push]] with `Z_FINISH` / `true` param).
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate.err -> Number
 | 
						|
 *
 | 
						|
 * Error code after deflate finished. 0 (Z_OK) on success.
 | 
						|
 * You will not need it in real life, because deflate errors
 | 
						|
 * are possible only on wrong options or bad `onData` / `onEnd`
 | 
						|
 * custom handlers.
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate.msg -> String
 | 
						|
 *
 | 
						|
 * Error message, if [[Deflate.err]] != 0
 | 
						|
 **/
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * new Deflate(options)
 | 
						|
 * - options (Object): zlib deflate options.
 | 
						|
 *
 | 
						|
 * Creates new deflator instance with specified params. Throws exception
 | 
						|
 * on bad params. Supported options:
 | 
						|
 *
 | 
						|
 * - `level`
 | 
						|
 * - `windowBits`
 | 
						|
 * - `memLevel`
 | 
						|
 * - `strategy`
 | 
						|
 * - `dictionary`
 | 
						|
 *
 | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | 
						|
 * for more information on these.
 | 
						|
 *
 | 
						|
 * Additional options, for internal needs:
 | 
						|
 *
 | 
						|
 * - `chunkSize` - size of generated data chunks (16K by default)
 | 
						|
 * - `raw` (Boolean) - do raw deflate
 | 
						|
 * - `gzip` (Boolean) - create gzip wrapper
 | 
						|
 * - `header` (Object) - custom header for gzip
 | 
						|
 *   - `text` (Boolean) - true if compressed data believed to be text
 | 
						|
 *   - `time` (Number) - modification time, unix timestamp
 | 
						|
 *   - `os` (Number) - operation system code
 | 
						|
 *   - `extra` (Array) - array of bytes with extra data (max 65536)
 | 
						|
 *   - `name` (String) - file name (binary string)
 | 
						|
 *   - `comment` (String) - comment (binary string)
 | 
						|
 *   - `hcrc` (Boolean) - true if header crc should be added
 | 
						|
 *
 | 
						|
 * ##### Example:
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * const pako = require('pako')
 | 
						|
 *   , chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
 | 
						|
 *   , chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 | 
						|
 *
 | 
						|
 * const deflate = new pako.Deflate({ level: 3});
 | 
						|
 *
 | 
						|
 * deflate.push(chunk1, false);
 | 
						|
 * deflate.push(chunk2, true);  // true -> last chunk
 | 
						|
 *
 | 
						|
 * if (deflate.err) { throw new Error(deflate.err); }
 | 
						|
 *
 | 
						|
 * console.log(deflate.result);
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
function Deflate$1(options) {
 | 
						|
  this.options = common.assign({
 | 
						|
    level: Z_DEFAULT_COMPRESSION,
 | 
						|
    method: Z_DEFLATED$1,
 | 
						|
    chunkSize: 16384,
 | 
						|
    windowBits: 15,
 | 
						|
    memLevel: 8,
 | 
						|
    strategy: Z_DEFAULT_STRATEGY
 | 
						|
  }, options || {});
 | 
						|
 | 
						|
  let opt = this.options;
 | 
						|
 | 
						|
  if (opt.raw && (opt.windowBits > 0)) {
 | 
						|
    opt.windowBits = -opt.windowBits;
 | 
						|
  }
 | 
						|
 | 
						|
  else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
 | 
						|
    opt.windowBits += 16;
 | 
						|
  }
 | 
						|
 | 
						|
  this.err    = 0;      // error code, if happens (0 = Z_OK)
 | 
						|
  this.msg    = '';     // error message
 | 
						|
  this.ended  = false;  // used to avoid multiple onEnd() calls
 | 
						|
  this.chunks = [];     // chunks of compressed data
 | 
						|
 | 
						|
  this.strm = new zstream();
 | 
						|
  this.strm.avail_out = 0;
 | 
						|
 | 
						|
  let status = deflate_1$2.deflateInit2(
 | 
						|
    this.strm,
 | 
						|
    opt.level,
 | 
						|
    opt.method,
 | 
						|
    opt.windowBits,
 | 
						|
    opt.memLevel,
 | 
						|
    opt.strategy
 | 
						|
  );
 | 
						|
 | 
						|
  if (status !== Z_OK$2) {
 | 
						|
    throw new Error(messages[status]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (opt.header) {
 | 
						|
    deflate_1$2.deflateSetHeader(this.strm, opt.header);
 | 
						|
  }
 | 
						|
 | 
						|
  if (opt.dictionary) {
 | 
						|
    let dict;
 | 
						|
    // Convert data if needed
 | 
						|
    if (typeof opt.dictionary === 'string') {
 | 
						|
      // If we need to compress text, change encoding to utf8.
 | 
						|
      dict = strings.string2buf(opt.dictionary);
 | 
						|
    } else if (toString$1.call(opt.dictionary) === '[object ArrayBuffer]') {
 | 
						|
      dict = new Uint8Array(opt.dictionary);
 | 
						|
    } else {
 | 
						|
      dict = opt.dictionary;
 | 
						|
    }
 | 
						|
 | 
						|
    status = deflate_1$2.deflateSetDictionary(this.strm, dict);
 | 
						|
 | 
						|
    if (status !== Z_OK$2) {
 | 
						|
      throw new Error(messages[status]);
 | 
						|
    }
 | 
						|
 | 
						|
    this._dict_set = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate#push(data[, flush_mode]) -> Boolean
 | 
						|
 * - data (Uint8Array|ArrayBuffer|String): input data. Strings will be
 | 
						|
 *   converted to utf8 byte sequence.
 | 
						|
 * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
 | 
						|
 *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
 | 
						|
 *
 | 
						|
 * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
 | 
						|
 * new compressed chunks. Returns `true` on success. The last data block must
 | 
						|
 * have `flush_mode` Z_FINISH (or `true`). That will flush internal pending
 | 
						|
 * buffers and call [[Deflate#onEnd]].
 | 
						|
 *
 | 
						|
 * On fail call [[Deflate#onEnd]] with error code and return false.
 | 
						|
 *
 | 
						|
 * ##### Example
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * push(chunk, false); // push one of data chunks
 | 
						|
 * ...
 | 
						|
 * push(chunk, true);  // push last chunk
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
Deflate$1.prototype.push = function (data, flush_mode) {
 | 
						|
  const strm = this.strm;
 | 
						|
  const chunkSize = this.options.chunkSize;
 | 
						|
  let status, _flush_mode;
 | 
						|
 | 
						|
  if (this.ended) { return false; }
 | 
						|
 | 
						|
  if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
 | 
						|
  else _flush_mode = flush_mode === true ? Z_FINISH$2 : Z_NO_FLUSH$1;
 | 
						|
 | 
						|
  // Convert data if needed
 | 
						|
  if (typeof data === 'string') {
 | 
						|
    // If we need to compress text, change encoding to utf8.
 | 
						|
    strm.input = strings.string2buf(data);
 | 
						|
  } else if (toString$1.call(data) === '[object ArrayBuffer]') {
 | 
						|
    strm.input = new Uint8Array(data);
 | 
						|
  } else {
 | 
						|
    strm.input = data;
 | 
						|
  }
 | 
						|
 | 
						|
  strm.next_in = 0;
 | 
						|
  strm.avail_in = strm.input.length;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    if (strm.avail_out === 0) {
 | 
						|
      strm.output = new Uint8Array(chunkSize);
 | 
						|
      strm.next_out = 0;
 | 
						|
      strm.avail_out = chunkSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure avail_out > 6 to avoid repeating markers
 | 
						|
    if ((_flush_mode === Z_SYNC_FLUSH || _flush_mode === Z_FULL_FLUSH) && strm.avail_out <= 6) {
 | 
						|
      this.onData(strm.output.subarray(0, strm.next_out));
 | 
						|
      strm.avail_out = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    status = deflate_1$2.deflate(strm, _flush_mode);
 | 
						|
 | 
						|
    // Ended => flush and finish
 | 
						|
    if (status === Z_STREAM_END$2) {
 | 
						|
      if (strm.next_out > 0) {
 | 
						|
        this.onData(strm.output.subarray(0, strm.next_out));
 | 
						|
      }
 | 
						|
      status = deflate_1$2.deflateEnd(this.strm);
 | 
						|
      this.onEnd(status);
 | 
						|
      this.ended = true;
 | 
						|
      return status === Z_OK$2;
 | 
						|
    }
 | 
						|
 | 
						|
    // Flush if out buffer full
 | 
						|
    if (strm.avail_out === 0) {
 | 
						|
      this.onData(strm.output);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Flush if requested and has data
 | 
						|
    if (_flush_mode > 0 && strm.next_out > 0) {
 | 
						|
      this.onData(strm.output.subarray(0, strm.next_out));
 | 
						|
      strm.avail_out = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (strm.avail_in === 0) break;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate#onData(chunk) -> Void
 | 
						|
 * - chunk (Uint8Array): output data.
 | 
						|
 *
 | 
						|
 * By default, stores data blocks in `chunks[]` property and glue
 | 
						|
 * those in `onEnd`. Override this handler, if you need another behaviour.
 | 
						|
 **/
 | 
						|
Deflate$1.prototype.onData = function (chunk) {
 | 
						|
  this.chunks.push(chunk);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Deflate#onEnd(status) -> Void
 | 
						|
 * - status (Number): deflate status. 0 (Z_OK) on success,
 | 
						|
 *   other if not.
 | 
						|
 *
 | 
						|
 * Called once after you tell deflate that the input stream is
 | 
						|
 * complete (Z_FINISH). By default - join collected chunks,
 | 
						|
 * free memory and fill `results` / `err` properties.
 | 
						|
 **/
 | 
						|
Deflate$1.prototype.onEnd = function (status) {
 | 
						|
  // On success - join
 | 
						|
  if (status === Z_OK$2) {
 | 
						|
    this.result = common.flattenChunks(this.chunks);
 | 
						|
  }
 | 
						|
  this.chunks = [];
 | 
						|
  this.err = status;
 | 
						|
  this.msg = this.strm.msg;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * deflate(data[, options]) -> Uint8Array
 | 
						|
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 | 
						|
 * - options (Object): zlib deflate options.
 | 
						|
 *
 | 
						|
 * Compress `data` with deflate algorithm and `options`.
 | 
						|
 *
 | 
						|
 * Supported options are:
 | 
						|
 *
 | 
						|
 * - level
 | 
						|
 * - windowBits
 | 
						|
 * - memLevel
 | 
						|
 * - strategy
 | 
						|
 * - dictionary
 | 
						|
 *
 | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | 
						|
 * for more information on these.
 | 
						|
 *
 | 
						|
 * Sugar (options):
 | 
						|
 *
 | 
						|
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 | 
						|
 *   negative windowBits implicitly.
 | 
						|
 *
 | 
						|
 * ##### Example:
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * const pako = require('pako')
 | 
						|
 * const data = new Uint8Array([1,2,3,4,5,6,7,8,9]);
 | 
						|
 *
 | 
						|
 * console.log(pako.deflate(data));
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
function deflate$1(input, options) {
 | 
						|
  const deflator = new Deflate$1(options);
 | 
						|
 | 
						|
  deflator.push(input, true);
 | 
						|
 | 
						|
  // That will never happens, if you don't cheat with options :)
 | 
						|
  if (deflator.err) { throw deflator.msg || messages[deflator.err]; }
 | 
						|
 | 
						|
  return deflator.result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * deflateRaw(data[, options]) -> Uint8Array
 | 
						|
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 | 
						|
 * - options (Object): zlib deflate options.
 | 
						|
 *
 | 
						|
 * The same as [[deflate]], but creates raw data, without wrapper
 | 
						|
 * (header and adler32 crc).
 | 
						|
 **/
 | 
						|
function deflateRaw$1(input, options) {
 | 
						|
  options = options || {};
 | 
						|
  options.raw = true;
 | 
						|
  return deflate$1(input, options);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * gzip(data[, options]) -> Uint8Array
 | 
						|
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 | 
						|
 * - options (Object): zlib deflate options.
 | 
						|
 *
 | 
						|
 * The same as [[deflate]], but create gzip wrapper instead of
 | 
						|
 * deflate one.
 | 
						|
 **/
 | 
						|
function gzip$1(input, options) {
 | 
						|
  options = options || {};
 | 
						|
  options.gzip = true;
 | 
						|
  return deflate$1(input, options);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
var Deflate_1$1 = Deflate$1;
 | 
						|
var deflate_2 = deflate$1;
 | 
						|
var deflateRaw_1$1 = deflateRaw$1;
 | 
						|
var gzip_1$1 = gzip$1;
 | 
						|
var constants$1 = constants$2;
 | 
						|
 | 
						|
var deflate_1$1 = {
 | 
						|
	Deflate: Deflate_1$1,
 | 
						|
	deflate: deflate_2,
 | 
						|
	deflateRaw: deflateRaw_1$1,
 | 
						|
	gzip: gzip_1$1,
 | 
						|
	constants: constants$1
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
// See state defs from inflate.js
 | 
						|
const BAD$1 = 16209;       /* got a data error -- remain here until reset */
 | 
						|
const TYPE$1 = 16191;      /* i: waiting for type bits, including last-flag bit */
 | 
						|
 | 
						|
/*
 | 
						|
   Decode literal, length, and distance codes and write out the resulting
 | 
						|
   literal and match bytes until either not enough input or output is
 | 
						|
   available, an end-of-block is encountered, or a data error is encountered.
 | 
						|
   When large enough input and output buffers are supplied to inflate(), for
 | 
						|
   example, a 16K input buffer and a 64K output buffer, more than 95% of the
 | 
						|
   inflate execution time is spent in this routine.
 | 
						|
 | 
						|
   Entry assumptions:
 | 
						|
 | 
						|
        state.mode === LEN
 | 
						|
        strm.avail_in >= 6
 | 
						|
        strm.avail_out >= 258
 | 
						|
        start >= strm.avail_out
 | 
						|
        state.bits < 8
 | 
						|
 | 
						|
   On return, state.mode is one of:
 | 
						|
 | 
						|
        LEN -- ran out of enough output space or enough available input
 | 
						|
        TYPE -- reached end of block code, inflate() to interpret next block
 | 
						|
        BAD -- error in block data
 | 
						|
 | 
						|
   Notes:
 | 
						|
 | 
						|
    - The maximum input bits used by a length/distance pair is 15 bits for the
 | 
						|
      length code, 5 bits for the length extra, 15 bits for the distance code,
 | 
						|
      and 13 bits for the distance extra.  This totals 48 bits, or six bytes.
 | 
						|
      Therefore if strm.avail_in >= 6, then there is enough input to avoid
 | 
						|
      checking for available input while decoding.
 | 
						|
 | 
						|
    - The maximum bytes that a single length/distance pair can output is 258
 | 
						|
      bytes, which is the maximum length that can be coded.  inflate_fast()
 | 
						|
      requires strm.avail_out >= 258 for each loop to avoid checking for
 | 
						|
      output space.
