Files
ESP-Nodes/ESP-IDF_Robot/main/blink_example_main.c
2025-08-06 04:24:10 -04:00

522 lines
18 KiB
C

/* Robot Controls
Generate PWM signals to control motors.
By: Alexander Bobkov
Date: Dec 21, 2024
Updated: Jan 10, 2025
Jun 26, 2025
Jul 26, 2025 (ESP-IDF + MQTT + WiFi)
Aug 6
built-in LED GPIO: 10
build-in push button GPIO: 3
ESP-PDF: v5.4.1
SPECS
Voltage, DevBoard: 5V
Voltage, Robot: 7.4V (2S LiPo battery)
Current, standby: 300mA
Current, motors: 850mA
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "driver/temperature_sensor.h"
//#include "driver/mcpwm.h"
#include "esp_log.h"
#include "led_strip.h"
#include "sdkconfig.h"
/* ADC */
#include "rc.h"
/* Motors Controls */
#include "motor_controls.h"
/* System-wide controls */
#include "controls.h"
#include "esp_adc/adc_continuous.h"
/* ESP-NOW */
#include <string.h>
#include <assert.h>
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "nvs_flash.h"
#include "esp_random.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_crc.h"
#include "esp_netif.h"
#include "esp_now.h"
#include "esp_mac.h"
#include "esp_wifi.h"
#include "mqtt.h"
#include "esp_system.h"
#include "espnow_config.h"
#include "ultrasonic.h"
#include "ina219.h"
#include "config.h"
static const char *TAG = "ESP IDF Robot";
#define I2C_PORT 0
#define I2C_ADDR 0x40
#define CONFIG_EXAMPLE_I2C_MASTER_SDA 3
#define CONFIG_EXAMPLE_I2C_MASTER_SCL 2
#define CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM 100
/* Use project configuration menu (idf.py menuconfig) to choose the GPIO to blink,
or you can edit the following line and set a number here.
*/
// Retrieve values from configuration menu
#define BLINK_GPIO CONFIG_BLINK_GPIO // 10 GPIO of on-board LED
#define PUSH_BTN_GPIO CONFIG_BUTTON_GPIO // 8, not 3 GPIO of on-board push-button
#define MTR_FL_GPIO 0 //CONFIG_MOTOR_FRONT_LEFT_GPIO
// ADC
#define ADC_ATTEN ADC_ATTEN_DB_11
#define ADC_BIT_WIDTH SOC_ADC_DIGI_MAX_BITWIDTH
#define ADC_UNIT ADC_UNIT_1
#define ADC_CONV_MODE ADC_CONV_BOTH_UNIT// ADC_CONV_SINGLE_UNIT_1
#define ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2 // ESP32C3
#define READ_LEN 1024//256
//#define ADC_GET_CHANNEL(p_data) ((p_data)->type2.channel)
//#define ADC_GET_DATA(p_data) ((p_data)->type2.data)
#define PROJ_X (1) // ADC1_CH1; 0 GPIO joystick, x-axis
#define PROJ_Y (0) // ADC1_CH0; 1 GPIO joystick, y-axis
#define NAV_BTN (8) // 8 GPIO joystick button
#define _ADC_UNIT_STR(unit) #unit
#define ADC_UNIT_STR(unit) _ADC_UNIT_STR(unit)
uint32_t x_avg = 0, y_avg = 0;
static TaskHandle_t led_task_handle;
static TaskHandle_t s_task_handle;
static TaskHandle_t m_task_handle; // Task for controlling motors PWMs
static adc_channel_t channel[2] = {ADC_CHANNEL_0, ADC_CHANNEL_1};
static sensors_data_t buf;
#define ESP_INTR_FLAG_DEFAULT 0
#define GPIO_INPUT_PIN_SEL ((1ULL<<PUSH_BTN_GPIO) | (1ULL<<NAV_BTN))
#define GPIO_OUTPUT_PIN_SEL ((1ULL<<BLINK_GPIO))
/* ESPNOW can work in both station and softap mode. It is configured in menuconfig. */
#if CONFIG_ESPNOW_WIFI_MODE_STATION
#define ESPNOW_WIFI_MODE WIFI_MODE_STA
#define ESPNOW_WIFI_IF ESP_IF_WIFI_STA
#else
#define ESPNOW_WIFI_MODE WIFI_MODE_AP
#define ESPNOW_WIFI_IF ESP_IF_WIFI_AP
#endif
