mirror of
				https://github.com/alexandrebobkov/ESP-Nodes.git
				synced 2025-10-31 00:38:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1180 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			1180 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 'use strict';
 | |
| 
 | |
| // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | |
| // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty. In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| //
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| //
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //   claim that you wrote the original software. If you use this software
 | |
| //   in a product, an acknowledgment in the product documentation would be
 | |
| //   appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //   misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
| /* eslint-disable space-unary-ops */
 | |
| 
 | |
| /* Public constants ==========================================================*/
 | |
| /* ===========================================================================*/
 | |
| 
 | |
| 
 | |
| //const Z_FILTERED          = 1;
 | |
| //const Z_HUFFMAN_ONLY      = 2;
 | |
| //const Z_RLE               = 3;
 | |
| const Z_FIXED               = 4;
 | |
| //const Z_DEFAULT_STRATEGY  = 0;
 | |
| 
 | |
| /* Possible values of the data_type field (though see inflate()) */
 | |
| const Z_BINARY              = 0;
 | |
| const Z_TEXT                = 1;
 | |
| //const Z_ASCII             = 1; // = Z_TEXT
 | |
| const Z_UNKNOWN             = 2;
 | |
| 
 | |
| /*============================================================================*/
 | |
| 
 | |
| 
 | |
| function zero(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }
 | |
| 
 | |
| // From zutil.h
 | |
| 
 | |
| const STORED_BLOCK = 0;
 | |
| const STATIC_TREES = 1;
 | |
| const DYN_TREES    = 2;
 | |
| /* The three kinds of block type */
 | |
| 
 | |
| const MIN_MATCH    = 3;
 | |
| const MAX_MATCH    = 258;
 | |
| /* The minimum and maximum match lengths */
 | |
| 
 | |
| // From deflate.h
 | |
| /* ===========================================================================
 | |
|  * Internal compression state.
 | |
|  */
 | |
| 
 | |
| const LENGTH_CODES  = 29;
 | |
| /* number of length codes, not counting the special END_BLOCK code */
 | |
| 
 | |
| const LITERALS      = 256;
 | |
| /* number of literal bytes 0..255 */
 | |
| 
 | |
| const L_CODES       = LITERALS + 1 + LENGTH_CODES;
 | |
| /* number of Literal or Length codes, including the END_BLOCK code */
 | |
| 
 | |
| const D_CODES       = 30;
 | |
| /* number of distance codes */
 | |
| 
 | |
| const BL_CODES      = 19;
 | |
| /* number of codes used to transfer the bit lengths */
 | |
| 
 | |
| const HEAP_SIZE     = 2 * L_CODES + 1;
 | |
| /* maximum heap size */
 | |
| 
 | |
| const MAX_BITS      = 15;
 | |
| /* All codes must not exceed MAX_BITS bits */
 | |
| 
 | |
| const Buf_size      = 16;
 | |
| /* size of bit buffer in bi_buf */
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Constants
 | |
|  */
 | |
| 
 | |
| const MAX_BL_BITS = 7;
 | |
| /* Bit length codes must not exceed MAX_BL_BITS bits */
 | |
| 
 | |
| const END_BLOCK   = 256;
 | |
| /* end of block literal code */
 | |
| 
 | |
| const REP_3_6     = 16;
 | |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */
 | |
| 
 | |
| const REPZ_3_10   = 17;
 | |
| /* repeat a zero length 3-10 times  (3 bits of repeat count) */
 | |
| 
 | |
| const REPZ_11_138 = 18;
 | |
| /* repeat a zero length 11-138 times  (7 bits of repeat count) */
 | |
| 
 | |
| /* eslint-disable comma-spacing,array-bracket-spacing */
 | |
| const extra_lbits =   /* extra bits for each length code */
 | |
|   new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);
 | |
| 
 | |
| const extra_dbits =   /* extra bits for each distance code */
 | |
|   new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);
 | |
| 
 | |
| const extra_blbits =  /* extra bits for each bit length code */
 | |
|   new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);
 | |
| 
 | |
| const bl_order =
 | |
|   new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
 | |
| /* eslint-enable comma-spacing,array-bracket-spacing */
 | |
| 
 | |
| /* The lengths of the bit length codes are sent in order of decreasing
 | |
|  * probability, to avoid transmitting the lengths for unused bit length codes.
 | |
|  */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Local data. These are initialized only once.
 | |
|  */
 | |
| 
 | |
| // We pre-fill arrays with 0 to avoid uninitialized gaps
 | |
| 
 | |
| const DIST_CODE_LEN = 512; /* see definition of array dist_code below */
 | |
| 
 | |
| // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
 | |
| const static_ltree  = new Array((L_CODES + 2) * 2);
 | |
| zero(static_ltree);
 | |
| /* The static literal tree. Since the bit lengths are imposed, there is no
 | |
|  * need for the L_CODES extra codes used during heap construction. However
 | |
|  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 | |
|  * below).
 | |
|  */
 | |
| 
 | |
| const static_dtree  = new Array(D_CODES * 2);
 | |
| zero(static_dtree);
 | |
| /* The static distance tree. (Actually a trivial tree since all codes use
 | |
|  * 5 bits.)
 | |
|  */
 | |
| 
 | |
| const _dist_code    = new Array(DIST_CODE_LEN);
 | |
| zero(_dist_code);
 | |
| /* Distance codes. The first 256 values correspond to the distances
 | |
|  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 | |
|  * the 15 bit distances.