 | 
						|
 */
 | 
						|
var inffast = function inflate_fast(strm, start) {
 | 
						|
  let _in;                    /* local strm.input */
 | 
						|
  let last;                   /* have enough input while in < last */
 | 
						|
  let _out;                   /* local strm.output */
 | 
						|
  let beg;                    /* inflate()'s initial strm.output */
 | 
						|
  let end;                    /* while out < end, enough space available */
 | 
						|
//#ifdef INFLATE_STRICT
 | 
						|
  let dmax;                   /* maximum distance from zlib header */
 | 
						|
//#endif
 | 
						|
  let wsize;                  /* window size or zero if not using window */
 | 
						|
  let whave;                  /* valid bytes in the window */
 | 
						|
  let wnext;                  /* window write index */
 | 
						|
  // Use `s_window` instead `window`, avoid conflict with instrumentation tools
 | 
						|
  let s_window;               /* allocated sliding window, if wsize != 0 */
 | 
						|
  let hold;                   /* local strm.hold */
 | 
						|
  let bits;                   /* local strm.bits */
 | 
						|
  let lcode;                  /* local strm.lencode */
 | 
						|
  let dcode;                  /* local strm.distcode */
 | 
						|
  let lmask;                  /* mask for first level of length codes */
 | 
						|
  let dmask;                  /* mask for first level of distance codes */
 | 
						|
  let here;                   /* retrieved table entry */
 | 
						|
  let op;                     /* code bits, operation, extra bits, or */
 | 
						|
                              /*  window position, window bytes to copy */
 | 
						|
  let len;                    /* match length, unused bytes */
 | 
						|
  let dist;                   /* match distance */
 | 
						|
  let from;                   /* where to copy match from */
 | 
						|
  let from_source;
 | 
						|
 | 
						|
 | 
						|
  let input, output; // JS specific, because we have no pointers
 | 
						|
 | 
						|
  /* copy state to local variables */
 | 
						|
  const state = strm.state;
 | 
						|
  //here = state.here;
 | 
						|
  _in = strm.next_in;
 | 
						|
  input = strm.input;
 | 
						|
  last = _in + (strm.avail_in - 5);
 | 
						|
  _out = strm.next_out;
 | 
						|
  output = strm.output;
 | 
						|
  beg = _out - (start - strm.avail_out);
 | 
						|
  end = _out + (strm.avail_out - 257);
 | 
						|
//#ifdef INFLATE_STRICT
 | 
						|
  dmax = state.dmax;
 | 
						|
//#endif
 | 
						|
  wsize = state.wsize;
 | 
						|
  whave = state.whave;
 | 
						|
  wnext = state.wnext;
 | 
						|
  s_window = state.window;
 | 
						|
  hold = state.hold;
 | 
						|
  bits = state.bits;
 | 
						|
  lcode = state.lencode;
 | 
						|
  dcode = state.distcode;
 | 
						|
  lmask = (1 << state.lenbits) - 1;
 | 
						|
  dmask = (1 << state.distbits) - 1;
 | 
						|
 | 
						|
 | 
						|
  /* decode literals and length/distances until end-of-block or not enough
 | 
						|
     input data or output space */
 | 
						|
 | 
						|
  top:
 | 
						|
  do {
 | 
						|
    if (bits < 15) {
 | 
						|
      hold += input[_in++] << bits;
 | 
						|
      bits += 8;
 | 
						|
      hold += input[_in++] << bits;
 | 
						|
      bits += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    here = lcode[hold & lmask];
 | 
						|
 | 
						|
    dolen:
 | 
						|
    for (;;) { // Goto emulation
 | 
						|
      op = here >>> 24/*here.bits*/;
 | 
						|
      hold >>>= op;
 | 
						|
      bits -= op;
 | 
						|
      op = (here >>> 16) & 0xff/*here.op*/;
 | 
						|
      if (op === 0) {                          /* literal */
 | 
						|
        //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
 | 
						|
        //        "inflate:         literal '%c'\n" :
 | 
						|
        //        "inflate:         literal 0x%02x\n", here.val));
 | 
						|
        output[_out++] = here & 0xffff/*here.val*/;
 | 
						|
      }
 | 
						|
      else if (op & 16) {                     /* length base */
 | 
						|
        len = here & 0xffff/*here.val*/;
 | 
						|
        op &= 15;                           /* number of extra bits */
 | 
						|
        if (op) {
 | 
						|
          if (bits < op) {
 | 
						|
            hold += input[_in++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          len += hold & ((1 << op) - 1);
 | 
						|
          hold >>>= op;
 | 
						|
          bits -= op;
 | 
						|
        }
 | 
						|
        //Tracevv((stderr, "inflate:         length %u\n", len));
 | 
						|
        if (bits < 15) {
 | 
						|
          hold += input[_in++] << bits;
 | 
						|
          bits += 8;
 | 
						|
          hold += input[_in++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        here = dcode[hold & dmask];
 | 
						|
 | 
						|
        dodist:
 | 
						|
        for (;;) { // goto emulation
 | 
						|
          op = here >>> 24/*here.bits*/;
 | 
						|
          hold >>>= op;
 | 
						|
          bits -= op;
 | 
						|
          op = (here >>> 16) & 0xff/*here.op*/;
 | 
						|
 | 
						|
          if (op & 16) {                      /* distance base */
 | 
						|
            dist = here & 0xffff/*here.val*/;
 | 
						|
            op &= 15;                       /* number of extra bits */
 | 
						|
            if (bits < op) {
 | 
						|
              hold += input[_in++] << bits;
 | 
						|
              bits += 8;
 | 
						|
              if (bits < op) {
 | 
						|
                hold += input[_in++] << bits;
 | 
						|
                bits += 8;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            dist += hold & ((1 << op) - 1);
 | 
						|
//#ifdef INFLATE_STRICT
 | 
						|
            if (dist > dmax) {
 | 
						|
              strm.msg = 'invalid distance too far back';
 | 
						|
              state.mode = BAD$1;
 | 
						|
              break top;
 | 
						|
            }
 | 
						|
//#endif
 | 
						|
            hold >>>= op;
 | 
						|
            bits -= op;
 | 
						|
            //Tracevv((stderr, "inflate:         distance %u\n", dist));
 | 
						|
            op = _out - beg;                /* max distance in output */
 | 
						|
            if (dist > op) {                /* see if copy from window */
 | 
						|
              op = dist - op;               /* distance back in window */
 | 
						|
              if (op > whave) {
 | 
						|
                if (state.sane) {
 | 
						|
                  strm.msg = 'invalid distance too far back';
 | 
						|
                  state.mode = BAD$1;
 | 
						|
                  break top;
 | 
						|
                }
 | 
						|
 | 
						|
// (!) This block is disabled in zlib defaults,
 | 
						|
// don't enable it for binary compatibility
 | 
						|
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
 | 
						|
//                if (len <= op - whave) {
 | 
						|
//                  do {
 | 
						|
//                    output[_out++] = 0;
 | 
						|
//                  } while (--len);
 | 
						|
//                  continue top;
 | 
						|
//                }
 | 
						|
//                len -= op - whave;
 | 
						|
//                do {
 | 
						|
//                  output[_out++] = 0;
 | 
						|
//                } while (--op > whave);
 | 
						|
//                if (op === 0) {
 | 
						|
//                  from = _out - dist;
 | 
						|
//                  do {
 | 
						|
//                    output[_out++] = output[from++];
 | 
						|
//                  } while (--len);
 | 
						|
//                  continue top;
 | 
						|
//                }
 | 
						|
//#endif
 | 
						|
              }
 | 
						|
              from = 0; // window index
 | 
						|
              from_source = s_window;
 | 
						|
              if (wnext === 0) {           /* very common case */
 | 
						|
                from += wsize - op;
 | 
						|
                if (op < len) {         /* some from window */
 | 
						|
                  len -= op;
 | 
						|
                  do {
 | 
						|
                    output[_out++] = s_window[from++];
 | 
						|
                  } while (--op);
 | 
						|
                  from = _out - dist;  /* rest from output */
 | 
						|
                  from_source = output;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              else if (wnext < op) {      /* wrap around window */
 | 
						|
                from += wsize + wnext - op;
 | 
						|
                op -= wnext;
 | 
						|
                if (op < len) {         /* some from end of window */
 | 
						|
                  len -= op;
 | 
						|
                  do {
 | 
						|
                    output[_out++] = s_window[from++];
 | 
						|
                  } while (--op);
 | 
						|
                  from = 0;
 | 
						|
                  if (wnext < len) {  /* some from start of window */
 | 
						|
                    op = wnext;
 | 
						|
                    len -= op;
 | 
						|
                    do {
 | 
						|
                      output[_out++] = s_window[from++];
 | 
						|
                    } while (--op);
 | 
						|
                    from = _out - dist;      /* rest from output */
 | 
						|
                    from_source = output;
 | 
						|
                  }
 | 
						|
                }
 | 
						|
              }
 | 
						|
              else {                      /* contiguous in window */
 | 
						|
                from += wnext - op;
 | 
						|
                if (op < len) {         /* some from window */
 | 
						|
                  len -= op;
 | 
						|
                  do {
 | 
						|
                    output[_out++] = s_window[from++];
 | 
						|
                  } while (--op);
 | 
						|
                  from = _out - dist;  /* rest from output */
 | 
						|
                  from_source = output;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              while (len > 2) {
 | 
						|
                output[_out++] = from_source[from++];
 | 
						|
                output[_out++] = from_source[from++];
 | 
						|
                output[_out++] = from_source[from++];
 | 
						|
                len -= 3;
 | 
						|
              }
 | 
						|
              if (len) {
 | 
						|
                output[_out++] = from_source[from++];
 | 
						|
                if (len > 1) {
 | 
						|
                  output[_out++] = from_source[from++];
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              from = _out - dist;          /* copy direct from output */
 | 
						|
              do {                        /* minimum length is three */
 | 
						|
                output[_out++] = output[from++];
 | 
						|
                output[_out++] = output[from++];
 | 
						|
                output[_out++] = output[from++];
 | 
						|
                len -= 3;
 | 
						|
              } while (len > 2);
 | 
						|
              if (len) {
 | 
						|
                output[_out++] = output[from++];
 | 
						|
                if (len > 1) {
 | 
						|
                  output[_out++] = output[from++];
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
          else if ((op & 64) === 0) {          /* 2nd level distance code */
 | 
						|
            here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
 | 
						|
            continue dodist;
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            strm.msg = 'invalid distance code';
 | 
						|
            state.mode = BAD$1;
 | 
						|
            break top;
 | 
						|
          }
 | 
						|
 | 
						|
          break; // need to emulate goto via "continue"
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if ((op & 64) === 0) {              /* 2nd level length code */
 | 
						|
        here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
 | 
						|
        continue dolen;
 | 
						|
      }
 | 
						|
      else if (op & 32) {                     /* end-of-block */
 | 
						|
        //Tracevv((stderr, "inflate:         end of block\n"));
 | 
						|
        state.mode = TYPE$1;
 | 
						|
        break top;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        strm.msg = 'invalid literal/length code';
 | 
						|
        state.mode = BAD$1;
 | 
						|
        break top;
 | 
						|
      }
 | 
						|
 | 
						|
      break; // need to emulate goto via "continue"
 | 
						|
    }
 | 
						|
  } while (_in < last && _out < end);
 | 
						|
 | 
						|
  /* return unused bytes (on entry, bits < 8, so in won't go too far back) */
 | 
						|
  len = bits >> 3;
 | 
						|
  _in -= len;
 | 
						|
  bits -= len << 3;
 | 
						|
  hold &= (1 << bits) - 1;
 | 
						|
 | 
						|
  /* update state and return */
 | 
						|
  strm.next_in = _in;
 | 
						|
  strm.next_out = _out;
 | 
						|
  strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));
 | 
						|
  strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));
 | 
						|
  state.hold = hold;
 | 
						|
  state.bits = bits;
 | 
						|
  return;
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
const MAXBITS = 15;
 | 
						|
const ENOUGH_LENS$1 = 852;
 | 
						|
const ENOUGH_DISTS$1 = 592;
 | 
						|
//const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
 | 
						|
 | 
						|
const CODES$1 = 0;
 | 
						|
const LENS$1 = 1;
 | 
						|
const DISTS$1 = 2;
 | 
						|
 | 
						|
const lbase = new Uint16Array([ /* Length codes 257..285 base */
 | 
						|
  3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 | 
						|
  35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
 | 
						|
]);
 | 
						|
 | 
						|
const lext = new Uint8Array([ /* Length codes 257..285 extra */
 | 
						|
  16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
 | 
						|
  19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78
 | 
						|
]);
 | 
						|
 | 
						|
const dbase = new Uint16Array([ /* Distance codes 0..29 base */
 | 
						|
  1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 | 
						|
  257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 | 
						|
  8193, 12289, 16385, 24577, 0, 0
 | 
						|
]);
 | 
						|
 | 
						|
const dext = new Uint8Array([ /* Distance codes 0..29 extra */
 | 
						|
  16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
 | 
						|
  23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
 | 
						|
  28, 28, 29, 29, 64, 64
 | 
						|
]);
 | 
						|
 | 
						|
const inflate_table = (type, lens, lens_index, codes, table, table_index, work, opts) =>
 | 
						|
{
 | 
						|
  const bits = opts.bits;
 | 
						|
      //here = opts.here; /* table entry for duplication */
 | 
						|
 | 
						|
  let len = 0;               /* a code's length in bits */
 | 
						|
  let sym = 0;               /* index of code symbols */
 | 
						|
  let min = 0, max = 0;          /* minimum and maximum code lengths */
 | 
						|
  let root = 0;              /* number of index bits for root table */
 | 
						|
  let curr = 0;              /* number of index bits for current table */
 | 
						|
  let drop = 0;              /* code bits to drop for sub-table */
 | 
						|
  let left = 0;                   /* number of prefix codes available */
 | 
						|
  let used = 0;              /* code entries in table used */
 | 
						|
  let huff = 0;              /* Huffman code */
 | 
						|
  let incr;              /* for incrementing code, index */
 | 
						|
  let fill;              /* index for replicating entries */
 | 
						|
  let low;               /* low bits for current root entry */
 | 
						|
  let mask;              /* mask for low root bits */
 | 
						|
  let next;             /* next available space in table */
 | 
						|
  let base = null;     /* base value table to use */
 | 
						|
//  let shoextra;    /* extra bits table to use */
 | 
						|
  let match;                  /* use base and extra for symbol >= match */
 | 
						|
  const count = new Uint16Array(MAXBITS + 1); //[MAXBITS+1];    /* number of codes of each length */
 | 
						|
  const offs = new Uint16Array(MAXBITS + 1); //[MAXBITS+1];     /* offsets in table for each length */
 | 
						|
  let extra = null;
 | 
						|
 | 
						|
  let here_bits, here_op, here_val;
 | 
						|
 | 
						|
  /*
 | 
						|
   Process a set of code lengths to create a canonical Huffman code.  The
 | 
						|
   code lengths are lens[0..codes-1].  Each length corresponds to the
 | 
						|
   symbols 0..codes-1.  The Huffman code is generated by first sorting the
 | 
						|
   symbols by length from short to long, and retaining the symbol order
 | 
						|
   for codes with equal lengths.  Then the code starts with all zero bits
 | 
						|
   for the first code of the shortest length, and the codes are integer
 | 
						|
   increments for the same length, and zeros are appended as the length
 | 
						|
   increases.  For the deflate format, these bits are stored backwards
 | 
						|
   from their more natural integer increment ordering, and so when the
 | 
						|
   decoding tables are built in the large loop below, the integer codes
 | 
						|
   are incremented backwards.
 | 
						|
 | 
						|
   This routine assumes, but does not check, that all of the entries in
 | 
						|
   lens[] are in the range 0..MAXBITS.  The caller must assure this.
 | 
						|
   1..MAXBITS is interpreted as that code length.  zero means that that
 | 
						|
   symbol does not occur in this code.