static temperature_sensor_handle_t temp_sensor;
static temperature_sensor_config_t temp_sensor_config;
float tsens_value;
static QueueHandle_t gpio_evt_queue = NULL;
static uint8_t s_led_state = 1;
/* ============================
ESP NOW
============================
ESP32-C3 Blue board MAC: 54:32:04:46:71:80
ESP32-C3 SuperMini MAC: 34:b7:da:f9:33:8d
ESP32-C3 Breadboard #1 MAC: e4:b0:63:17:9e:45
ESP32-C3 Breadboard #2 MAC: 9c:9e:6e:14:b5:54 (rapid blink)
ESP32-C3 zenBoard MAC: dc:da:0c:8e:b3:70
*/
static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
//static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0x54, 0x32, 0x04, 0x46, 0x71, 0x80}; // MAC address of troubleshooting Dev board
//static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0xE4, 0xB0, 0x63, 0x17, 0x9E, 0x45};
static uint8_t robot_mac[ESP_NOW_ETH_ALEN] = {0xE4, 0xB0, 0x63, 0x17, 0x9E, 0x45}; // MAC address of Robot
static uint8_t rc_mac[ESP_NOW_ETH_ALEN] = {0x34, 0xB7, 0xDA, 0xF9, 0x33, 0x8D}; // MAC address of Remote Control
static uint8_t espnow_seq[ESPNOW_DATA_MAX] = {0, 0};
static int rc_x = 0, rc_y = 0;
//uint8_t broadcastAddress[] = {};
//struct_message controlData;
esp_now_peer_info_t peerInfo;
static void espnow_deinit(espnow_send_param_t *send_param);
static void blink_led(void) {
/* Set the GPIO level according to the state (LOW or HIGH)*/
gpio_set_level(BLINK_GPIO, s_led_state);
}
static void IRAM_ATTR gpio_isr_handler (void* arg) {
uint32_t gpio_num = (uint32_t) arg;
xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL);
}
// Push button interrupt task
static void gpio_task (void* arg) {
uint32_t io_num;
for (;;) {
if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {
printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));
}
}
}
static void nav_key_task (void* arg) {
uint32_t io_num;
for (;;) {
if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {
//printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));
}
}
}
static void configure_button (void) {
ESP_LOGI(TAG, "Configured on-board push button");
//gpio_reset_pin(PUSH_BTN_GPIO);
//gpio_set_direction(PUSH_BTN_GPIO, GPIO_MODE_INPUT);
}
// Struct for storing DC Motors PWM values
static void motors_init (void) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
// Initialize DC Motors PWM timers and channels
static void ledc_init (void) {
// MOTOR FRONT RIGHT, FORWARD
ledc_timer_config_t ledc_timer_1 = {
.speed_mode = MTR_MODE,// LEDC_MODE,
.duty_resolution = MTR_DUTY_RES,// LEDC_DUTY_RES,
.timer_num = MTR_FRONT_RIGHT_TMR,// LEDC_TIMER,
.freq_hz = MTR_FREQUENCY,// LEDC_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_1));
ledc_channel_config_t ledc_channel_1 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_RIGHT,// LEDC_CHANNEL_0,// MTR_FRONT_RIGHT,
.timer_sel = MTR_FRONT_RIGHT_TMR,// LEDC_TIMER,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_RIGHT_IO,
.duty = MTR_FRONT_RIGHT_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_1));
// MOTOR FRONT LEFT, FORWARD
ledc_timer_config_t ledc_timer_2 = {
.speed_mode = MTR_MODE,
.duty_resolution = MTR_DUTY_RES,
.timer_num = MTR_FRONT_LEFT_TMR,
.freq_hz = MTR_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_2));