 | |
|  */
 | |
| 
 | |
| const _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);
 | |
| zero(_length_code);
 | |
| /* length code for each normalized match length (0 == MIN_MATCH) */
 | |
| 
 | |
| const base_length   = new Array(LENGTH_CODES);
 | |
| zero(base_length);
 | |
| /* First normalized length for each code (0 = MIN_MATCH) */
 | |
| 
 | |
| const base_dist     = new Array(D_CODES);
 | |
| zero(base_dist);
 | |
| /* First normalized distance for each code (0 = distance of 1) */
 | |
| 
 | |
| 
 | |
| function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
 | |
| 
 | |
|   this.static_tree  = static_tree;  /* static tree or NULL */
 | |
|   this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
 | |
|   this.extra_base   = extra_base;   /* base index for extra_bits */
 | |
|   this.elems        = elems;        /* max number of elements in the tree */
 | |
|   this.max_length   = max_length;   /* max bit length for the codes */
 | |
| 
 | |
|   // show if `static_tree` has data or dummy - needed for monomorphic objects
 | |
|   this.has_stree    = static_tree && static_tree.length;
 | |
| }
 | |
| 
 | |
| 
 | |
| let static_l_desc;
 | |
| let static_d_desc;
 | |
| let static_bl_desc;
 | |
| 
 | |
| 
 | |
| function TreeDesc(dyn_tree, stat_desc) {
 | |
|   this.dyn_tree = dyn_tree;     /* the dynamic tree */
 | |
|   this.max_code = 0;            /* largest code with non zero frequency */
 | |
|   this.stat_desc = stat_desc;   /* the corresponding static tree */
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| const d_code = (dist) => {
 | |
| 
 | |
|   return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Output a short LSB first on the stream.
 | |
|  * IN assertion: there is enough room in pendingBuf.
 | |
|  */
 | |
| const put_short = (s, w) => {
 | |
| //    put_byte(s, (uch)((w) & 0xff));
 | |
| //    put_byte(s, (uch)((ush)(w) >> 8));
 | |
|   s.pending_buf[s.pending++] = (w) & 0xff;
 | |
|   s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a value on a given number of bits.
 | |
|  * IN assertion: length <= 16 and value fits in length bits.
 | |
|  */
 | |
| const send_bits = (s, value, length) => {
 | |
| 
 | |
|   if (s.bi_valid > (Buf_size - length)) {
 | |
|     s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | |
|     put_short(s, s.bi_buf);
 | |
|     s.bi_buf = value >> (Buf_size - s.bi_valid);
 | |
|     s.bi_valid += length - Buf_size;
 | |
|   } else {
 | |
|     s.bi_buf |= (value << s.bi_valid) & 0xffff;
 | |
|     s.bi_valid += length;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| const send_code = (s, c, tree) => {
 | |
| 
 | |
|   send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Reverse the first len bits of a code, using straightforward code (a faster
 | |
|  * method would use a table)
 | |
|  * IN assertion: 1 <= len <= 15
 | |
|  */
 | |
| const bi_reverse = (code, len) => {
 | |
| 
 | |
|   let res = 0;
 | |
|   do {
 | |
|     res |= code & 1;
 | |
|     code >>>= 1;
 | |
|     res <<= 1;
 | |
|   } while (--len > 0);
 | |
|   return res >>> 1;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Flush the bit buffer, keeping at most 7 bits in it.
 | |
|  */
 | |
| const bi_flush = (s) => {
 | |
| 
 | |
|   if (s.bi_valid === 16) {
 | |
|     put_short(s, s.bi_buf);
 | |
|     s.bi_buf = 0;
 | |
|     s.bi_valid = 0;
 | |
| 
 | |
|   } else if (s.bi_valid >= 8) {
 | |
|     s.pending_buf[s.pending++] = s.bi_buf & 0xff;
 | |
|     s.bi_buf >>= 8;
 | |
|     s.bi_valid -= 8;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compute the optimal bit lengths for a tree and update the total bit length
 | |
|  * for the current block.
 | |
|  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 | |
|  *    above are the tree nodes sorted by increasing frequency.
 | |
|  * OUT assertions: the field len is set to the optimal bit length, the
 | |
|  *     array bl_count contains the frequencies for each bit length.
 | |
|  *     The length opt_len is updated; static_len is also updated if stree is
 | |
|  *     not null.
 | |
|  */
 | |
| const gen_bitlen = (s, desc) => {
 | |
| //    deflate_state *s;
 | |
| //    tree_desc *desc;    /* the tree descriptor */
 | |
| 
 | |
|   const tree            = desc.dyn_tree;
 | |
|   const max_code        = desc.max_code;
 | |
|   const stree           = desc.stat_desc.static_tree;
 | |
|   const has_stree       = desc.stat_desc.has_stree;
 | |
|   const extra           = desc.stat_desc.extra_bits;
 | |
|   const base            = desc.stat_desc.extra_base;
 | |
|   const max_length      = desc.stat_desc.max_length;
 | |
|   let h;              /* heap index */
 | |
|   let n, m;           /* iterate over the tree elements */
 | |
|   let bits;           /* bit length */
 | |
|   let xbits;          /* extra bits */
 | |
|   let f;              /* frequency */
 | |
|   let overflow = 0;   /* number of elements with bit length too large */
 | |
| 
 | |
|   for (bits = 0; bits <= MAX_BITS; bits++) {
 | |
|     s.bl_count[bits] = 0;
 | |
|   }
 | |
| 
 | |
|   /* In a first pass, compute the optimal bit lengths (which may
 | |
|    * overflow in the case of the bit length tree).