 | 
						|
 | 
						|
   The codes are sorted by computing a count of codes for each length,
 | 
						|
   creating from that a table of starting indices for each length in the
 | 
						|
   sorted table, and then entering the symbols in order in the sorted
 | 
						|
   table.  The sorted table is work[], with that space being provided by
 | 
						|
   the caller.
 | 
						|
 | 
						|
   The length counts are used for other purposes as well, i.e. finding
 | 
						|
   the minimum and maximum length codes, determining if there are any
 | 
						|
   codes at all, checking for a valid set of lengths, and looking ahead
 | 
						|
   at length counts to determine sub-table sizes when building the
 | 
						|
   decoding tables.
 | 
						|
   */
 | 
						|
 | 
						|
  /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
 | 
						|
  for (len = 0; len <= MAXBITS; len++) {
 | 
						|
    count[len] = 0;
 | 
						|
  }
 | 
						|
  for (sym = 0; sym < codes; sym++) {
 | 
						|
    count[lens[lens_index + sym]]++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* bound code lengths, force root to be within code lengths */
 | 
						|
  root = bits;
 | 
						|
  for (max = MAXBITS; max >= 1; max--) {
 | 
						|
    if (count[max] !== 0) { break; }
 | 
						|
  }
 | 
						|
  if (root > max) {
 | 
						|
    root = max;
 | 
						|
  }
 | 
						|
  if (max === 0) {                     /* no symbols to code at all */
 | 
						|
    //table.op[opts.table_index] = 64;  //here.op = (var char)64;    /* invalid code marker */
 | 
						|
    //table.bits[opts.table_index] = 1;   //here.bits = (var char)1;
 | 
						|
    //table.val[opts.table_index++] = 0;   //here.val = (var short)0;
 | 
						|
    table[table_index++] = (1 << 24) | (64 << 16) | 0;
 | 
						|
 | 
						|
 | 
						|
    //table.op[opts.table_index] = 64;
 | 
						|
    //table.bits[opts.table_index] = 1;
 | 
						|
    //table.val[opts.table_index++] = 0;
 | 
						|
    table[table_index++] = (1 << 24) | (64 << 16) | 0;
 | 
						|
 | 
						|
    opts.bits = 1;
 | 
						|
    return 0;     /* no symbols, but wait for decoding to report error */
 | 
						|
  }
 | 
						|
  for (min = 1; min < max; min++) {
 | 
						|
    if (count[min] !== 0) { break; }
 | 
						|
  }
 | 
						|
  if (root < min) {
 | 
						|
    root = min;
 | 
						|
  }
 | 
						|
 | 
						|
  /* check for an over-subscribed or incomplete set of lengths */
 | 
						|
  left = 1;
 | 
						|
  for (len = 1; len <= MAXBITS; len++) {
 | 
						|
    left <<= 1;
 | 
						|
    left -= count[len];
 | 
						|
    if (left < 0) {
 | 
						|
      return -1;
 | 
						|
    }        /* over-subscribed */
 | 
						|
  }
 | 
						|
  if (left > 0 && (type === CODES$1 || max !== 1)) {
 | 
						|
    return -1;                      /* incomplete set */
 | 
						|
  }
 | 
						|
 | 
						|
  /* generate offsets into symbol table for each length for sorting */
 | 
						|
  offs[1] = 0;
 | 
						|
  for (len = 1; len < MAXBITS; len++) {
 | 
						|
    offs[len + 1] = offs[len] + count[len];
 | 
						|
  }
 | 
						|
 | 
						|
  /* sort symbols by length, by symbol order within each length */
 | 
						|
  for (sym = 0; sym < codes; sym++) {
 | 
						|
    if (lens[lens_index + sym] !== 0) {
 | 
						|
      work[offs[lens[lens_index + sym]]++] = sym;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
   Create and fill in decoding tables.  In this loop, the table being
 | 
						|
   filled is at next and has curr index bits.  The code being used is huff
 | 
						|
   with length len.  That code is converted to an index by dropping drop
 | 
						|
   bits off of the bottom.  For codes where len is less than drop + curr,
 | 
						|
   those top drop + curr - len bits are incremented through all values to
 | 
						|
   fill the table with replicated entries.
 | 
						|
 | 
						|
   root is the number of index bits for the root table.  When len exceeds
 | 
						|
   root, sub-tables are created pointed to by the root entry with an index
 | 
						|
   of the low root bits of huff.  This is saved in low to check for when a
 | 
						|
   new sub-table should be started.  drop is zero when the root table is
 | 
						|
   being filled, and drop is root when sub-tables are being filled.
 | 
						|
 | 
						|
   When a new sub-table is needed, it is necessary to look ahead in the
 | 
						|
   code lengths to determine what size sub-table is needed.  The length
 | 
						|
   counts are used for this, and so count[] is decremented as codes are
 | 
						|
   entered in the tables.
 | 
						|
 | 
						|
   used keeps track of how many table entries have been allocated from the
 | 
						|
   provided *table space.  It is checked for LENS and DIST tables against
 | 
						|
   the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
 | 
						|
   the initial root table size constants.  See the comments in inftrees.h
 | 
						|
   for more information.
 | 
						|
 | 
						|
   sym increments through all symbols, and the loop terminates when
 | 
						|
   all codes of length max, i.e. all codes, have been processed.  This
 | 
						|
   routine permits incomplete codes, so another loop after this one fills
 | 
						|
   in the rest of the decoding tables with invalid code markers.
 | 
						|
   */
 | 
						|
 | 
						|
  /* set up for code type */
 | 
						|
  // poor man optimization - use if-else instead of switch,
 | 
						|
  // to avoid deopts in old v8
 | 
						|
  if (type === CODES$1) {
 | 
						|
    base = extra = work;    /* dummy value--not used */
 | 
						|
    match = 20;
 | 
						|
 | 
						|
  } else if (type === LENS$1) {
 | 
						|
    base = lbase;
 | 
						|
    extra = lext;
 | 
						|
    match = 257;
 | 
						|
 | 
						|
  } else {                    /* DISTS */
 | 
						|
    base = dbase;
 | 
						|
    extra = dext;
 | 
						|
    match = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* initialize opts for loop */
 | 
						|
  huff = 0;                   /* starting code */
 | 
						|
  sym = 0;                    /* starting code symbol */
 | 
						|
  len = min;                  /* starting code length */
 | 
						|
  next = table_index;              /* current table to fill in */
 | 
						|
  curr = root;                /* current table index bits */
 | 
						|
  drop = 0;                   /* current bits to drop from code for index */
 | 
						|
  low = -1;                   /* trigger new sub-table when len > root */
 | 
						|
  used = 1 << root;          /* use root table entries */
 | 
						|
  mask = used - 1;            /* mask for comparing low */
 | 
						|
 | 
						|
  /* check available table space */
 | 
						|
  if ((type === LENS$1 && used > ENOUGH_LENS$1) ||
 | 
						|
    (type === DISTS$1 && used > ENOUGH_DISTS$1)) {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* process all codes and make table entries */
 | 
						|
  for (;;) {
 | 
						|
    /* create table entry */
 | 
						|
    here_bits = len - drop;
 | 
						|
    if (work[sym] + 1 < match) {
 | 
						|
      here_op = 0;
 | 
						|
      here_val = work[sym];
 | 
						|
    }
 | 
						|
    else if (work[sym] >= match) {
 | 
						|
      here_op = extra[work[sym] - match];
 | 
						|
      here_val = base[work[sym] - match];
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      here_op = 32 + 64;         /* end of block */
 | 
						|
      here_val = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* replicate for those indices with low len bits equal to huff */
 | 
						|
    incr = 1 << (len - drop);
 | 
						|
    fill = 1 << curr;
 | 
						|
    min = fill;                 /* save offset to next table */
 | 
						|
    do {
 | 
						|
      fill -= incr;
 | 
						|
      table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;
 | 
						|
    } while (fill !== 0);
 | 
						|
 | 
						|
    /* backwards increment the len-bit code huff */
 | 
						|
    incr = 1 << (len - 1);
 | 
						|
    while (huff & incr) {
 | 
						|
      incr >>= 1;
 | 
						|
    }
 | 
						|
    if (incr !== 0) {
 | 
						|
      huff &= incr - 1;
 | 
						|
      huff += incr;
 | 
						|
    } else {
 | 
						|
      huff = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* go to next symbol, update count, len */
 | 
						|
    sym++;
 | 
						|
    if (--count[len] === 0) {
 | 
						|
      if (len === max) { break; }
 | 
						|
      len = lens[lens_index + work[sym]];
 | 
						|
    }
 | 
						|
 | 
						|
    /* create new sub-table if needed */
 | 
						|
    if (len > root && (huff & mask) !== low) {
 | 
						|
      /* if first time, transition to sub-tables */
 | 
						|
      if (drop === 0) {
 | 
						|
        drop = root;
 | 
						|
      }
 | 
						|
 | 
						|
      /* increment past last table */
 | 
						|
      next += min;            /* here min is 1 << curr */
 | 
						|
 | 
						|
      /* determine length of next table */
 | 
						|
      curr = len - drop;
 | 
						|
      left = 1 << curr;
 | 
						|
      while (curr + drop < max) {
 | 
						|
        left -= count[curr + drop];
 | 
						|
        if (left <= 0) { break; }
 | 
						|
        curr++;
 | 
						|
        left <<= 1;
 | 
						|
      }
 | 
						|
 | 
						|
      /* check for enough space */
 | 
						|
      used += 1 << curr;
 | 
						|
      if ((type === LENS$1 && used > ENOUGH_LENS$1) ||
 | 
						|
        (type === DISTS$1 && used > ENOUGH_DISTS$1)) {
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
 | 
						|
      /* point entry in root table to sub-table */
 | 
						|
      low = huff & mask;
 | 
						|
      /*table.op[low] = curr;
 | 
						|
      table.bits[low] = root;
 | 
						|
      table.val[low] = next - opts.table_index;*/
 | 
						|
      table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* fill in remaining table entry if code is incomplete (guaranteed to have
 | 
						|
   at most one remaining entry, since if the code is incomplete, the
 | 
						|
   maximum code length that was allowed to get this far is one bit) */
 | 
						|
  if (huff !== 0) {
 | 
						|
    //table.op[next + huff] = 64;            /* invalid code marker */
 | 
						|
    //table.bits[next + huff] = len - drop;
 | 
						|
    //table.val[next + huff] = 0;
 | 
						|
    table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set return parameters */
 | 
						|
  //opts.table_index += used;
 | 
						|
  opts.bits = root;
 | 
						|
  return 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
var inftrees = inflate_table;
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
const CODES = 0;
 | 
						|
const LENS = 1;
 | 
						|
const DISTS = 2;
 | 
						|
 | 
						|
/* Public constants ==========================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
const {
 | 
						|
  Z_FINISH: Z_FINISH$1, Z_BLOCK, Z_TREES,
 | 
						|
  Z_OK: Z_OK$1, Z_STREAM_END: Z_STREAM_END$1, Z_NEED_DICT: Z_NEED_DICT$1, Z_STREAM_ERROR: Z_STREAM_ERROR$1, Z_DATA_ERROR: Z_DATA_ERROR$1, Z_MEM_ERROR: Z_MEM_ERROR$1, Z_BUF_ERROR,
 | 
						|
  Z_DEFLATED
 | 
						|
} = constants$2;
 | 
						|
 | 
						|
 | 
						|
/* STATES ====================================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
 | 
						|
const    HEAD = 16180;       /* i: waiting for magic header */
 | 
						|
const    FLAGS = 16181;      /* i: waiting for method and flags (gzip) */
 | 
						|
const    TIME = 16182;       /* i: waiting for modification time (gzip) */
 | 
						|
const    OS = 16183;         /* i: waiting for extra flags and operating system (gzip) */
 | 
						|
const    EXLEN = 16184;      /* i: waiting for extra length (gzip) */
 | 
						|
const    EXTRA = 16185;      /* i: waiting for extra bytes (gzip) */
 | 
						|
const    NAME = 16186;       /* i: waiting for end of file name (gzip) */
 | 
						|
const    COMMENT = 16187;    /* i: waiting for end of comment (gzip) */
 | 
						|
const    HCRC = 16188;       /* i: waiting for header crc (gzip) */
 | 
						|
const    DICTID = 16189;    /* i: waiting for dictionary check value */
 | 
						|
const    DICT = 16190;      /* waiting for inflateSetDictionary() call */
 | 
						|
const        TYPE = 16191;      /* i: waiting for type bits, including last-flag bit */
 | 
						|
const        TYPEDO = 16192;    /* i: same, but skip check to exit inflate on new block */
 | 
						|
const        STORED = 16193;    /* i: waiting for stored size (length and complement) */
 | 
						|
const        COPY_ = 16194;     /* i/o: same as COPY below, but only first time in */
 | 
						|
const        COPY = 16195;      /* i/o: waiting for input or output to copy stored block */
 | 
						|
const        TABLE = 16196;     /* i: waiting for dynamic block table lengths */
 | 
						|
const        LENLENS = 16197;   /* i: waiting for code length code lengths */
 | 
						|
const        CODELENS = 16198;  /* i: waiting for length/lit and distance code lengths */
 | 
						|
const            LEN_ = 16199;      /* i: same as LEN below, but only first time in */
 | 
						|
const            LEN = 16200;       /* i: waiting for length/lit/eob code */
 | 
						|
const            LENEXT = 16201;    /* i: waiting for length extra bits */
 | 
						|
const            DIST = 16202;      /* i: waiting for distance code */
 | 
						|
const            DISTEXT = 16203;   /* i: waiting for distance extra bits */
 | 
						|
const            MATCH = 16204;     /* o: waiting for output space to copy string */
 | 
						|
const            LIT = 16205;       /* o: waiting for output space to write literal */
 | 
						|
const    CHECK = 16206;     /* i: waiting for 32-bit check value */
 | 
						|
const    LENGTH = 16207;    /* i: waiting for 32-bit length (gzip) */
 | 
						|
const    DONE = 16208;      /* finished check, done -- remain here until reset */
 | 
						|
const    BAD = 16209;       /* got a data error -- remain here until reset */
 | 
						|
const    MEM = 16210;       /* got an inflate() memory error -- remain here until reset */
 | 
						|
const    SYNC = 16211;      /* looking for synchronization bytes to restart inflate() */
 | 
						|
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
const ENOUGH_LENS = 852;
 | 
						|
const ENOUGH_DISTS = 592;
 | 
						|
//const ENOUGH =  (ENOUGH_LENS+ENOUGH_DISTS);
 | 
						|
 | 
						|
const MAX_WBITS = 15;
 | 
						|
/* 32K LZ77 window */
 | 
						|
const DEF_WBITS = MAX_WBITS;
 | 
						|
 | 
						|
 | 
						|
const zswap32 = (q) => {
 | 
						|
 | 
						|
  return  (((q >>> 24) & 0xff) +
 | 
						|
          ((q >>> 8) & 0xff00) +
 | 
						|
          ((q & 0xff00) << 8) +
 | 
						|
          ((q & 0xff) << 24));
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
function InflateState() {
 | 
						|
  this.strm = null;           /* pointer back to this zlib stream */
 | 
						|
  this.mode = 0;              /* current inflate mode */
 | 
						|
  this.last = false;          /* true if processing last block */
 | 
						|
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip,
 | 
						|
                                 bit 2 true to validate check value */
 | 
						|
  this.havedict = false;      /* true if dictionary provided */
 | 
						|
  this.flags = 0;             /* gzip header method and flags (0 if zlib), or
 | 
						|
                                 -1 if raw or no header yet */
 | 
						|
  this.dmax = 0;              /* zlib header max distance (INFLATE_STRICT) */
 | 
						|
  this.check = 0;             /* protected copy of check value */
 | 
						|
  this.total = 0;             /* protected copy of output count */
 | 