ledc_channel_config_t ledc_channel_2 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_LEFT,
.timer_sel = MTR_FRONT_LEFT_TMR,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_LEFT_IO,
.duty = MTR_FRONT_LEFT_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_2));
// MOTOR FRONT RIGHT, REVERSE
ledc_timer_config_t ledc_timer_3 = {
.speed_mode = MTR_MODE,// LEDC_MODE,
.duty_resolution = MTR_DUTY_RES,// LEDC_DUTY_RES,
.timer_num = MTR_FRONT_RIGHT_REV_TMR,// LEDC_TIMER,
.freq_hz = MTR_FREQUENCY,// LEDC_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_3));
ledc_channel_config_t ledc_channel_3 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_RIGHT_REV,// LEDC_CHANNEL_0,// MTR_FRONT_RIGHT,
.timer_sel = MTR_FRONT_RIGHT_REV_TMR,// LEDC_TIMER,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_RIGHT_REV_IO,
.duty = MTR_FRONT_RIGHT_REV_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_3));
// MOTOR FRONT LEFT, REVERSE
ledc_timer_config_t ledc_timer_4 = {
.speed_mode = MTR_MODE,
.duty_resolution = MTR_DUTY_RES,
.timer_num = MTR_FRONT_LEFT_REV_TMR,
.freq_hz = MTR_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_4));
ledc_channel_config_t ledc_channel_4 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_LEFT_REV,
.timer_sel = MTR_FRONT_LEFT_REV_TMR,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_LEFT_REV_IO,
.duty = MTR_FRONT_LEFT_REV_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_4));
}
/* ESP-NOW */
// Wi-Fi should start before using ESP-NOW
static void wifi_init()
{
/*
* STAND-ALONE
*/
/*ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_storage(WIFI_STORAGE_RAM) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA));//ESPNOW_WIFI_MODE));
ESP_ERROR_CHECK( esp_wifi_start());
ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
#if CONFIG_ESPNOW_ENABLE_LONG_RANGE
ESP_ERROR_CHECK( esp_wifi_set_protocol(ESPNOW_WIFI_IF, WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_LR) );
#endif*/
/*
* WI-FI
*/
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_storage(WIFI_STORAGE_RAM) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA));//ESPNOW_WIFI_MODE));
wifi_config_t wifi_config = {
.sta = {
.ssid = WIFI_SSID,//"IoT_bots2",
.password = WIFI_PASSWORD,// "208208208",
},
};
ESP_ERROR_CHECK (esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
//ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
ESP_ERROR_CHECK( esp_wifi_start());
//ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
ESP_ERROR_CHECK( esp_wifi_connect() );
}
static void led_task (void *arg) {
while(1) {
//ESP_LOGI(TAG, "Turning the LED %s!", s_led_state == true ? "ON" : "OFF");
gpio_set_level(BLINK_GPIO, s_led_state);
vTaskDelay(CONFIG_BLINK_PERIOD / portTICK_PERIOD_MS);
s_led_state = !s_led_state;
}
}
static void temp_sensor_task (void *arg) {
while (true) {
ESP_LOGI("ESP32-C3", "Reading sensor temperature");
float tsens_value;
ESP_ERROR_CHECK(temperature_sensor_get_celsius(temp_sensor, &tsens_value));
ESP_LOGW("ESP32-C3", "Temperature value %.02f ℃", tsens_value);
mqtt_update_temp (tsens_value);
vTaskDelay(5000 / portTICK_PERIOD_MS);
}
}
// Task function to read joystick values and update motors rotation speeds.