 | |
|    */
 | |
|   tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
 | |
| 
 | |
|   for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
 | |
|     n = s.heap[h];
 | |
|     bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
 | |
|     if (bits > max_length) {
 | |
|       bits = max_length;
 | |
|       overflow++;
 | |
|     }
 | |
|     tree[n * 2 + 1]/*.Len*/ = bits;
 | |
|     /* We overwrite tree[n].Dad which is no longer needed */
 | |
| 
 | |
|     if (n > max_code) { continue; } /* not a leaf node */
 | |
| 
 | |
|     s.bl_count[bits]++;
 | |
|     xbits = 0;
 | |
|     if (n >= base) {
 | |
|       xbits = extra[n - base];
 | |
|     }
 | |
|     f = tree[n * 2]/*.Freq*/;
 | |
|     s.opt_len += f * (bits + xbits);
 | |
|     if (has_stree) {
 | |
|       s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
 | |
|     }
 | |
|   }
 | |
|   if (overflow === 0) { return; }
 | |
| 
 | |
|   // Tracev((stderr,"\nbit length overflow\n"));
 | |
|   /* This happens for example on obj2 and pic of the Calgary corpus */
 | |
| 
 | |
|   /* Find the first bit length which could increase: */
 | |
|   do {
 | |
|     bits = max_length - 1;
 | |
|     while (s.bl_count[bits] === 0) { bits--; }
 | |
|     s.bl_count[bits]--;      /* move one leaf down the tree */
 | |
|     s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
 | |
|     s.bl_count[max_length]--;
 | |
|     /* The brother of the overflow item also moves one step up,
 | |
|      * but this does not affect bl_count[max_length]
 | |
|      */
 | |
|     overflow -= 2;
 | |
|   } while (overflow > 0);
 | |
| 
 | |
|   /* Now recompute all bit lengths, scanning in increasing frequency.
 | |
|    * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 | |
|    * lengths instead of fixing only the wrong ones. This idea is taken
 | |
|    * from 'ar' written by Haruhiko Okumura.)
 | |
|    */
 | |
|   for (bits = max_length; bits !== 0; bits--) {
 | |
|     n = s.bl_count[bits];
 | |
|     while (n !== 0) {
 | |
|       m = s.heap[--h];
 | |
|       if (m > max_code) { continue; }
 | |
|       if (tree[m * 2 + 1]/*.Len*/ !== bits) {
 | |
|         // Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 | |
|         s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
 | |
|         tree[m * 2 + 1]/*.Len*/ = bits;
 | |
|       }
 | |
|       n--;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Generate the codes for a given tree and bit counts (which need not be
 | |
|  * optimal).
 | |
|  * IN assertion: the array bl_count contains the bit length statistics for
 | |
|  * the given tree and the field len is set for all tree elements.
 | |
|  * OUT assertion: the field code is set for all tree elements of non
 | |
|  *     zero code length.
 | |
|  */
 | |
| const gen_codes = (tree, max_code, bl_count) => {
 | |
| //    ct_data *tree;             /* the tree to decorate */
 | |
| //    int max_code;              /* largest code with non zero frequency */
 | |
| //    ushf *bl_count;            /* number of codes at each bit length */
 | |
| 
 | |
|   const next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
 | |
|   let code = 0;              /* running code value */
 | |
|   let bits;                  /* bit index */
 | |
|   let n;                     /* code index */
 | |
| 
 | |
|   /* The distribution counts are first used to generate the code values
 | |
|    * without bit reversal.
 | |
|    */
 | |
|   for (bits = 1; bits <= MAX_BITS; bits++) {
 | |
|     code = (code + bl_count[bits - 1]) << 1;
 | |
|     next_code[bits] = code;
 | |
|   }
 | |
|   /* Check that the bit counts in bl_count are consistent. The last code
 | |
|    * must be all ones.
 | |
|    */
 | |
|   //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | |
|   //        "inconsistent bit counts");
 | |
|   //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | |
| 
 | |
|   for (n = 0;  n <= max_code; n++) {
 | |
|     let len = tree[n * 2 + 1]/*.Len*/;
 | |
|     if (len === 0) { continue; }
 | |
|     /* Now reverse the bits */
 | |
|     tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
 | |
| 
 | |
|     //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | |
|     //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the various 'constant' tables.