						|
  // TODO: may be {}
 | 
						|
  this.head = null;           /* where to save gzip header information */
 | 
						|
 | 
						|
  /* sliding window */
 | 
						|
  this.wbits = 0;             /* log base 2 of requested window size */
 | 
						|
  this.wsize = 0;             /* window size or zero if not using window */
 | 
						|
  this.whave = 0;             /* valid bytes in the window */
 | 
						|
  this.wnext = 0;             /* window write index */
 | 
						|
  this.window = null;         /* allocated sliding window, if needed */
 | 
						|
 | 
						|
  /* bit accumulator */
 | 
						|
  this.hold = 0;              /* input bit accumulator */
 | 
						|
  this.bits = 0;              /* number of bits in "in" */
 | 
						|
 | 
						|
  /* for string and stored block copying */
 | 
						|
  this.length = 0;            /* literal or length of data to copy */
 | 
						|
  this.offset = 0;            /* distance back to copy string from */
 | 
						|
 | 
						|
  /* for table and code decoding */
 | 
						|
  this.extra = 0;             /* extra bits needed */
 | 
						|
 | 
						|
  /* fixed and dynamic code tables */
 | 
						|
  this.lencode = null;          /* starting table for length/literal codes */
 | 
						|
  this.distcode = null;         /* starting table for distance codes */
 | 
						|
  this.lenbits = 0;           /* index bits for lencode */
 | 
						|
  this.distbits = 0;          /* index bits for distcode */
 | 
						|
 | 
						|
  /* dynamic table building */
 | 
						|
  this.ncode = 0;             /* number of code length code lengths */
 | 
						|
  this.nlen = 0;              /* number of length code lengths */
 | 
						|
  this.ndist = 0;             /* number of distance code lengths */
 | 
						|
  this.have = 0;              /* number of code lengths in lens[] */
 | 
						|
  this.next = null;              /* next available space in codes[] */
 | 
						|
 | 
						|
  this.lens = new Uint16Array(320); /* temporary storage for code lengths */
 | 
						|
  this.work = new Uint16Array(288); /* work area for code table building */
 | 
						|
 | 
						|
  /*
 | 
						|
   because we don't have pointers in js, we use lencode and distcode directly
 | 
						|
   as buffers so we don't need codes
 | 
						|
  */
 | 
						|
  //this.codes = new Int32Array(ENOUGH);       /* space for code tables */
 | 
						|
  this.lendyn = null;              /* dynamic table for length/literal codes (JS specific) */
 | 
						|
  this.distdyn = null;             /* dynamic table for distance codes (JS specific) */
 | 
						|
  this.sane = 0;                   /* if false, allow invalid distance too far */
 | 
						|
  this.back = 0;                   /* bits back of last unprocessed length/lit */
 | 
						|
  this.was = 0;                    /* initial length of match */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const inflateStateCheck = (strm) => {
 | 
						|
 | 
						|
  if (!strm) {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  const state = strm.state;
 | 
						|
  if (!state || state.strm !== strm ||
 | 
						|
    state.mode < HEAD || state.mode > SYNC) {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateResetKeep = (strm) => {
 | 
						|
 | 
						|
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; }
 | 
						|
  const state = strm.state;
 | 
						|
  strm.total_in = strm.total_out = state.total = 0;
 | 
						|
  strm.msg = ''; /*Z_NULL*/
 | 
						|
  if (state.wrap) {       /* to support ill-conceived Java test suite */
 | 
						|
    strm.adler = state.wrap & 1;
 | 
						|
  }
 | 
						|
  state.mode = HEAD;
 | 
						|
  state.last = 0;
 | 
						|
  state.havedict = 0;
 | 
						|
  state.flags = -1;
 | 
						|
  state.dmax = 32768;
 | 
						|
  state.head = null/*Z_NULL*/;
 | 
						|
  state.hold = 0;
 | 
						|
  state.bits = 0;
 | 
						|
  //state.lencode = state.distcode = state.next = state.codes;
 | 
						|
  state.lencode = state.lendyn = new Int32Array(ENOUGH_LENS);
 | 
						|
  state.distcode = state.distdyn = new Int32Array(ENOUGH_DISTS);
 | 
						|
 | 
						|
  state.sane = 1;
 | 
						|
  state.back = -1;
 | 
						|
  //Tracev((stderr, "inflate: reset\n"));
 | 
						|
  return Z_OK$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateReset = (strm) => {
 | 
						|
 | 
						|
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; }
 | 
						|
  const state = strm.state;
 | 
						|
  state.wsize = 0;
 | 
						|
  state.whave = 0;
 | 
						|
  state.wnext = 0;
 | 
						|
  return inflateResetKeep(strm);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateReset2 = (strm, windowBits) => {
 | 
						|
  let wrap;
 | 
						|
 | 
						|
  /* get the state */
 | 
						|
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; }
 | 
						|
  const state = strm.state;
 | 
						|
 | 
						|
  /* extract wrap request from windowBits parameter */
 | 
						|
  if (windowBits < 0) {
 | 
						|
    wrap = 0;
 | 
						|
    windowBits = -windowBits;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    wrap = (windowBits >> 4) + 5;
 | 
						|
    if (windowBits < 48) {
 | 
						|
      windowBits &= 15;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* set number of window bits, free window if different */
 | 
						|
  if (windowBits && (windowBits < 8 || windowBits > 15)) {
 | 
						|
    return Z_STREAM_ERROR$1;
 | 
						|
  }
 | 
						|
  if (state.window !== null && state.wbits !== windowBits) {
 | 
						|
    state.window = null;
 | 
						|
  }
 | 
						|
 | 
						|
  /* update state and reset the rest of it */
 | 
						|
  state.wrap = wrap;
 | 
						|
  state.wbits = windowBits;
 | 
						|
  return inflateReset(strm);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateInit2 = (strm, windowBits) => {
 | 
						|
 | 
						|
  if (!strm) { return Z_STREAM_ERROR$1; }
 | 
						|
  //strm.msg = Z_NULL;                 /* in case we return an error */
 | 
						|
 | 
						|
  const state = new InflateState();
 | 
						|
 | 
						|
  //if (state === Z_NULL) return Z_MEM_ERROR;
 | 
						|
  //Tracev((stderr, "inflate: allocated\n"));
 | 
						|
  strm.state = state;
 | 
						|
  state.strm = strm;
 | 
						|
  state.window = null/*Z_NULL*/;
 | 
						|
  state.mode = HEAD;     /* to pass state test in inflateReset2() */
 | 
						|
  const ret = inflateReset2(strm, windowBits);
 | 
						|
  if (ret !== Z_OK$1) {
 | 
						|
    strm.state = null/*Z_NULL*/;
 | 
						|
  }
 | 
						|
  return ret;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateInit = (strm) => {
 | 
						|
 | 
						|
  return inflateInit2(strm, DEF_WBITS);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 Return state with length and distance decoding tables and index sizes set to
 | 
						|
 fixed code decoding.  Normally this returns fixed tables from inffixed.h.
 | 
						|
 If BUILDFIXED is defined, then instead this routine builds the tables the
 | 
						|
 first time it's called, and returns those tables the first time and
 | 
						|
 thereafter.  This reduces the size of the code by about 2K bytes, in
 | 
						|
 exchange for a little execution time.  However, BUILDFIXED should not be
 | 
						|
 used for threaded applications, since the rewriting of the tables and virgin
 | 
						|
 may not be thread-safe.
 | 
						|
 */
 | 
						|
let virgin = true;
 | 
						|
 | 
						|
let lenfix, distfix; // We have no pointers in JS, so keep tables separate
 | 
						|
 | 
						|
 | 
						|
const fixedtables = (state) => {
 | 
						|
 | 
						|
  /* build fixed huffman tables if first call (may not be thread safe) */
 | 
						|
  if (virgin) {
 | 
						|
    lenfix = new Int32Array(512);
 | 
						|
    distfix = new Int32Array(32);
 | 
						|
 | 
						|
    /* literal/length table */
 | 
						|
    let sym = 0;
 | 
						|
    while (sym < 144) { state.lens[sym++] = 8; }
 | 
						|
    while (sym < 256) { state.lens[sym++] = 9; }
 | 
						|
    while (sym < 280) { state.lens[sym++] = 7; }
 | 
						|
    while (sym < 288) { state.lens[sym++] = 8; }
 | 
						|
 | 
						|
    inftrees(LENS,  state.lens, 0, 288, lenfix,   0, state.work, { bits: 9 });
 | 
						|
 | 
						|
    /* distance table */
 | 
						|
    sym = 0;
 | 
						|
    while (sym < 32) { state.lens[sym++] = 5; }
 | 
						|
 | 
						|
    inftrees(DISTS, state.lens, 0, 32,   distfix, 0, state.work, { bits: 5 });
 | 
						|
 | 
						|
    /* do this just once */
 | 
						|
    virgin = false;
 | 
						|
  }
 | 
						|
 | 
						|
  state.lencode = lenfix;
 | 
						|
  state.lenbits = 9;
 | 
						|
  state.distcode = distfix;
 | 
						|
  state.distbits = 5;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 Update the window with the last wsize (normally 32K) bytes written before
 | 
						|
 returning.  If window does not exist yet, create it.  This is only called
 | 
						|
 when a window is already in use, or when output has been written during this
 | 
						|
 inflate call, but the end of the deflate stream has not been reached yet.
 | 
						|
 It is also called to create a window for dictionary data when a dictionary
 | 
						|
 is loaded.
 | 
						|
 | 
						|
 Providing output buffers larger than 32K to inflate() should provide a speed
 | 
						|
 advantage, since only the last 32K of output is copied to the sliding window
 | 
						|
 upon return from inflate(), and since all distances after the first 32K of
 | 
						|
 output will fall in the output data, making match copies simpler and faster.
 | 
						|
 The advantage may be dependent on the size of the processor's data caches.
 | 
						|
 */
 | 
						|
const updatewindow = (strm, src, end, copy) => {
 | 
						|
 | 
						|
  let dist;
 | 
						|
  const state = strm.state;
 | 
						|
 | 
						|
  /* if it hasn't been done already, allocate space for the window */
 | 
						|
  if (state.window === null) {
 | 
						|
    state.wsize = 1 << state.wbits;
 | 
						|
    state.wnext = 0;
 | 
						|
    state.whave = 0;
 | 
						|
 | 
						|
    state.window = new Uint8Array(state.wsize);
 | 
						|
  }
 | 
						|
 | 
						|
  /* copy state->wsize or less output bytes into the circular window */
 | 
						|
  if (copy >= state.wsize) {
 | 
						|
    state.window.set(src.subarray(end - state.wsize, end), 0);
 | 
						|
    state.wnext = 0;
 | 
						|
    state.whave = state.wsize;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    dist = state.wsize - state.wnext;
 | 
						|
    if (dist > copy) {
 | 
						|
      dist = copy;
 | 
						|
    }
 | 
						|
    //zmemcpy(state->window + state->wnext, end - copy, dist);
 | 
						|
    state.window.set(src.subarray(end - copy, end - copy + dist), state.wnext);
 | 
						|
    copy -= dist;
 | 
						|
    if (copy) {
 | 
						|
      //zmemcpy(state->window, end - copy, copy);
 | 
						|
      state.window.set(src.subarray(end - copy, end), 0);
 | 
						|
      state.wnext = copy;
 | 
						|
      state.whave = state.wsize;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      state.wnext += dist;
 | 
						|
      if (state.wnext === state.wsize) { state.wnext = 0; }
 | 
						|
      if (state.whave < state.wsize) { state.whave += dist; }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflate$2 = (strm, flush) => {
 | 
						|
 | 
						|
  let state;
 | 
						|
  let input, output;          // input/output buffers
 | 
						|
  let next;                   /* next input INDEX */
 | 
						|
  let put;                    /* next output INDEX */
 | 
						|
  let have, left;             /* available input and output */
 | 
						|
  let hold;                   /* bit buffer */
 | 
						|
  let bits;                   /* bits in bit buffer */
 | 
						|
  let _in, _out;              /* save starting available input and output */
 | 
						|
  let copy;                   /* number of stored or match bytes to copy */
 | 
						|
  let from;                   /* where to copy match bytes from */
 | 
						|
  let from_source;
 | 
						|
  let here = 0;               /* current decoding table entry */
 | 
						|
  let here_bits, here_op, here_val; // paked "here" denormalized (JS specific)
 | 
						|
  //let last;                   /* parent table entry */
 | 
						|
  let last_bits, last_op, last_val; // paked "last" denormalized (JS specific)
 | 
						|
  let len;                    /* length to copy for repeats, bits to drop */
 | 
						|
  let ret;                    /* return code */
 | 
						|
  const hbuf = new Uint8Array(4);    /* buffer for gzip header crc calculation */
 | 
						|
  let opts;
 | 
						|
 | 
						|
  let n; // temporary variable for NEED_BITS
 | 
						|
 | 
						|
  const order = /* permutation of code lengths */
 | 
						|
    new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]);
 | 
						|
 | 
						|
 | 
						|
  if (inflateStateCheck(strm) || !strm.output ||
 | 
						|
      (!strm.input && strm.avail_in !== 0)) {
 | 
						|
    return Z_STREAM_ERROR$1;
 | 
						|
  }
 | 
						|
 | 
						|
  state = strm.state;
 | 
						|
  if (state.mode === TYPE) { state.mode = TYPEDO; }    /* skip check */
 | 
						|
 | 
						|
 | 
						|
  //--- LOAD() ---
 | 
						|
  put = strm.next_out;
 | 
						|
  output = strm.output;
 | 
						|
  left = strm.avail_out;
 | 
						|
  next = strm.next_in;
 | 
						|
  input = strm.input;
 | 
						|
  have = strm.avail_in;
 | 
						|
  hold = state.hold;
 | 
						|
  bits = state.bits;
 | 
						|
  //---
 | 
						|
 | 
						|
  _in = have;
 | 
						|
  _out = left;
 | 
						|
  ret = Z_OK$1;
 | 
						|
 | 
						|
  inf_leave: // goto emulation
 | 
						|
  for (;;) {
 | 
						|
    switch (state.mode) {
 | 
						|
      case HEAD:
 | 
						|
        if (state.wrap === 0) {
 | 
						|
          state.mode = TYPEDO;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //=== NEEDBITS(16);
 | 
						|
        while (bits < 16) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        if ((state.wrap & 2) && hold === 0x8b1f) {  /* gzip header */
 | 
						|
          if (state.wbits === 0) {
 | 
						|
            state.wbits = 15;
 | 
						|
          }
 | 
						|
          state.check = 0/*crc32(0L, Z_NULL, 0)*/;
 | 
						|
          //=== CRC2(state.check, hold);
 | 
						|
          hbuf[0] = hold & 0xff;
 | 
						|
          hbuf[1] = (hold >>> 8) & 0xff;
 | 
						|
          state.check = crc32_1(state.check, hbuf, 2, 0);
 | 
						|
          //===//
 | 
						|
 | 
						|
          //=== INITBITS();
 | 
						|
          hold = 0;
 | 
						|
          bits = 0;
 | 
						|
          //===//
 | 
						|
          state.mode = FLAGS;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (state.head) {
 | 
						|
          state.head.done = false;
 | 
						|
        }
 | 
						|
        if (!(state.wrap & 1) ||   /* check if zlib header allowed */
 | 
						|
          (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {
 | 
						|
          strm.msg = 'incorrect header check';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {
 | 
						|
          strm.msg = 'unknown compression method';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //--- DROPBITS(4) ---//
 | 
						|
        hold >>>= 4;
 | 
						|
        bits -= 4;
 | 
						|
        //---//
 | 
						|
        len = (hold & 0x0f)/*BITS(4)*/ + 8;
 | 
						|
        if (state.wbits === 0) {
 | 
						|
          state.wbits = len;
 | 
						|
        }
 | 
						|
        if (len > 15 || len > state.wbits) {
 | 
						|
          strm.msg = 'invalid window size';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // !!! pako patch. Force use `options.windowBits` if passed.
 | 
						|
        // Required to always use max window size by default.
 | 
						|
        state.dmax = 1 << state.wbits;
 | 
						|
        //state.dmax = 1 << len;
 | 
						|
 | 
						|
        state.flags = 0;               /* indicate zlib header */
 | 
						|
        //Tracev((stderr, "inflate:   zlib header ok\n"));
 | 
						|
        strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
 | 
						|
        state.mode = hold & 0x200 ? DICTID : TYPE;
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        break;
 | 
						|
      case FLAGS:
 | 
						|
        //=== NEEDBITS(16); */
 | 
						|
        while (bits < 16) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        state.flags = hold;
 | 
						|
        if ((state.flags & 0xff) !== Z_DEFLATED) {
 | 
						|
          strm.msg = 'unknown compression method';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (state.flags & 0xe000) {
 | 
						|
          strm.msg = 'unknown header flags set';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (state.head) {
 | 
						|
          state.head.text = ((hold >> 8) & 1);
 | 
						|
        }
 | 
						|
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
          //=== CRC2(state.check, hold);
 | 
						|
          hbuf[0] = hold & 0xff;
 | 
						|
          hbuf[1] = (hold >>> 8) & 0xff;
 | 
						|
          state.check = crc32_1(state.check, hbuf, 2, 0);
 | 
						|
          //===//
 | 
						|
        }
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        state.mode = TIME;
 | 
						|
        /* falls through */
 | 
						|
      case TIME:
 | 
						|
        //=== NEEDBITS(32); */
 | 
						|
        while (bits < 32) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        if (state.head) {
 | 
						|
          state.head.time = hold;
 | 
						|
        }
 | 
						|
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
          //=== CRC4(state.check, hold)
 | 
						|
          hbuf[0] = hold & 0xff;
 | 
						|
          hbuf[1] = (hold >>> 8) & 0xff;
 | 
						|
          hbuf[2] = (hold >>> 16) & 0xff;
 | 
						|
          hbuf[3] = (hold >>> 24) & 0xff;
 | 
						|
          state.check = crc32_1(state.check, hbuf, 4, 0);
 | 
						|
          //===
 | 
						|
        }
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        state.mode = OS;
 | 
						|
        /* falls through */
 | 
						|
      case OS:
 | 
						|
        //=== NEEDBITS(16); */
 | 
						|
        while (bits < 16) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        if (state.head) {
 | 
						|
          state.head.xflags = (hold & 0xff);
 | 
						|
          state.head.os = (hold >> 8);
 | 
						|
        }
 | 
						|
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
          //=== CRC2(state.check, hold);
 | 
						|
          hbuf[0] = hold & 0xff;
 | 
						|
          hbuf[1] = (hold >>> 8) & 0xff;
 | 
						|
          state.check = crc32_1(state.check, hbuf, 2, 0);
 | 
						|
          //===//
 | 
						|
        }
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        state.mode = EXLEN;
 | 
						|
        /* falls through */
 | 
						|
      case EXLEN:
 | 
						|
        if (state.flags & 0x0400) {
 | 
						|
          //=== NEEDBITS(16); */
 | 
						|
          while (bits < 16) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          state.length = hold;
 | 
						|
          if (state.head) {
 | 
						|
            state.head.extra_len = hold;
 | 
						|
          }
 | 
						|
          if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
            //=== CRC2(state.check, hold);
 | 
						|
            hbuf[0] = hold & 0xff;
 | 
						|
            hbuf[1] = (hold >>> 8) & 0xff;
 | 
						|
            state.check = crc32_1(state.check, hbuf, 2, 0);
 | 
						|
            //===//
 | 
						|
          }
 | 
						|
          //=== INITBITS();
 | 
						|
          hold = 0;
 | 
						|
          bits = 0;
 | 
						|
          //===//
 | 
						|
        }
 | 
						|
        else if (state.head) {
 | 
						|
          state.head.extra = null/*Z_NULL*/;
 | 
						|
        }
 | 
						|
        state.mode = EXTRA;
 | 
						|
        /* falls through */
 | 
						|
      case EXTRA:
 | 
						|
        if (state.flags & 0x0400) {
 | 
						|
          copy = state.length;
 | 
						|
          if (copy > have) { copy = have; }
 | 
						|
          if (copy) {
 | 
						|
            if (state.head) {
 | 
						|
              len = state.head.extra_len - state.length;
 | 
						|
              if (!state.head.extra) {
 | 
						|
                // Use untyped array for more convenient processing later
 | 
						|
                state.head.extra = new Uint8Array(state.head.extra_len);
 | 
						|
              }
 | 
						|
              state.head.extra.set(
 | 
						|
                input.subarray(
 | 
						|
                  next,
 | 
						|
                  // extra field is limited to 65536 bytes
 | 
						|
                  // - no need for additional size check
 | 
						|
                  next + copy
 | 
						|
                ),
 | 
						|
                /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/
 | 
						|
                len
 | 
						|
              );
 | 
						|
              //zmemcpy(state.head.extra + len, next,
 | 
						|
              //        len + copy > state.head.extra_max ?
 | 
						|
              //        state.head.extra_max - len : copy);
 | 
						|
            }
 | 
						|
            if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
              state.check = crc32_1(state.check, input, copy, next);
 | 
						|
            }
 | 
						|
            have -= copy;
 | 
						|
            next += copy;
 | 
						|
            state.length -= copy;
 | 
						|
          }
 | 
						|
          if (state.length) { break inf_leave; }
 | 
						|
        }
 | 
						|
        state.length = 0;
 | 
						|
        state.mode = NAME;
 | 
						|
        /* falls through */
 | 
						|
      case NAME:
 | 
						|
        if (state.flags & 0x0800) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          copy = 0;
 | 
						|
          do {
 | 
						|
            // TODO: 2 or 1 bytes?
 | 
						|
            len = input[next + copy++];
 | 
						|
            /* use constant limit because in js we should not preallocate memory */
 | 
						|
            if (state.head && len &&
 | 
						|
                (state.length < 65536 /*state.head.name_max*/)) {
 | 
						|
              state.head.name += String.fromCharCode(len);
 | 
						|
            }
 | 
						|
          } while (len && copy < have);
 | 
						|
 | 
						|
          if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
            state.check = crc32_1(state.check, input, copy, next);
 | 
						|
          }
 | 
						|
          have -= copy;
 | 
						|
          next += copy;
 | 
						|
          if (len) { break inf_leave; }
 | 
						|
        }
 | 
						|
        else if (state.head) {
 | 
						|
          state.head.name = null;
 | 
						|
        }
 | 
						|
        state.length = 0;
 | 
						|
        state.mode = COMMENT;
 | 
						|
        /* falls through */
 | 
						|
      case COMMENT:
 | 
						|
        if (state.flags & 0x1000) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          copy = 0;
 | 
						|
          do {
 | 
						|
            len = input[next + copy++];
 | 
						|
            /* use constant limit because in js we should not preallocate memory */
 | 
						|
            if (state.head && len &&
 | 
						|
                (state.length < 65536 /*state.head.comm_max*/)) {
 | 
						|
              state.head.comment += String.fromCharCode(len);
 | 
						|
            }
 | 
						|
          } while (len && copy < have);
 | 
						|
          if ((state.flags & 0x0200) && (state.wrap & 4)) {
 | 
						|
            state.check = crc32_1(state.check, input, copy, next);
 | 
						|
          }
 | 
						|
          have -= copy;
 | 
						|
          next += copy;
 | 
						|
          if (len) { break inf_leave; }
 | 
						|
        }
 | 
						|
        else if (state.head) {
 | 
						|
          state.head.comment = null;
 | 
						|
        }
 | 
						|
        state.mode = HCRC;
 | 
						|
        /* falls through */
 | 
						|
      case HCRC:
 | 
						|
        if (state.flags & 0x0200) {
 | 
						|
          //=== NEEDBITS(16); */
 | 
						|
          while (bits < 16) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          if ((state.wrap & 4) && hold !== (state.check & 0xffff)) {
 | 
						|
            strm.msg = 'header crc mismatch';
 | 
						|
            state.mode = BAD;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          //=== INITBITS();
 | 
						|
          hold = 0;
 | 
						|
          bits = 0;
 | 
						|
          //===//
 | 
						|
        }
 | 
						|
        if (state.head) {
 | 
						|
          state.head.hcrc = ((state.flags >> 9) & 1);
 | 
						|
          state.head.done = true;
 | 
						|
        }
 | 
						|
        strm.adler = state.check = 0;
 | 
						|
        state.mode = TYPE;
 | 
						|
        break;
 | 
						|
      case DICTID:
 | 
						|
        //=== NEEDBITS(32); */
 | 
						|
        while (bits < 32) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        strm.adler = state.check = zswap32(hold);
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        state.mode = DICT;
 | 
						|
        /* falls through */
 | 
						|
      case DICT:
 | 
						|
        if (state.havedict === 0) {
 | 
						|
          //--- RESTORE() ---
 | 
						|
          strm.next_out = put;
 | 
						|
          strm.avail_out = left;
 | 
						|
          strm.next_in = next;
 | 
						|
          strm.avail_in = have;
 | 
						|
          state.hold = hold;
 | 
						|
          state.bits = bits;
 | 
						|
          //---
 | 
						|
          return Z_NEED_DICT$1;
 | 
						|
        }
 | 
						|
        strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
 | 
						|
        state.mode = TYPE;
 | 
						|
        /* falls through */
 | 
						|
      case TYPE:
 | 
						|
        if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }
 | 
						|
        /* falls through */
 | 
						|
      case TYPEDO:
 | 
						|
        if (state.last) {
 | 
						|
          //--- BYTEBITS() ---//
 | 
						|
          hold >>>= bits & 7;
 | 
						|
          bits -= bits & 7;
 | 
						|
          //---//
 | 
						|
          state.mode = CHECK;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //=== NEEDBITS(3); */
 | 
						|
        while (bits < 3) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        state.last = (hold & 0x01)/*BITS(1)*/;
 | 
						|
        //--- DROPBITS(1) ---//
 | 
						|
        hold >>>= 1;
 | 
						|
        bits -= 1;
 | 
						|
        //---//
 | 
						|
 | 
						|
        switch ((hold & 0x03)/*BITS(2)*/) {
 | 
						|
          case 0:                             /* stored block */
 | 
						|
            //Tracev((stderr, "inflate:     stored block%s\n",
 | 
						|
            //        state.last ? " (last)" : ""));
 | 
						|
            state.mode = STORED;
 | 
						|
            break;
 | 
						|
          case 1:                             /* fixed block */
 | 
						|
            fixedtables(state);
 | 
						|
            //Tracev((stderr, "inflate:     fixed codes block%s\n",
 | 
						|
            //        state.last ? " (last)" : ""));
 | 
						|
            state.mode = LEN_;             /* decode codes */
 | 
						|
            if (flush === Z_TREES) {
 | 
						|
              //--- DROPBITS(2) ---//
 | 
						|
              hold >>>= 2;
 | 
						|
              bits -= 2;
 | 
						|
              //---//
 | 
						|
              break inf_leave;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case 2:                             /* dynamic block */
 | 
						|
            //Tracev((stderr, "inflate:     dynamic codes block%s\n",
 | 
						|
            //        state.last ? " (last)" : ""));
 | 
						|
            state.mode = TABLE;
 | 
						|
            break;
 | 
						|
          case 3:
 | 
						|
            strm.msg = 'invalid block type';
 | 
						|
            state.mode = BAD;
 | 
						|
        }
 | 
						|
        //--- DROPBITS(2) ---//
 | 
						|
        hold >>>= 2;
 | 
						|
        bits -= 2;
 | 
						|
        //---//
 | 
						|
        break;
 | 
						|
      case STORED:
 | 
						|
        //--- BYTEBITS() ---// /* go to byte boundary */
 | 
						|
        hold >>>= bits & 7;
 | 
						|
        bits -= bits & 7;
 | 
						|
        //---//
 | 
						|
        //=== NEEDBITS(32); */
 | 
						|
        while (bits < 32) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {
 | 
						|
          strm.msg = 'invalid stored block lengths';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        state.length = hold & 0xffff;
 | 
						|
        //Tracev((stderr, "inflate:       stored length %u\n",
 | 
						|
        //        state.length));
 | 
						|
        //=== INITBITS();
 | 
						|
        hold = 0;
 | 
						|
        bits = 0;
 | 
						|
        //===//
 | 
						|
        state.mode = COPY_;
 | 
						|
        if (flush === Z_TREES) { break inf_leave; }
 | 
						|
        /* falls through */
 | 
						|
      case COPY_:
 | 
						|
        state.mode = COPY;
 | 
						|
        /* falls through */
 | 
						|
      case COPY:
 | 
						|
        copy = state.length;
 | 
						|
        if (copy) {
 | 
						|
          if (copy > have) { copy = have; }
 | 
						|
          if (copy > left) { copy = left; }
 | 
						|
          if (copy === 0) { break inf_leave; }
 | 
						|
          //--- zmemcpy(put, next, copy); ---
 | 
						|
          output.set(input.subarray(next, next + copy), put);
 | 
						|
          //---//
 | 
						|
          have -= copy;
 | 
						|
          next += copy;
 | 
						|
          left -= copy;
 | 
						|
          put += copy;
 | 
						|
          state.length -= copy;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //Tracev((stderr, "inflate:       stored end\n"));
 | 
						|
        state.mode = TYPE;
 | 
						|
        break;
 | 
						|
      case TABLE:
 | 
						|
        //=== NEEDBITS(14); */
 | 
						|
        while (bits < 14) {
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
        }
 | 
						|
        //===//
 | 
						|
        state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;
 | 
						|
        //--- DROPBITS(5) ---//
 | 
						|
        hold >>>= 5;
 | 
						|
        bits -= 5;
 | 
						|
        //---//
 | 
						|
        state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;
 | 
						|
        //--- DROPBITS(5) ---//
 | 
						|
        hold >>>= 5;
 | 
						|
        bits -= 5;
 | 
						|
        //---//
 | 
						|
        state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;
 | 
						|
        //--- DROPBITS(4) ---//
 | 
						|
        hold >>>= 4;
 | 
						|
        bits -= 4;
 | 
						|
        //---//
 | 
						|
//#ifndef PKZIP_BUG_WORKAROUND
 | 
						|
        if (state.nlen > 286 || state.ndist > 30) {
 | 
						|
          strm.msg = 'too many length or distance symbols';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
//#endif
 | 
						|
        //Tracev((stderr, "inflate:       table sizes ok\n"));
 | 
						|
        state.have = 0;
 | 
						|
        state.mode = LENLENS;
 | 
						|
        /* falls through */
 | 
						|
      case LENLENS:
 | 
						|
        while (state.have < state.ncode) {
 | 
						|
          //=== NEEDBITS(3);
 | 
						|
          while (bits < 3) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);
 | 
						|
          //--- DROPBITS(3) ---//
 | 
						|
          hold >>>= 3;
 | 
						|
          bits -= 3;
 | 
						|
          //---//
 | 
						|
        }
 | 
						|
        while (state.have < 19) {
 | 
						|
          state.lens[order[state.have++]] = 0;
 | 
						|
        }
 | 
						|
        // We have separate tables & no pointers. 2 commented lines below not needed.