 | |
|  */
 | |
| const tr_static_init = () => {
 | |
| 
 | |
|   let n;        /* iterates over tree elements */
 | |
|   let bits;     /* bit counter */
 | |
|   let length;   /* length value */
 | |
|   let code;     /* code value */
 | |
|   let dist;     /* distance index */
 | |
|   const bl_count = new Array(MAX_BITS + 1);
 | |
|   /* number of codes at each bit length for an optimal tree */
 | |
| 
 | |
|   // do check in _tr_init()
 | |
|   //if (static_init_done) return;
 | |
| 
 | |
|   /* For some embedded targets, global variables are not initialized: */
 | |
| /*#ifdef NO_INIT_GLOBAL_POINTERS
 | |
|   static_l_desc.static_tree = static_ltree;
 | |
|   static_l_desc.extra_bits = extra_lbits;
 | |
|   static_d_desc.static_tree = static_dtree;
 | |
|   static_d_desc.extra_bits = extra_dbits;
 | |
|   static_bl_desc.extra_bits = extra_blbits;
 | |
| #endif*/
 | |
| 
 | |
|   /* Initialize the mapping length (0..255) -> length code (0..28) */
 | |
|   length = 0;
 | |
|   for (code = 0; code < LENGTH_CODES - 1; code++) {
 | |
|     base_length[code] = length;
 | |
|     for (n = 0; n < (1 << extra_lbits[code]); n++) {
 | |
|       _length_code[length++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (length == 256, "tr_static_init: length != 256");
 | |
|   /* Note that the length 255 (match length 258) can be represented
 | |
|    * in two different ways: code 284 + 5 bits or code 285, so we
 | |
|    * overwrite length_code[255] to use the best encoding:
 | |
|    */
 | |
|   _length_code[length - 1] = code;
 | |
| 
 | |
|   /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 | |
|   dist = 0;
 | |
|   for (code = 0; code < 16; code++) {
 | |
|     base_dist[code] = dist;
 | |
|     for (n = 0; n < (1 << extra_dbits[code]); n++) {
 | |
|       _dist_code[dist++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (dist == 256, "tr_static_init: dist != 256");
 | |
|   dist >>= 7; /* from now on, all distances are divided by 128 */
 | |
|   for (; code < D_CODES; code++) {
 | |
|     base_dist[code] = dist << 7;
 | |
|     for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
 | |
|       _dist_code[256 + dist++] = code;
 | |
|     }
 | |
|   }
 | |
|   //Assert (dist == 256, "tr_static_init: 256+dist != 512");
 | |
| 
 | |
|   /* Construct the codes of the static literal tree */
 | |
|   for (bits = 0; bits <= MAX_BITS; bits++) {
 | |
|     bl_count[bits] = 0;
 | |
|   }
 | |
| 
 | |
|   n = 0;
 | |
|   while (n <= 143) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | |
|     n++;
 | |
|     bl_count[8]++;
 | |
|   }
 | |
|   while (n <= 255) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 9;
 | |
|     n++;
 | |
|     bl_count[9]++;
 | |
|   }
 | |
|   while (n <= 279) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 7;
 | |
|     n++;
 | |
|     bl_count[7]++;
 | |
|   }
 | |
|   while (n <= 287) {
 | |
|     static_ltree[n * 2 + 1]/*.Len*/ = 8;
 | |
|     n++;
 | |
|     bl_count[8]++;
 | |
|   }
 | |
|   /* Codes 286 and 287 do not exist, but we must include them in the
 | |
|    * tree construction to get a canonical Huffman tree (longest code
 | |
|    * all ones)
 | |
|    */
 | |
|   gen_codes(static_ltree, L_CODES + 1, bl_count);
 | |
| 
 | |
|   /* The static distance tree is trivial: */
 | |
|   for (n = 0; n < D_CODES; n++) {
 | |
|     static_dtree[n * 2 + 1]/*.Len*/ = 5;
 | |
|     static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
 | |
|   }
 | |
| 
 | |
|   // Now data ready and we can init static trees
 | |
|   static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
 | |
|   static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
 | |
|   static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);
 | |
| 
 | |
|   //static_init_done = true;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize a new block.
 | |
|  */
 | |
| const init_block = (s) => {
 | |
| 
 | |
|   let n; /* iterates over tree elements */
 | |
| 
 | |
|   /* Initialize the trees. */
 | |
|   for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
 | |
|   for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
 | |
|   for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
 | |
| 
 | |
|   s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
 | |
|   s.opt_len = s.static_len = 0;
 | |
|   s.sym_next = s.matches = 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Flush the bit buffer and align the output on a byte boundary
 | |
|  */
 | |
| const bi_windup = (s) =>
 | |
| {
 | |
|   if (s.bi_valid > 8) {
 | |
|     put_short(s, s.bi_buf);
 | |
|   } else if (s.bi_valid > 0) {
 | |
|     //put_byte(s, (Byte)s->bi_buf);
 | |
|     s.pending_buf[s.pending++] = s.bi_buf;
 | |
|   }
 | |
|   s.bi_buf = 0;
 | |
|   s.bi_valid = 0;
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compares to subtrees, using the tree depth as tie breaker when
 | |
|  * the subtrees have equal frequency. This minimizes the worst case length.
 | |
|  */
 | |
| const smaller = (tree, n, m, depth) => {
 | |
| 
 | |
|   const _n2 = n * 2;
 | |
|   const _m2 = m * 2;
 | |
|   return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
 | |
|          (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Restore the heap property by moving down the tree starting at node k,
 | |
|  * exchanging a node with the smallest of its two sons if necessary, stopping
 | |
|  * when the heap property is re-established (each father smaller than its
 | |
|  * two sons).
 | |
|  */
 | |
| const pqdownheap = (s, tree, k) => {
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree;  /* the tree to restore */
 | |
| //    int k;               /* node to move down */
 | |
| 
 | |
|   const v = s.heap[k];
 | |
|   let j = k << 1;  /* left son of k */
 | |
|   while (j <= s.heap_len) {
 | |
|     /* Set j to the smallest of the two sons: */
 | |
|     if (j < s.heap_len &&
 | |
|       smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
 | |
|       j++;
 | |
|     }
 | |
|     /* Exit if v is smaller than both sons */
 | |
|     if (smaller(tree, v, s.heap[j], s.depth)) { break; }
 | |
| 
 | |
|     /* Exchange v with the smallest son */
 | |
|     s.heap[k] = s.heap[j];
 | |
|     k = j;
 | |
| 
 | |
|     /* And continue down the tree, setting j to the left son of k */
 | |
|     j <<= 1;
 | |
|   }
 | |
|   s.heap[k] = v;
 | |
| };
 | |
| 
 | |
| 
 | |
| // inlined manually
 | |
| // const SMALLEST = 1;
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the block data compressed using the given Huffman trees
 | |
|  */
 | |
| const compress_block = (s, ltree, dtree) => {
 | |
| //    deflate_state *s;
 | |
| //    const ct_data *ltree; /* literal tree */
 | |
| //    const ct_data *dtree; /* distance tree */
 | |
| 
 | |
|   let dist;           /* distance of matched string */
 | |
|   let lc;             /* match length or unmatched char (if dist == 0) */
 | |
|   let sx = 0;         /* running index in sym_buf */
 | |
|   let code;           /* the code to send */
 | |
|   let extra;          /* number of extra bits to send */
 | |
| 
 | |
|   if (s.sym_next !== 0) {
 | |
|     do {
 | |
|       dist = s.pending_buf[s.sym_buf + sx++] & 0xff;
 | |
|       dist += (s.pending_buf[s.sym_buf + sx++] & 0xff) << 8;
 | |
|       lc = s.pending_buf[s.sym_buf + sx++];
 | |
|       if (dist === 0) {
 | |
|         send_code(s, lc, ltree); /* send a literal byte */
 | |
|         //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | |
|       } else {
 | |
|         /* Here, lc is the match length - MIN_MATCH */
 | |
|         code = _length_code[lc];
 | |
|         send_code(s, code + LITERALS + 1, ltree); /* send the length code */
 | |
|         extra = extra_lbits[code];
 | |
|         if (extra !== 0) {
 | |
|           lc -= base_length[code];
 | |
|           send_bits(s, lc, extra);       /* send the extra length bits */
 | |
|         }
 | |
|         dist--; /* dist is now the match distance - 1 */
 | |
|         code = d_code(dist);
 | |
|         //Assert (code < D_CODES, "bad d_code");
 | |
| 
 | |
|         send_code(s, code, dtree);       /* send the distance code */
 | |
|         extra = extra_dbits[code];
 | |
|         if (extra !== 0) {
 | |
|           dist -= base_dist[code];
 | |
|           send_bits(s, dist, extra);   /* send the extra distance bits */
 | |
|         }
 | |
|       } /* literal or match pair ? */
 | |
| 
 | |
|       /* Check that the overlay between pending_buf and sym_buf is ok: */
 | |
|       //Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
 | |
| 
 | |
|     } while (sx < s.sym_next);
 | |
|   }
 | |
| 
 | |
|   send_code(s, END_BLOCK, ltree);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct one Huffman tree and assigns the code bit strings and lengths.
 | |
|  * Update the total bit length for the current block.
 | |
|  * IN assertion: the field freq is set for all tree elements.
 | |
|  * OUT assertions: the fields len and code are set to the optimal bit length
 | |
|  *     and corresponding code. The length opt_len is updated; static_len is
 | |
|  *     also updated if stree is not null. The field max_code is set.
 | |
|  */
 | |
| const build_tree = (s, desc) => {
 | |
| //    deflate_state *s;
 | |
| //    tree_desc *desc; /* the tree descriptor */
 | |
| 
 | |
|   const tree     = desc.dyn_tree;
 | |
|   const stree    = desc.stat_desc.static_tree;
 | |
|   const has_stree = desc.stat_desc.has_stree;
 | |
|   const elems    = desc.stat_desc.elems;
 | |
|   let n, m;          /* iterate over heap elements */
 | |
|   let max_code = -1; /* largest code with non zero frequency */
 | |
|   let node;          /* new node being created */
 | |
| 
 | |
|   /* Construct the initial heap, with least frequent element in
 | |
|    * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 | |
|    * heap[0] is not used.
 | |
|    */
 | |
|   s.heap_len = 0;
 | |
|   s.heap_max = HEAP_SIZE;
 | |
| 
 | |
|   for (n = 0; n < elems; n++) {
 | |
|     if (tree[n * 2]/*.Freq*/ !== 0) {
 | |
|       s.heap[++s.heap_len] = max_code = n;
 | |
|       s.depth[n] = 0;
 | |
| 
 | |
|     } else {
 | |
|       tree[n * 2 + 1]/*.Len*/ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The pkzip format requires that at least one distance code exists,
 | |
|    * and that at least one bit should be sent even if there is only one
 | |
|    * possible code. So to avoid special checks later on we force at least
 | |
|    * two codes of non zero frequency.
 | |
|    */
 | |
|   while (s.heap_len < 2) {
 | |
|     node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
 | |
|     tree[node * 2]/*.Freq*/ = 1;
 | |
|     s.depth[node] = 0;
 | |
|     s.opt_len--;
 | |
| 
 | |
|     if (has_stree) {
 | |
|       s.static_len -= stree[node * 2 + 1]/*.Len*/;
 | |
|     }
 | |
|     /* node is 0 or 1 so it does not have extra bits */
 | |
|   }
 | |
|   desc.max_code = max_code;
 | |
| 
 | |
|   /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | |
|    * establish sub-heaps of increasing lengths:
 | |
|    */
 | |
|   for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
 | |
| 
 | |
|   /* Construct the Huffman tree by repeatedly combining the least two
 | |
|    * frequent nodes.