 | 
						|
        //state.next = state.codes;
 | 
						|
        //state.lencode = state.next;
 | 
						|
        // Switch to use dynamic table
 | 
						|
        state.lencode = state.lendyn;
 | 
						|
        state.lenbits = 7;
 | 
						|
 | 
						|
        opts = { bits: state.lenbits };
 | 
						|
        ret = inftrees(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);
 | 
						|
        state.lenbits = opts.bits;
 | 
						|
 | 
						|
        if (ret) {
 | 
						|
          strm.msg = 'invalid code lengths set';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //Tracev((stderr, "inflate:       code lengths ok\n"));
 | 
						|
        state.have = 0;
 | 
						|
        state.mode = CODELENS;
 | 
						|
        /* falls through */
 | 
						|
      case CODELENS:
 | 
						|
        while (state.have < state.nlen + state.ndist) {
 | 
						|
          for (;;) {
 | 
						|
            here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/
 | 
						|
            here_bits = here >>> 24;
 | 
						|
            here_op = (here >>> 16) & 0xff;
 | 
						|
            here_val = here & 0xffff;
 | 
						|
 | 
						|
            if ((here_bits) <= bits) { break; }
 | 
						|
            //--- PULLBYTE() ---//
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
            //---//
 | 
						|
          }
 | 
						|
          if (here_val < 16) {
 | 
						|
            //--- DROPBITS(here.bits) ---//
 | 
						|
            hold >>>= here_bits;
 | 
						|
            bits -= here_bits;
 | 
						|
            //---//
 | 
						|
            state.lens[state.have++] = here_val;
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            if (here_val === 16) {
 | 
						|
              //=== NEEDBITS(here.bits + 2);
 | 
						|
              n = here_bits + 2;
 | 
						|
              while (bits < n) {
 | 
						|
                if (have === 0) { break inf_leave; }
 | 
						|
                have--;
 | 
						|
                hold += input[next++] << bits;
 | 
						|
                bits += 8;
 | 
						|
              }
 | 
						|
              //===//
 | 
						|
              //--- DROPBITS(here.bits) ---//
 | 
						|
              hold >>>= here_bits;
 | 
						|
              bits -= here_bits;
 | 
						|
              //---//
 | 
						|
              if (state.have === 0) {
 | 
						|
                strm.msg = 'invalid bit length repeat';
 | 
						|
                state.mode = BAD;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
              len = state.lens[state.have - 1];
 | 
						|
              copy = 3 + (hold & 0x03);//BITS(2);
 | 
						|
              //--- DROPBITS(2) ---//
 | 
						|
              hold >>>= 2;
 | 
						|
              bits -= 2;
 | 
						|
              //---//
 | 
						|
            }
 | 
						|
            else if (here_val === 17) {
 | 
						|
              //=== NEEDBITS(here.bits + 3);
 | 
						|
              n = here_bits + 3;
 | 
						|
              while (bits < n) {
 | 
						|
                if (have === 0) { break inf_leave; }
 | 
						|
                have--;
 | 
						|
                hold += input[next++] << bits;
 | 
						|
                bits += 8;
 | 
						|
              }
 | 
						|
              //===//
 | 
						|
              //--- DROPBITS(here.bits) ---//
 | 
						|
              hold >>>= here_bits;
 | 
						|
              bits -= here_bits;
 | 
						|
              //---//
 | 
						|
              len = 0;
 | 
						|
              copy = 3 + (hold & 0x07);//BITS(3);
 | 
						|
              //--- DROPBITS(3) ---//
 | 
						|
              hold >>>= 3;
 | 
						|
              bits -= 3;
 | 
						|
              //---//
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              //=== NEEDBITS(here.bits + 7);
 | 
						|
              n = here_bits + 7;
 | 
						|
              while (bits < n) {
 | 
						|
                if (have === 0) { break inf_leave; }
 | 
						|
                have--;
 | 
						|
                hold += input[next++] << bits;
 | 
						|
                bits += 8;
 | 
						|
              }
 | 
						|
              //===//
 | 
						|
              //--- DROPBITS(here.bits) ---//
 | 
						|
              hold >>>= here_bits;
 | 
						|
              bits -= here_bits;
 | 
						|
              //---//
 | 
						|
              len = 0;
 | 
						|
              copy = 11 + (hold & 0x7f);//BITS(7);
 | 
						|
              //--- DROPBITS(7) ---//
 | 
						|
              hold >>>= 7;
 | 
						|
              bits -= 7;
 | 
						|
              //---//
 | 
						|
            }
 | 
						|
            if (state.have + copy > state.nlen + state.ndist) {
 | 
						|
              strm.msg = 'invalid bit length repeat';
 | 
						|
              state.mode = BAD;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            while (copy--) {
 | 
						|
              state.lens[state.have++] = len;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        /* handle error breaks in while */
 | 
						|
        if (state.mode === BAD) { break; }
 | 
						|
 | 
						|
        /* check for end-of-block code (better have one) */
 | 
						|
        if (state.lens[256] === 0) {
 | 
						|
          strm.msg = 'invalid code -- missing end-of-block';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* build code tables -- note: do not change the lenbits or distbits
 | 
						|
           values here (9 and 6) without reading the comments in inftrees.h
 | 
						|
           concerning the ENOUGH constants, which depend on those values */
 | 
						|
        state.lenbits = 9;
 | 
						|
 | 
						|
        opts = { bits: state.lenbits };
 | 
						|
        ret = inftrees(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);
 | 
						|
        // We have separate tables & no pointers. 2 commented lines below not needed.
 | 
						|
        // state.next_index = opts.table_index;
 | 
						|
        state.lenbits = opts.bits;
 | 
						|
        // state.lencode = state.next;
 | 
						|
 | 
						|
        if (ret) {
 | 
						|
          strm.msg = 'invalid literal/lengths set';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        state.distbits = 6;
 | 
						|
        //state.distcode.copy(state.codes);
 | 
						|
        // Switch to use dynamic table
 | 
						|
        state.distcode = state.distdyn;
 | 
						|
        opts = { bits: state.distbits };
 | 
						|
        ret = inftrees(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);
 | 
						|
        // We have separate tables & no pointers. 2 commented lines below not needed.
 | 
						|
        // state.next_index = opts.table_index;
 | 
						|
        state.distbits = opts.bits;
 | 
						|
        // state.distcode = state.next;
 | 
						|
 | 
						|
        if (ret) {
 | 
						|
          strm.msg = 'invalid distances set';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        //Tracev((stderr, 'inflate:       codes ok\n'));
 | 
						|
        state.mode = LEN_;
 | 
						|
        if (flush === Z_TREES) { break inf_leave; }
 | 
						|
        /* falls through */
 | 
						|
      case LEN_:
 | 
						|
        state.mode = LEN;
 | 
						|
        /* falls through */
 | 
						|
      case LEN:
 | 
						|
        if (have >= 6 && left >= 258) {
 | 
						|
          //--- RESTORE() ---
 | 
						|
          strm.next_out = put;
 | 
						|
          strm.avail_out = left;
 | 
						|
          strm.next_in = next;
 | 
						|
          strm.avail_in = have;
 | 
						|
          state.hold = hold;
 | 
						|
          state.bits = bits;
 | 
						|
          //---
 | 
						|
          inffast(strm, _out);
 | 
						|
          //--- LOAD() ---
 | 
						|
          put = strm.next_out;
 | 
						|
          output = strm.output;
 | 
						|
          left = strm.avail_out;
 | 
						|
          next = strm.next_in;
 | 
						|
          input = strm.input;
 | 
						|
          have = strm.avail_in;
 | 
						|
          hold = state.hold;
 | 
						|
          bits = state.bits;
 | 
						|
          //---
 | 
						|
 | 
						|
          if (state.mode === TYPE) {
 | 
						|
            state.back = -1;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        state.back = 0;
 | 
						|
        for (;;) {
 | 
						|
          here = state.lencode[hold & ((1 << state.lenbits) - 1)];  /*BITS(state.lenbits)*/
 | 
						|
          here_bits = here >>> 24;
 | 
						|
          here_op = (here >>> 16) & 0xff;
 | 
						|
          here_val = here & 0xffff;
 | 
						|
 | 
						|
          if (here_bits <= bits) { break; }
 | 
						|
          //--- PULLBYTE() ---//
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
          //---//
 | 
						|
        }
 | 
						|
        if (here_op && (here_op & 0xf0) === 0) {
 | 
						|
          last_bits = here_bits;
 | 
						|
          last_op = here_op;
 | 
						|
          last_val = here_val;
 | 
						|
          for (;;) {
 | 
						|
            here = state.lencode[last_val +
 | 
						|
                    ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
 | 
						|
            here_bits = here >>> 24;
 | 
						|
            here_op = (here >>> 16) & 0xff;
 | 
						|
            here_val = here & 0xffff;
 | 
						|
 | 
						|
            if ((last_bits + here_bits) <= bits) { break; }
 | 
						|
            //--- PULLBYTE() ---//
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
            //---//
 | 
						|
          }
 | 
						|
          //--- DROPBITS(last.bits) ---//
 | 
						|
          hold >>>= last_bits;
 | 
						|
          bits -= last_bits;
 | 
						|
          //---//
 | 
						|
          state.back += last_bits;
 | 
						|
        }
 | 
						|
        //--- DROPBITS(here.bits) ---//
 | 
						|
        hold >>>= here_bits;
 | 
						|
        bits -= here_bits;
 | 
						|
        //---//
 | 
						|
        state.back += here_bits;
 | 
						|
        state.length = here_val;
 | 
						|
        if (here_op === 0) {
 | 
						|
          //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
 | 
						|
          //        "inflate:         literal '%c'\n" :
 | 
						|
          //        "inflate:         literal 0x%02x\n", here.val));
 | 
						|
          state.mode = LIT;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (here_op & 32) {
 | 
						|
          //Tracevv((stderr, "inflate:         end of block\n"));
 | 
						|
          state.back = -1;
 | 
						|
          state.mode = TYPE;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (here_op & 64) {
 | 
						|
          strm.msg = 'invalid literal/length code';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        state.extra = here_op & 15;
 | 
						|
        state.mode = LENEXT;
 | 
						|
        /* falls through */
 | 
						|
      case LENEXT:
 | 
						|
        if (state.extra) {
 | 
						|
          //=== NEEDBITS(state.extra);
 | 
						|
          n = state.extra;
 | 
						|
          while (bits < n) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
 | 
						|
          //--- DROPBITS(state.extra) ---//
 | 
						|
          hold >>>= state.extra;
 | 
						|
          bits -= state.extra;
 | 
						|
          //---//
 | 
						|
          state.back += state.extra;
 | 
						|
        }
 | 
						|
        //Tracevv((stderr, "inflate:         length %u\n", state.length));
 | 
						|
        state.was = state.length;
 | 
						|
        state.mode = DIST;
 | 
						|
        /* falls through */
 | 
						|
      case DIST:
 | 
						|
        for (;;) {
 | 
						|
          here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/
 | 
						|
          here_bits = here >>> 24;
 | 
						|
          here_op = (here >>> 16) & 0xff;
 | 
						|
          here_val = here & 0xffff;
 | 
						|
 | 
						|
          if ((here_bits) <= bits) { break; }
 | 
						|
          //--- PULLBYTE() ---//
 | 
						|
          if (have === 0) { break inf_leave; }
 | 
						|
          have--;
 | 
						|
          hold += input[next++] << bits;
 | 
						|
          bits += 8;
 | 
						|
          //---//
 | 
						|
        }
 | 
						|
        if ((here_op & 0xf0) === 0) {
 | 
						|
          last_bits = here_bits;
 | 
						|
          last_op = here_op;
 | 
						|
          last_val = here_val;
 | 
						|
          for (;;) {
 | 
						|
            here = state.distcode[last_val +
 | 
						|
                    ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
 | 
						|
            here_bits = here >>> 24;
 | 
						|
            here_op = (here >>> 16) & 0xff;
 | 
						|
            here_val = here & 0xffff;
 | 
						|
 | 
						|
            if ((last_bits + here_bits) <= bits) { break; }
 | 
						|
            //--- PULLBYTE() ---//
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
            //---//
 | 
						|
          }
 | 
						|
          //--- DROPBITS(last.bits) ---//
 | 
						|
          hold >>>= last_bits;
 | 
						|
          bits -= last_bits;
 | 
						|
          //---//
 | 
						|
          state.back += last_bits;
 | 
						|
        }
 | 
						|
        //--- DROPBITS(here.bits) ---//
 | 
						|
        hold >>>= here_bits;
 | 
						|
        bits -= here_bits;
 | 
						|
        //---//
 | 
						|
        state.back += here_bits;
 | 
						|
        if (here_op & 64) {
 | 
						|
          strm.msg = 'invalid distance code';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        state.offset = here_val;
 | 
						|
        state.extra = (here_op) & 15;
 | 
						|
        state.mode = DISTEXT;
 | 
						|
        /* falls through */
 | 
						|
      case DISTEXT:
 | 
						|
        if (state.extra) {
 | 
						|
          //=== NEEDBITS(state.extra);
 | 
						|
          n = state.extra;
 | 
						|
          while (bits < n) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
 | 
						|
          //--- DROPBITS(state.extra) ---//
 | 
						|
          hold >>>= state.extra;
 | 
						|
          bits -= state.extra;
 | 
						|
          //---//
 | 
						|
          state.back += state.extra;
 | 
						|
        }
 | 
						|
//#ifdef INFLATE_STRICT
 | 
						|
        if (state.offset > state.dmax) {
 | 
						|
          strm.msg = 'invalid distance too far back';
 | 
						|
          state.mode = BAD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
//#endif
 | 
						|
        //Tracevv((stderr, "inflate:         distance %u\n", state.offset));
 | 
						|
        state.mode = MATCH;
 | 
						|
        /* falls through */
 | 
						|
      case MATCH:
 | 
						|
        if (left === 0) { break inf_leave; }
 | 
						|
        copy = _out - left;
 | 
						|
        if (state.offset > copy) {         /* copy from window */
 | 
						|
          copy = state.offset - copy;
 | 
						|
          if (copy > state.whave) {
 | 
						|
            if (state.sane) {
 | 
						|
              strm.msg = 'invalid distance too far back';
 | 
						|
              state.mode = BAD;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
// (!) This block is disabled in zlib defaults,
 | 
						|
// don't enable it for binary compatibility
 | 
						|
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
 | 
						|
//          Trace((stderr, "inflate.c too far\n"));
 | 
						|
//          copy -= state.whave;
 | 
						|
//          if (copy > state.length) { copy = state.length; }
 | 
						|
//          if (copy > left) { copy = left; }
 | 
						|
//          left -= copy;
 | 
						|
//          state.length -= copy;
 | 
						|
//          do {
 | 
						|
//            output[put++] = 0;
 | 
						|
//          } while (--copy);
 | 
						|
//          if (state.length === 0) { state.mode = LEN; }
 | 
						|
//          break;
 | 
						|
//#endif
 | 
						|
          }
 | 
						|
          if (copy > state.wnext) {
 | 
						|
            copy -= state.wnext;
 | 
						|
            from = state.wsize - copy;
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            from = state.wnext - copy;
 | 
						|
          }
 | 
						|
          if (copy > state.length) { copy = state.length; }
 | 
						|
          from_source = state.window;
 | 
						|
        }
 | 
						|
        else {                              /* copy from output */
 | 
						|
          from_source = output;
 | 
						|
          from = put - state.offset;
 | 
						|
          copy = state.length;
 | 
						|
        }
 | 
						|
        if (copy > left) { copy = left; }
 | 
						|
        left -= copy;
 | 
						|
        state.length -= copy;
 | 
						|
        do {
 | 
						|
          output[put++] = from_source[from++];
 | 
						|
        } while (--copy);
 | 
						|
        if (state.length === 0) { state.mode = LEN; }
 | 
						|
        break;
 | 
						|
      case LIT:
 | 
						|
        if (left === 0) { break inf_leave; }
 | 
						|
        output[put++] = state.length;
 | 
						|
        left--;
 | 
						|
        state.mode = LEN;
 | 
						|
        break;
 | 
						|
      case CHECK:
 | 
						|
        if (state.wrap) {
 | 
						|
          //=== NEEDBITS(32);
 | 
						|
          while (bits < 32) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            // Use '|' instead of '+' to make sure that result is signed
 | 
						|
            hold |= input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          _out -= left;
 | 
						|
          strm.total_out += _out;
 | 
						|
          state.total += _out;
 | 
						|
          if ((state.wrap & 4) && _out) {
 | 
						|
            strm.adler = state.check =
 | 
						|
                /*UPDATE_CHECK(state.check, put - _out, _out);*/
 | 
						|
                (state.flags ? crc32_1(state.check, output, _out, put - _out) : adler32_1(state.check, output, _out, put - _out));
 | 
						|
 | 
						|
          }
 | 
						|
          _out = left;
 | 
						|
          // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too
 | 
						|
          if ((state.wrap & 4) && (state.flags ? hold : zswap32(hold)) !== state.check) {
 | 
						|
            strm.msg = 'incorrect data check';
 | 
						|
            state.mode = BAD;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          //=== INITBITS();
 | 
						|
          hold = 0;
 | 
						|
          bits = 0;
 | 
						|
          //===//
 | 
						|
          //Tracev((stderr, "inflate:   check matches trailer\n"));
 | 
						|
        }
 | 
						|
        state.mode = LENGTH;
 | 
						|
        /* falls through */
 | 
						|
      case LENGTH:
 | 
						|
        if (state.wrap && state.flags) {
 | 
						|
          //=== NEEDBITS(32);
 | 
						|
          while (bits < 32) {
 | 
						|
            if (have === 0) { break inf_leave; }
 | 
						|
            have--;
 | 
						|
            hold += input[next++] << bits;
 | 
						|
            bits += 8;
 | 
						|
          }
 | 
						|
          //===//
 | 
						|
          if ((state.wrap & 4) && hold !== (state.total & 0xffffffff)) {
 | 
						|
            strm.msg = 'incorrect length check';
 | 
						|
            state.mode = BAD;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          //=== INITBITS();
 | 
						|
          hold = 0;
 | 
						|
          bits = 0;
 | 
						|
          //===//
 | 
						|
          //Tracev((stderr, "inflate:   length matches trailer\n"));
 | 
						|
        }
 | 
						|
        state.mode = DONE;
 | 
						|
        /* falls through */
 | 
						|
      case DONE:
 | 
						|
        ret = Z_STREAM_END$1;
 | 
						|
        break inf_leave;
 | 
						|
      case BAD:
 | 
						|
        ret = Z_DATA_ERROR$1;
 | 
						|
        break inf_leave;
 | 
						|
      case MEM:
 | 
						|
        return Z_MEM_ERROR$1;
 | 
						|
      case SYNC:
 | 
						|
        /* falls through */
 | 
						|
      default:
 | 
						|
        return Z_STREAM_ERROR$1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave"
 | 
						|
 | 
						|
  /*
 | 
						|
     Return from inflate(), updating the total counts and the check value.