 | |
|    */
 | |
|   node = elems;              /* next internal node of the tree */
 | |
|   do {
 | |
|     //pqremove(s, tree, n);  /* n = node of least frequency */
 | |
|     /*** pqremove ***/
 | |
|     n = s.heap[1/*SMALLEST*/];
 | |
|     s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
 | |
|     pqdownheap(s, tree, 1/*SMALLEST*/);
 | |
|     /***/
 | |
| 
 | |
|     m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
 | |
| 
 | |
|     s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
 | |
|     s.heap[--s.heap_max] = m;
 | |
| 
 | |
|     /* Create a new node father of n and m */
 | |
|     tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
 | |
|     s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
 | |
|     tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
 | |
| 
 | |
|     /* and insert the new node in the heap */
 | |
|     s.heap[1/*SMALLEST*/] = node++;
 | |
|     pqdownheap(s, tree, 1/*SMALLEST*/);
 | |
| 
 | |
|   } while (s.heap_len >= 2);
 | |
| 
 | |
|   s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
 | |
| 
 | |
|   /* At this point, the fields freq and dad are set. We can now
 | |
|    * generate the bit lengths.
 | |
|    */
 | |
|   gen_bitlen(s, desc);
 | |
| 
 | |
|   /* The field len is now set, we can generate the bit codes */
 | |
|   gen_codes(tree, max_code, s.bl_count);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Scan a literal or distance tree to determine the frequencies of the codes
 | |
|  * in the bit length tree.
 | |
|  */
 | |
| const scan_tree = (s, tree, max_code) => {
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree;   /* the tree to be scanned */
 | |
| //    int max_code;    /* and its largest code of non zero frequency */
 | |
| 
 | |
|   let n;                     /* iterates over all tree elements */
 | |
|   let prevlen = -1;          /* last emitted length */
 | |
|   let curlen;                /* length of current code */
 | |
| 
 | |
|   let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | |
| 
 | |
|   let count = 0;             /* repeat count of the current code */
 | |
|   let max_count = 7;         /* max repeat count */
 | |
|   let min_count = 4;         /* min repeat count */
 | |
| 
 | |
|   if (nextlen === 0) {
 | |
|     max_count = 138;
 | |
|     min_count = 3;
 | |
|   }
 | |
|   tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
 | |
| 
 | |
|   for (n = 0; n <= max_code; n++) {
 | |
|     curlen = nextlen;
 | |
|     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | |
| 
 | |
|     if (++count < max_count && curlen === nextlen) {
 | |
|       continue;
 | |
| 
 | |
|     } else if (count < min_count) {
 | |
|       s.bl_tree[curlen * 2]/*.Freq*/ += count;
 | |
| 
 | |
|     } else if (curlen !== 0) {
 | |
| 
 | |
|       if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
 | |
|       s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
 | |
| 
 | |
|     } else if (count <= 10) {
 | |
|       s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
 | |
| 
 | |
|     } else {
 | |
|       s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
 | |
|     }
 | |
| 
 | |
|     count = 0;
 | |
|     prevlen = curlen;
 | |
| 
 | |
|     if (nextlen === 0) {
 | |
|       max_count = 138;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else if (curlen === nextlen) {
 | |
|       max_count = 6;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else {
 | |
|       max_count = 7;
 | |
|       min_count = 4;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a literal or distance tree in compressed form, using the codes in
 | |
|  * bl_tree.
 | |
|  */
 | |
| const send_tree = (s, tree, max_code) => {
 | |
| //    deflate_state *s;
 | |
| //    ct_data *tree; /* the tree to be scanned */
 | |
| //    int max_code;       /* and its largest code of non zero frequency */
 | |
| 
 | |
|   let n;                     /* iterates over all tree elements */
 | |
|   let prevlen = -1;          /* last emitted length */
 | |
|   let curlen;                /* length of current code */
 | |
| 
 | |
|   let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 | |
| 
 | |
|   let count = 0;             /* repeat count of the current code */
 | |
|   let max_count = 7;         /* max repeat count */
 | |
|   let min_count = 4;         /* min repeat count */
 | |
| 
 | |
|   /* tree[max_code+1].Len = -1; */  /* guard already set */
 | |
|   if (nextlen === 0) {
 | |
|     max_count = 138;
 | |
|     min_count = 3;
 | |
|   }
 | |
| 
 | |
|   for (n = 0; n <= max_code; n++) {
 | |
|     curlen = nextlen;
 | |
|     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 | |
| 
 | |
|     if (++count < max_count && curlen === nextlen) {
 | |
|       continue;
 | |
| 
 | |
|     } else if (count < min_count) {
 | |
|       do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
 | |
| 
 | |
|     } else if (curlen !== 0) {
 | |
|       if (curlen !== prevlen) {
 | |
|         send_code(s, curlen, s.bl_tree);
 | |
|         count--;
 | |
|       }
 | |
|       //Assert(count >= 3 && count <= 6, " 3_6?");
 | |
|       send_code(s, REP_3_6, s.bl_tree);
 | |
|       send_bits(s, count - 3, 2);
 | |
| 
 | |
|     } else if (count <= 10) {
 | |
|       send_code(s, REPZ_3_10, s.bl_tree);
 | |
|       send_bits(s, count - 3, 3);
 | |
| 
 | |
|     } else {
 | |
|       send_code(s, REPZ_11_138, s.bl_tree);
 | |
|       send_bits(s, count - 11, 7);
 | |
|     }
 | |
| 
 | |
|     count = 0;
 | |
|     prevlen = curlen;
 | |
|     if (nextlen === 0) {
 | |
|       max_count = 138;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else if (curlen === nextlen) {
 | |
|       max_count = 6;
 | |
|       min_count = 3;
 | |
| 
 | |
|     } else {
 | |
|       max_count = 7;
 | |
|       min_count = 4;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct the Huffman tree for the bit lengths and return the index in
 | |
|  * bl_order of the last bit length code to send.
 | |
|  */
 | |
| const build_bl_tree = (s) => {
 | |
| 
 | |
|   let max_blindex;  /* index of last bit length code of non zero freq */
 | |
| 
 | |
|   /* Determine the bit length frequencies for literal and distance trees */
 | |
|   scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
 | |
|   scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
 | |
| 
 | |
|   /* Build the bit length tree: */
 | |
|   build_tree(s, s.bl_desc);
 | |
|   /* opt_len now includes the length of the tree representations, except
 | |
|    * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | |
|    */
 | |
| 
 | |
|   /* Determine the number of bit length codes to send. The pkzip format
 | |
|    * requires that at least 4 bit length codes be sent. (appnote.txt says
 | |
|    * 3 but the actual value used is 4.)
 | |
|    */
 | |
|   for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
 | |
|     if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   /* Update opt_len to include the bit length tree and counts */
 | |
|   s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
 | |
|   //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | |
|   //        s->opt_len, s->static_len));
 | |
| 
 | |
|   return max_blindex;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the header for a block using dynamic Huffman trees: the counts, the
 | |
|  * lengths of the bit length codes, the literal tree and the distance tree.
 | |
|  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | |
|  */
 | |
| const send_all_trees = (s, lcodes, dcodes, blcodes) => {
 | |
| //    deflate_state *s;
 | |
| //    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 | |
| 
 | |
|   let rank;                    /* index in bl_order */
 | |
| 
 | |
|   //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | |
|   //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | |
|   //        "too many codes");
 | |
|   //Tracev((stderr, "\nbl counts: "));
 | |
|   send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
 | |
|   send_bits(s, dcodes - 1,   5);
 | |
|   send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
 | |
|   for (rank = 0; rank < blcodes; rank++) {
 | |
|     //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | |
|     send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
 | |
|   }
 | |
|   //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|   send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
 | |
|   //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|   send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
 | |
|   //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Check if the data type is TEXT or BINARY, using the following algorithm:
 | |
|  * - TEXT if the two conditions below are satisfied:
 | |
|  *    a) There are no non-portable control characters belonging to the
 | |
|  *       "block list" (0..6, 14..25, 28..31).
 | |
|  *    b) There is at least one printable character belonging to the
 | |
|  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 | |
|  * - BINARY otherwise.
 | |
|  * - The following partially-portable control characters form a
 | |
|  *   "gray list" that is ignored in this detection algorithm:
 | |
|  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 | |
|  * IN assertion: the fields Freq of dyn_ltree are set.
 | |
|  */
 | |
| const detect_data_type = (s) => {
 | |
|   /* block_mask is the bit mask of block-listed bytes
 | |
|    * set bits 0..6, 14..25, and 28..31
 | |
|    * 0xf3ffc07f = binary 11110011111111111100000001111111
 | |
|    */
 | |
|   let block_mask = 0xf3ffc07f;
 | |
|   let n;
 | |
| 
 | |
|   /* Check for non-textual ("block-listed") bytes. */
 | |
|   for (n = 0; n <= 31; n++, block_mask >>>= 1) {
 | |
|     if ((block_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
 | |
|       return Z_BINARY;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Check for textual ("allow-listed") bytes. */
 | |
|   if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
 | |
|       s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
 | |
|     return Z_TEXT;
 | |
|   }
 | |
|   for (n = 32; n < LITERALS; n++) {
 | |
|     if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
 | |
|       return Z_TEXT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* There are no "block-listed" or "allow-listed" bytes:
 | |
|    * this stream either is empty or has tolerated ("gray-listed") bytes only.
 | |
|    */
 | |
|   return Z_BINARY;
 | |
| };
 | |
| 
 | |
| 
 | |
| let static_init_done = false;
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the tree data structures for a new zlib stream.
 | |
|  */
 | |
| const _tr_init = (s) =>
 | |
| {
 | |
| 
 | |
|   if (!static_init_done) {
 | |
|     tr_static_init();
 | |
|     static_init_done = true;
 | |
|   }
 | |
| 
 | |
|   s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
 | |
|   s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
 | |
|   s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
 | |
| 
 | |
|   s.bi_buf = 0;
 | |
|   s.bi_valid = 0;
 | |
| 
 | |
|   /* Initialize the first block of the first file: */
 | |
|   init_block(s);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a stored block
 | |
|  */
 | |
| const _tr_stored_block = (s, buf, stored_len, last) => {
 | |
| //DeflateState *s;
 | |
| //charf *buf;       /* input block */
 | |
| //ulg stored_len;   /* length of input block */
 | |
| //int last;         /* one if this is the last block for a file */
 | |
| 
 | |
|   send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
 | |
|   bi_windup(s);        /* align on byte boundary */
 | |
|   put_short(s, stored_len);
 | |
|   put_short(s, ~stored_len);
 | |
|   if (stored_len) {
 | |
|     s.pending_buf.set(s.window.subarray(buf, buf + stored_len), s.pending);
 | |
|   }
 | |
|   s.pending += stored_len;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send one empty static block to give enough lookahead for inflate.