 | 
						|
     If there was no progress during the inflate() call, return a buffer
 | 
						|
     error.  Call updatewindow() to create and/or update the window state.
 | 
						|
     Note: a memory error from inflate() is non-recoverable.
 | 
						|
   */
 | 
						|
 | 
						|
  //--- RESTORE() ---
 | 
						|
  strm.next_out = put;
 | 
						|
  strm.avail_out = left;
 | 
						|
  strm.next_in = next;
 | 
						|
  strm.avail_in = have;
 | 
						|
  state.hold = hold;
 | 
						|
  state.bits = bits;
 | 
						|
  //---
 | 
						|
 | 
						|
  if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&
 | 
						|
                      (state.mode < CHECK || flush !== Z_FINISH$1))) {
 | 
						|
    if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) ;
 | 
						|
  }
 | 
						|
  _in -= strm.avail_in;
 | 
						|
  _out -= strm.avail_out;
 | 
						|
  strm.total_in += _in;
 | 
						|
  strm.total_out += _out;
 | 
						|
  state.total += _out;
 | 
						|
  if ((state.wrap & 4) && _out) {
 | 
						|
    strm.adler = state.check = /*UPDATE_CHECK(state.check, strm.next_out - _out, _out);*/
 | 
						|
      (state.flags ? crc32_1(state.check, output, _out, strm.next_out - _out) : adler32_1(state.check, output, _out, strm.next_out - _out));
 | 
						|
  }
 | 
						|
  strm.data_type = state.bits + (state.last ? 64 : 0) +
 | 
						|
                    (state.mode === TYPE ? 128 : 0) +
 | 
						|
                    (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);
 | 
						|
  if (((_in === 0 && _out === 0) || flush === Z_FINISH$1) && ret === Z_OK$1) {
 | 
						|
    ret = Z_BUF_ERROR;
 | 
						|
  }
 | 
						|
  return ret;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateEnd = (strm) => {
 | 
						|
 | 
						|
  if (inflateStateCheck(strm)) {
 | 
						|
    return Z_STREAM_ERROR$1;
 | 
						|
  }
 | 
						|
 | 
						|
  let state = strm.state;
 | 
						|
  if (state.window) {
 | 
						|
    state.window = null;
 | 
						|
  }
 | 
						|
  strm.state = null;
 | 
						|
  return Z_OK$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateGetHeader = (strm, head) => {
 | 
						|
 | 
						|
  /* check state */
 | 
						|
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; }
 | 
						|
  const state = strm.state;
 | 
						|
  if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR$1; }
 | 
						|
 | 
						|
  /* save header structure */
 | 
						|
  state.head = head;
 | 
						|
  head.done = false;
 | 
						|
  return Z_OK$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
const inflateSetDictionary = (strm, dictionary) => {
 | 
						|
  const dictLength = dictionary.length;
 | 
						|
 | 
						|
  let state;
 | 
						|
  let dictid;
 | 
						|
  let ret;
 | 
						|
 | 
						|
  /* check state */
 | 
						|
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; }
 | 
						|
  state = strm.state;
 | 
						|
 | 
						|
  if (state.wrap !== 0 && state.mode !== DICT) {
 | 
						|
    return Z_STREAM_ERROR$1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* check for correct dictionary identifier */
 | 
						|
  if (state.mode === DICT) {
 | 
						|
    dictid = 1; /* adler32(0, null, 0)*/
 | 
						|
    /* dictid = adler32(dictid, dictionary, dictLength); */
 | 
						|
    dictid = adler32_1(dictid, dictionary, dictLength, 0);
 | 
						|
    if (dictid !== state.check) {
 | 
						|
      return Z_DATA_ERROR$1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* copy dictionary to window using updatewindow(), which will amend the
 | 
						|
   existing dictionary if appropriate */
 | 
						|
  ret = updatewindow(strm, dictionary, dictLength, dictLength);
 | 
						|
  if (ret) {
 | 
						|
    state.mode = MEM;
 | 
						|
    return Z_MEM_ERROR$1;
 | 
						|
  }
 | 
						|
  state.havedict = 1;
 | 
						|
  // Tracev((stderr, "inflate:   dictionary set\n"));
 | 
						|
  return Z_OK$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
var inflateReset_1 = inflateReset;
 | 
						|
var inflateReset2_1 = inflateReset2;
 | 
						|
var inflateResetKeep_1 = inflateResetKeep;
 | 
						|
var inflateInit_1 = inflateInit;
 | 
						|
var inflateInit2_1 = inflateInit2;
 | 
						|
var inflate_2$1 = inflate$2;
 | 
						|
var inflateEnd_1 = inflateEnd;
 | 
						|
var inflateGetHeader_1 = inflateGetHeader;
 | 
						|
var inflateSetDictionary_1 = inflateSetDictionary;
 | 
						|
var inflateInfo = 'pako inflate (from Nodeca project)';
 | 
						|
 | 
						|
/* Not implemented
 | 
						|
module.exports.inflateCodesUsed = inflateCodesUsed;
 | 
						|
module.exports.inflateCopy = inflateCopy;
 | 
						|
module.exports.inflateGetDictionary = inflateGetDictionary;
 | 
						|
module.exports.inflateMark = inflateMark;
 | 
						|
module.exports.inflatePrime = inflatePrime;
 | 
						|
module.exports.inflateSync = inflateSync;
 | 
						|
module.exports.inflateSyncPoint = inflateSyncPoint;
 | 
						|
module.exports.inflateUndermine = inflateUndermine;
 | 
						|
module.exports.inflateValidate = inflateValidate;
 | 
						|
*/
 | 
						|
 | 
						|
var inflate_1$2 = {
 | 
						|
	inflateReset: inflateReset_1,
 | 
						|
	inflateReset2: inflateReset2_1,
 | 
						|
	inflateResetKeep: inflateResetKeep_1,
 | 
						|
	inflateInit: inflateInit_1,
 | 
						|
	inflateInit2: inflateInit2_1,
 | 
						|
	inflate: inflate_2$1,
 | 
						|
	inflateEnd: inflateEnd_1,
 | 
						|
	inflateGetHeader: inflateGetHeader_1,
 | 
						|
	inflateSetDictionary: inflateSetDictionary_1,
 | 
						|
	inflateInfo: inflateInfo
 | 
						|
};
 | 
						|
 | 
						|
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | 
						|
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | 
						|
//
 | 
						|
// This software is provided 'as-is', without any express or implied
 | 
						|
// warranty. In no event will the authors be held liable for any damages
 | 
						|
// arising from the use of this software.
 | 
						|
//
 | 
						|
// Permission is granted to anyone to use this software for any purpose,
 | 
						|
// including commercial applications, and to alter it and redistribute it
 | 
						|
// freely, subject to the following restrictions:
 | 
						|
//
 | 
						|
// 1. The origin of this software must not be misrepresented; you must not
 | 
						|
//   claim that you wrote the original software. If you use this software
 | 
						|
//   in a product, an acknowledgment in the product documentation would be
 | 
						|
//   appreciated but is not required.
 | 
						|
// 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
//   misrepresented as being the original software.
 | 
						|
// 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 | 
						|
function GZheader() {
 | 
						|
  /* true if compressed data believed to be text */
 | 
						|
  this.text       = 0;
 | 
						|
  /* modification time */
 | 
						|
  this.time       = 0;
 | 
						|
  /* extra flags (not used when writing a gzip file) */
 | 
						|
  this.xflags     = 0;
 | 
						|
  /* operating system */
 | 
						|
  this.os         = 0;
 | 
						|
  /* pointer to extra field or Z_NULL if none */
 | 
						|
  this.extra      = null;
 | 
						|
  /* extra field length (valid if extra != Z_NULL) */
 | 
						|
  this.extra_len  = 0; // Actually, we don't need it in JS,
 | 
						|
                       // but leave for few code modifications
 | 
						|
 | 
						|
  //
 | 
						|
  // Setup limits is not necessary because in js we should not preallocate memory
 | 
						|
  // for inflate use constant limit in 65536 bytes
 | 
						|
  //
 | 
						|
 | 
						|
  /* space at extra (only when reading header) */
 | 
						|
  // this.extra_max  = 0;
 | 
						|
  /* pointer to zero-terminated file name or Z_NULL */
 | 
						|
  this.name       = '';
 | 
						|
  /* space at name (only when reading header) */
 | 
						|
  // this.name_max   = 0;
 | 
						|
  /* pointer to zero-terminated comment or Z_NULL */
 | 
						|
  this.comment    = '';
 | 
						|
  /* space at comment (only when reading header) */
 | 
						|
  // this.comm_max   = 0;
 | 
						|
  /* true if there was or will be a header crc */
 | 
						|
  this.hcrc       = 0;
 | 
						|
  /* true when done reading gzip header (not used when writing a gzip file) */
 | 
						|
  this.done       = false;
 | 
						|
}
 | 
						|
 | 
						|
var gzheader = GZheader;
 | 
						|
 | 
						|
const toString = Object.prototype.toString;
 | 
						|
 | 
						|
/* Public constants ==========================================================*/
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
const {
 | 
						|
  Z_NO_FLUSH, Z_FINISH,
 | 
						|
  Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR
 | 
						|
} = constants$2;
 | 
						|
 | 
						|
/* ===========================================================================*/
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * class Inflate
 | 
						|
 *
 | 
						|
 * Generic JS-style wrapper for zlib calls. If you don't need
 | 
						|
 * streaming behaviour - use more simple functions: [[inflate]]
 | 
						|
 * and [[inflateRaw]].
 | 
						|
 **/
 | 
						|
 | 
						|
/* internal
 | 
						|
 * inflate.chunks -> Array
 | 
						|
 *
 | 
						|
 * Chunks of output data, if [[Inflate#onData]] not overridden.
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate.result -> Uint8Array|String
 | 
						|
 *
 | 
						|
 * Uncompressed result, generated by default [[Inflate#onData]]
 | 
						|
 * and [[Inflate#onEnd]] handlers. Filled after you push last chunk
 | 
						|
 * (call [[Inflate#push]] with `Z_FINISH` / `true` param).
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate.err -> Number
 | 
						|
 *
 | 
						|
 * Error code after inflate finished. 0 (Z_OK) on success.
 | 
						|
 * Should be checked if broken data possible.
 | 
						|
 **/
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate.msg -> String
 | 
						|
 *
 | 
						|
 * Error message, if [[Inflate.err]] != 0
 | 
						|
 **/
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * new Inflate(options)
 | 
						|
 * - options (Object): zlib inflate options.
 | 
						|
 *
 | 
						|
 * Creates new inflator instance with specified params. Throws exception
 | 
						|
 * on bad params. Supported options:
 | 
						|
 *
 | 
						|
 * - `windowBits`
 | 
						|
 * - `dictionary`
 | 
						|
 *
 | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | 
						|
 * for more information on these.
 | 
						|
 *
 | 
						|
 * Additional options, for internal needs:
 | 
						|
 *
 | 
						|
 * - `chunkSize` - size of generated data chunks (16K by default)
 | 
						|
 * - `raw` (Boolean) - do raw inflate
 | 
						|
 * - `to` (String) - if equal to 'string', then result will be converted
 | 
						|
 *   from utf8 to utf16 (javascript) string. When string output requested,
 | 
						|
 *   chunk length can differ from `chunkSize`, depending on content.
 | 
						|
 *
 | 
						|
 * By default, when no options set, autodetect deflate/gzip data format via
 | 
						|
 * wrapper header.
 | 
						|
 *
 | 
						|
 * ##### Example:
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * const pako = require('pako')
 | 
						|
 * const chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
 | 
						|
 * const chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 | 
						|
 *
 | 
						|
 * const inflate = new pako.Inflate({ level: 3});
 | 
						|
 *
 | 
						|
 * inflate.push(chunk1, false);
 | 
						|
 * inflate.push(chunk2, true);  // true -> last chunk
 | 
						|
 *
 | 
						|
 * if (inflate.err) { throw new Error(inflate.err); }
 | 
						|
 *
 | 
						|
 * console.log(inflate.result);
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
function Inflate$1(options) {
 | 
						|
  this.options = common.assign({
 | 
						|
    chunkSize: 1024 * 64,
 | 
						|
    windowBits: 15,
 | 
						|
    to: ''
 | 
						|
  }, options || {});
 | 
						|
 | 
						|
  const opt = this.options;
 | 
						|
 | 
						|
  // Force window size for `raw` data, if not set directly,
 | 
						|
  // because we have no header for autodetect.
 | 
						|
  if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {
 | 
						|
    opt.windowBits = -opt.windowBits;
 | 
						|
    if (opt.windowBits === 0) { opt.windowBits = -15; }
 | 
						|
  }
 | 
						|
 | 
						|
  // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate
 | 
						|
  if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&
 | 
						|
      !(options && options.windowBits)) {
 | 
						|
    opt.windowBits += 32;
 | 
						|
  }
 | 
						|
 | 
						|
  // Gzip header has no info about windows size, we can do autodetect only
 | 
						|
  // for deflate. So, if window size not set, force it to max when gzip possible
 | 
						|
  if ((opt.windowBits > 15) && (opt.windowBits < 48)) {
 | 
						|
    // bit 3 (16) -> gzipped data
 | 
						|
    // bit 4 (32) -> autodetect gzip/deflate
 | 
						|
    if ((opt.windowBits & 15) === 0) {
 | 
						|
      opt.windowBits |= 15;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  this.err    = 0;      // error code, if happens (0 = Z_OK)
 | 
						|
  this.msg    = '';     // error message
 | 
						|
  this.ended  = false;  // used to avoid multiple onEnd() calls
 | 
						|
  this.chunks = [];     // chunks of compressed data
 | 
						|
 | 
						|
  this.strm   = new zstream();
 | 
						|
  this.strm.avail_out = 0;
 | 
						|
 | 
						|
  let status  = inflate_1$2.inflateInit2(
 | 
						|
    this.strm,
 | 
						|
    opt.windowBits
 | 
						|
  );
 | 
						|
 | 
						|
  if (status !== Z_OK) {
 | 
						|
    throw new Error(messages[status]);
 | 
						|
  }
 | 
						|
 | 
						|
  this.header = new gzheader();
 | 
						|
 | 
						|
  inflate_1$2.inflateGetHeader(this.strm, this.header);
 | 
						|
 | 
						|
  // Setup dictionary
 | 
						|
  if (opt.dictionary) {
 | 
						|
    // Convert data if needed
 | 
						|
    if (typeof opt.dictionary === 'string') {
 | 
						|
      opt.dictionary = strings.string2buf(opt.dictionary);
 | 
						|
    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
 | 
						|
      opt.dictionary = new Uint8Array(opt.dictionary);
 | 
						|
    }
 | 
						|
    if (opt.raw) { //In raw mode we need to set the dictionary early
 | 
						|
      status = inflate_1$2.inflateSetDictionary(this.strm, opt.dictionary);
 | 
						|
      if (status !== Z_OK) {
 | 
						|
        throw new Error(messages[status]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate#push(data[, flush_mode]) -> Boolean
 | 
						|
 * - data (Uint8Array|ArrayBuffer): input data
 | 
						|
 * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE
 | 
						|
 *   flush modes. See constants. Skipped or `false` means Z_NO_FLUSH,
 | 
						|
 *   `true` means Z_FINISH.
 | 
						|
 *
 | 
						|
 * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with
 | 
						|
 * new output chunks. Returns `true` on success. If end of stream detected,
 | 
						|
 * [[Inflate#onEnd]] will be called.
 | 
						|
 *
 | 
						|
 * `flush_mode` is not needed for normal operation, because end of stream
 | 
						|
 * detected automatically. You may try to use it for advanced things, but
 | 
						|
 * this functionality was not tested.
 | 
						|
 *
 | 
						|
 * On fail call [[Inflate#onEnd]] with error code and return false.
 | 
						|
 *
 | 
						|
 * ##### Example
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * push(chunk, false); // push one of data chunks
 | 
						|
 * ...
 | 
						|
 * push(chunk, true);  // push last chunk
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
Inflate$1.prototype.push = function (data, flush_mode) {
 | 
						|
  const strm = this.strm;
 | 
						|
  const chunkSize = this.options.chunkSize;
 | 
						|
  const dictionary = this.options.dictionary;
 | 
						|
  let status, _flush_mode, last_avail_out;
 | 
						|
 | 
						|
  if (this.ended) return false;
 | 
						|
 | 
						|
  if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
 | 
						|
  else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH;
 | 
						|
 | 
						|
  // Convert data if needed
 | 
						|
  if (toString.call(data) === '[object ArrayBuffer]') {
 | 
						|
    strm.input = new Uint8Array(data);
 | 
						|
  } else {
 | 
						|
    strm.input = data;
 | 
						|
  }
 | 
						|
 | 
						|
  strm.next_in = 0;
 | 
						|
  strm.avail_in = strm.input.length;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    if (strm.avail_out === 0) {
 | 
						|
      strm.output = new Uint8Array(chunkSize);
 | 
						|
      strm.next_out = 0;
 | 
						|
      strm.avail_out = chunkSize;
 | 
						|
    }
 | 
						|
 | 
						|
    status = inflate_1$2.inflate(strm, _flush_mode);
 | 
						|
 | 
						|
    if (status === Z_NEED_DICT && dictionary) {
 | 
						|
      status = inflate_1$2.inflateSetDictionary(strm, dictionary);
 | 
						|
 | 
						|
      if (status === Z_OK) {
 | 
						|
        status = inflate_1$2.inflate(strm, _flush_mode);
 | 
						|
      } else if (status === Z_DATA_ERROR) {
 | 
						|
        // Replace code with more verbose
 | 
						|
        status = Z_NEED_DICT;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip snyc markers if more data follows and not raw mode
 | 
						|
    while (strm.avail_in > 0 &&
 | 
						|
           status === Z_STREAM_END &&
 | 
						|
           strm.state.wrap > 0 &&
 | 
						|
           data[strm.next_in] !== 0)
 | 
						|
    {
 | 
						|
      inflate_1$2.inflateReset(strm);
 | 
						|
      status = inflate_1$2.inflate(strm, _flush_mode);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (status) {
 | 
						|
      case Z_STREAM_ERROR:
 | 
						|
      case Z_DATA_ERROR:
 | 
						|
      case Z_NEED_DICT:
 | 
						|
      case Z_MEM_ERROR:
 | 
						|
        this.onEnd(status);
 | 
						|
        this.ended = true;
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remember real `avail_out` value, because we may patch out buffer content
 | 
						|
    // to align utf8 strings boundaries.
 | 
						|
    last_avail_out = strm.avail_out;
 | 
						|
 | 
						|
    if (strm.next_out) {
 | 
						|
      if (strm.avail_out === 0 || status === Z_STREAM_END) {
 | 
						|
 | 
						|
        if (this.options.to === 'string') {
 | 
						|
 | 
						|
          let next_out_utf8 = strings.utf8border(strm.output, strm.next_out);
 | 
						|
 | 
						|
          let tail = strm.next_out - next_out_utf8;
 | 
						|
          let utf8str = strings.buf2string(strm.output, next_out_utf8);
 | 
						|
 | 
						|
          // move tail & realign counters
 | 
						|
          strm.next_out = tail;
 | 
						|
          strm.avail_out = chunkSize - tail;
 | 
						|
          if (tail) strm.output.set(strm.output.subarray(next_out_utf8, next_out_utf8 + tail), 0);
 | 
						|
 | 
						|
          this.onData(utf8str);
 | 
						|
 | 
						|
        } else {
 | 
						|
          this.onData(strm.output.length === strm.next_out ? strm.output : strm.output.subarray(0, strm.next_out));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Must repeat iteration if out buffer is full
 | 
						|
    if (status === Z_OK && last_avail_out === 0) continue;
 | 
						|
 | 
						|
    // Finalize if end of stream reached.
 | 
						|
    if (status === Z_STREAM_END) {
 | 
						|
      status = inflate_1$2.inflateEnd(this.strm);
 | 
						|
      this.onEnd(status);
 | 
						|
      this.ended = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (strm.avail_in === 0) break;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate#onData(chunk) -> Void
 | 
						|
 * - chunk (Uint8Array|String): output data. When string output requested,
 | 
						|
 *   each chunk will be string.
 | 
						|
 *
 | 
						|
 * By default, stores data blocks in `chunks[]` property and glue
 | 
						|
 * those in `onEnd`. Override this handler, if you need another behaviour.
 | 
						|
 **/
 | 
						|
Inflate$1.prototype.onData = function (chunk) {
 | 
						|
  this.chunks.push(chunk);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Inflate#onEnd(status) -> Void
 | 
						|
 * - status (Number): inflate status. 0 (Z_OK) on success,
 | 
						|
 *   other if not.
 | 
						|
 *
 | 
						|
 * Called either after you tell inflate that the input stream is
 | 
						|
 * complete (Z_FINISH). By default - join collected chunks,
 | 
						|
 * free memory and fill `results` / `err` properties.
 | 
						|
 **/
 | 
						|
Inflate$1.prototype.onEnd = function (status) {
 | 
						|
  // On success - join
 | 
						|
  if (status === Z_OK) {
 | 
						|
    if (this.options.to === 'string') {
 | 
						|
      this.result = this.chunks.join('');
 | 
						|
    } else {
 | 
						|
      this.result = common.flattenChunks(this.chunks);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  this.chunks = [];
 | 
						|
  this.err = status;
 | 
						|
  this.msg = this.strm.msg;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * inflate(data[, options]) -> Uint8Array|String
 | 
						|
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 | 
						|
 * - options (Object): zlib inflate options.
 | 
						|
 *
 | 
						|
 * Decompress `data` with inflate/ungzip and `options`. Autodetect
 | 
						|
 * format via wrapper header by default. That's why we don't provide
 | 
						|
 * separate `ungzip` method.
 | 
						|
 *
 | 
						|
 * Supported options are:
 | 
						|
 *
 | 
						|
 * - windowBits
 | 
						|
 *
 | 
						|
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 | 
						|
 * for more information.
 | 
						|
 *
 | 
						|
 * Sugar (options):
 | 
						|
 *
 | 
						|
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 | 
						|
 *   negative windowBits implicitly.
 | 
						|
 * - `to` (String) - if equal to 'string', then result will be converted
 | 
						|
 *   from utf8 to utf16 (javascript) string. When string output requested,
 | 
						|
 *   chunk length can differ from `chunkSize`, depending on content.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * ##### Example:
 | 
						|
 *
 | 
						|
 * ```javascript
 | 
						|
 * const pako = require('pako');
 | 
						|
 * const input = pako.deflate(new Uint8Array([1,2,3,4,5,6,7,8,9]));
 | 
						|
 * let output;
 | 
						|
 *
 | 
						|
 * try {
 | 
						|
 *   output = pako.inflate(input);
 | 
						|
 * } catch (err) {
 | 
						|
 *   console.log(err);
 | 
						|
 * }
 | 
						|
 * ```
 | 
						|
 **/
 | 
						|
function inflate$1(input, options) {
 | 
						|
  const inflator = new Inflate$1(options);
 | 
						|
 | 
						|
  inflator.push(input);
 | 
						|
 | 
						|
  // That will never happens, if you don't cheat with options :)
 | 
						|
  if (inflator.err) throw inflator.msg || messages[inflator.err];
 | 
						|
 | 
						|
  return inflator.result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * inflateRaw(data[, options]) -> Uint8Array|String
 | 
						|
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 | 
						|
 * - options (Object): zlib inflate options.
 | 
						|
 *
 | 
						|
 * The same as [[inflate]], but creates raw data, without wrapper
 | 
						|
 * (header and adler32 crc).
 | 
						|
 **/
 | 
						|
function inflateRaw$1(input, options) {
 | 
						|
  options = options || {};
 | 
						|
  options.raw = true;
 | 
						|
  return inflate$1(input, options);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * ungzip(data[, options]) -> Uint8Array|String
 | 
						|
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 | 
						|
 * - options (Object): zlib inflate options.
 | 
						|
 *
 | 
						|
 * Just shortcut to [[inflate]], because it autodetects format
 | 
						|
 * by header.content. Done for convenience.
 | 
						|
 **/
 | 
						|
 | 
						|
 | 
						|
var Inflate_1$1 = Inflate$1;
 | 
						|
var inflate_2 = inflate$1;
 | 
						|
var inflateRaw_1$1 = inflateRaw$1;
 | 
						|
var ungzip$1 = inflate$1;
 | 
						|
var constants = constants$2;
 | 
						|
 | 
						|
var inflate_1$1 = {
 | 
						|
	Inflate: Inflate_1$1,
 | 
						|
	inflate: inflate_2,
 | 
						|
	inflateRaw: inflateRaw_1$1,
 | 
						|
	ungzip: ungzip$1,
 | 
						|
	constants: constants
 | 
						|
};
 | 
						|
 | 
						|
const { Deflate, deflate, deflateRaw, gzip } = deflate_1$1;
 | 
						|
 | 
						|
const { Inflate, inflate, inflateRaw, ungzip } = inflate_1$1;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
var Deflate_1 = Deflate;
 | 
						|
var deflate_1 = deflate;
 | 
						|
var deflateRaw_1 = deflateRaw;
 | 
						|
var gzip_1 = gzip;
 | 
						|
var Inflate_1 = Inflate;
 | 
						|
var inflate_1 = inflate;
 | 
						|
var inflateRaw_1 = inflateRaw;
 | 
						|
var ungzip_1 = ungzip;
 | 
						|
var constants_1 = constants$2;
 | 
						|
 | 
						|
var pako = {
 | 
						|
	Deflate: Deflate_1,
 | 
						|
	deflate: deflate_1,
 | 
						|
	deflateRaw: deflateRaw_1,
 | 
						|
	gzip: gzip_1,
 | 
						|
	Inflate: Inflate_1,
 | 
						|
	inflate: inflate_1,
 | 
						|
	inflateRaw: inflateRaw_1,
 | 
						|
	ungzip: ungzip_1,
 | 
						|
	constants: constants_1
 | 
						|
};
 | 
						|
 | 
						|
export { Deflate_1 as Deflate, Inflate_1 as Inflate, constants_1 as constants, pako as default, deflate_1 as deflate, deflateRaw_1 as deflateRaw, gzip_1 as gzip, inflate_1 as inflate, inflateRaw_1 as inflateRaw, ungzip_1 as ungzip };
 |