 | |
|  * This takes 10 bits, of which 7 may remain in the bit buffer.
 | |
|  */
 | |
| const _tr_align = (s) => {
 | |
|   send_bits(s, STATIC_TREES << 1, 3);
 | |
|   send_code(s, END_BLOCK, static_ltree);
 | |
|   bi_flush(s);
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Determine the best encoding for the current block: dynamic trees, static
 | |
|  * trees or store, and write out the encoded block.
 | |
|  */
 | |
| const _tr_flush_block = (s, buf, stored_len, last) => {
 | |
| //DeflateState *s;
 | |
| //charf *buf;       /* input block, or NULL if too old */
 | |
| //ulg stored_len;   /* length of input block */
 | |
| //int last;         /* one if this is the last block for a file */
 | |
| 
 | |
|   let opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
 | |
|   let max_blindex = 0;        /* index of last bit length code of non zero freq */
 | |
| 
 | |
|   /* Build the Huffman trees unless a stored block is forced */
 | |
|   if (s.level > 0) {
 | |
| 
 | |
|     /* Check if the file is binary or text */
 | |
|     if (s.strm.data_type === Z_UNKNOWN) {
 | |
|       s.strm.data_type = detect_data_type(s);
 | |
|     }
 | |
| 
 | |
|     /* Construct the literal and distance trees */
 | |
|     build_tree(s, s.l_desc);
 | |
|     // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 | |
|     //        s->static_len));
 | |
| 
 | |
|     build_tree(s, s.d_desc);
 | |
|     // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 | |
|     //        s->static_len));
 | |
|     /* At this point, opt_len and static_len are the total bit lengths of
 | |
|      * the compressed block data, excluding the tree representations.
 | |
|      */
 | |
| 
 | |
|     /* Build the bit length tree for the above two trees, and get the index
 | |
|      * in bl_order of the last bit length code to send.
 | |
|      */
 | |
|     max_blindex = build_bl_tree(s);
 | |
| 
 | |
|     /* Determine the best encoding. Compute the block lengths in bytes. */
 | |
|     opt_lenb = (s.opt_len + 3 + 7) >>> 3;
 | |
|     static_lenb = (s.static_len + 3 + 7) >>> 3;
 | |
| 
 | |
|     // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 | |
|     //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 | |
|     //        s->sym_next / 3));
 | |
| 
 | |
|     if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
 | |
| 
 | |
|   } else {
 | |
|     // Assert(buf != (char*)0, "lost buf");
 | |
|     opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 | |
|   }
 | |
| 
 | |
|   if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
 | |
|     /* 4: two words for the lengths */
 | |
| 
 | |
|     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | |
|      * Otherwise we can't have processed more than WSIZE input bytes since
 | |
|      * the last block flush, because compression would have been
 | |
|      * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | |
|      * transform a block into a stored block.
 | |
|      */
 | |
|     _tr_stored_block(s, buf, stored_len, last);
 | |
| 
 | |
|   } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
 | |
| 
 | |
|     send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
 | |
|     compress_block(s, static_ltree, static_dtree);
 | |
| 
 | |
|   } else {
 | |
|     send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
 | |
|     send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
 | |
|     compress_block(s, s.dyn_ltree, s.dyn_dtree);
 | |
|   }
 | |
|   // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 | |
|   /* The above check is made mod 2^32, for files larger than 512 MB
 | |
|    * and uLong implemented on 32 bits.
 | |
|    */
 | |
|   init_block(s);
 | |
| 
 | |
|   if (last) {
 | |
|     bi_windup(s);
 | |
|   }
 | |
|   // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 | |
|   //       s->compressed_len-7*last));
 | |
| };
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Save the match info and tally the frequency counts. Return true if
 | |
|  * the current block must be flushed.
 | |
|  */
 | |
| const _tr_tally = (s, dist, lc) => {
 | |
| //    deflate_state *s;
 | |
| //    unsigned dist;  /* distance of matched string */
 | |
| //    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 | |
| 
 | |
|   s.pending_buf[s.sym_buf + s.sym_next++] = dist;
 | |
|   s.pending_buf[s.sym_buf + s.sym_next++] = dist >> 8;
 | |
|   s.pending_buf[s.sym_buf + s.sym_next++] = lc;
 | |
|   if (dist === 0) {
 | |
|     /* lc is the unmatched char */
 | |
|     s.dyn_ltree[lc * 2]/*.Freq*/++;
 | |
|   } else {
 | |
|     s.matches++;
 | |
|     /* Here, lc is the match length - MIN_MATCH */
 | |
|     dist--;             /* dist = match distance - 1 */
 | |
|     //Assert((ush)dist < (ush)MAX_DIST(s) &&
 | |
|     //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | |
|     //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 | |
| 
 | |
|     s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
 | |
|     s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
 | |
|   }
 | |
| 
 | |
|   return (s.sym_next === s.sym_end);
 | |
| };
 | |
| 
 | |
| module.exports._tr_init  = _tr_init;
 | |
| module.exports._tr_stored_block = _tr_stored_block;
 | |
| module.exports._tr_flush_block  = _tr_flush_block;
 | |
| module.exports._tr_tally = _tr_tally;
 | |
| module.exports._tr_align = _tr_align;
 |