static void rc_task (void *arg) {
while (true) {
update_pwm (rc_x, rc_y);
//ESP_LOGI("x,y", "( %d, %d ) [ %d, %d] ", rc_x, rc_y, x, y);
vTaskDelay (100 / portTICK_PERIOD_MS); // Determines responsiveness
//vTaskDelay (1000 / portTICK_PERIOD_MS);
}
}
static void display_xy() {
while (true) {
ESP_LOGI("x,y", "( %d, %d ) [ %d, %d] ", rc_x, rc_y, x, y);
uint8_t channel;
wifi_band_t band;
esp_wifi_get_channel(&channel, NULL);
esp_wifi_get_band(&band);
ESP_LOGI(TAG, "Wi-Fi Channel: %d, Band: %d", channel, band);
vTaskDelay (1000 / portTICK_PERIOD_MS);
}
}
/*
EXP32-C3 Chip built-in temprature sensor
Read & display the temperature value
*/
static void chip_sensor_init () {
temp_sensor = NULL;
temperature_sensor_config_t temp_sensor_config = TEMPERATURE_SENSOR_CONFIG_DEFAULT(10, 50);
ESP_ERROR_CHECK(temperature_sensor_install(&temp_sensor_config, &temp_sensor));
ESP_LOGI(TAG, "Enable temperature sensor");
ESP_ERROR_CHECK(temperature_sensor_enable(temp_sensor));
}
static void display_chip_temperature () {
ESP_LOGI("ESP32-C3", "Reading sensor temperature");
ESP_ERROR_CHECK(temperature_sensor_get_celsius(temp_sensor, &tsens_value));
ESP_LOGW("ESP32-C3", "Temperature value %.02f ℃", tsens_value);
}
// ESP-NOW callback on data received
void onDataReceived (const uint8_t *mac_addr, const uint8_t *data, uint8_t data_len) {
memcpy(&buf, data, sizeof(buf)); // Write buffer into the struct
rc_x = buf.x_axis; // Save joystic x-axis value
rc_y = buf.y_axis; // Save joystic y-axis value
update_pwm(rc_x, rc_y);
mqtt_update_pwm_1(rc_x); // Publish PWM-1 on MQTT Broker
mqtt_update_pwm_2(rc_y); // Publish PWM-2 on MQTT Broker
}
void ultrasonic_task (void *arg) {
ultrasonic_sensor_t sensor = {
.trigger_gpio = GPIO_NUM_4, // Example GPIO for trigger
.echo_gpio = GPIO_NUM_5 // Example GPIO for echo
};
ESP_ERROR_CHECK(ultrasonic_init(&sensor));
uint32_t time_us;
while (true) {
ESP_ERROR_CHECK(ultrasonic_measure_raw(&sensor, PING_TIMEOUT, &time_us));
float distance_cm = (float)time_us / ROUNDTRIP_CM;
ESP_LOGI(TAG, "Distance: %.2f cm", distance_cm);
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
void task(void *pvParameters)
{
ina219_t dev;
memset(&dev, 0, sizeof(ina219_t));
assert(CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM > 0);
ESP_ERROR_CHECK(ina219_init_desc(&dev, I2C_ADDR, I2C_PORT, CONFIG_EXAMPLE_I2C_MASTER_SDA, CONFIG_EXAMPLE_I2C_MASTER_SCL));
ESP_LOGI(TAG, "Initializing INA219");
ESP_ERROR_CHECK(ina219_init(&dev));
ESP_LOGI(TAG, "Configuring INA219");
ESP_ERROR_CHECK(ina219_configure(&dev, INA219_BUS_RANGE_16V, INA219_GAIN_0_125,
INA219_RES_12BIT_1S, INA219_RES_12BIT_1S, INA219_MODE_CONT_SHUNT_BUS));
ESP_LOGI(TAG, "Calibrating INA219");
ESP_ERROR_CHECK(ina219_calibrate(&dev, (float)CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM / 1000.0f));
float bus_voltage, shunt_voltage, current, power;
ESP_LOGI(TAG, "Starting the loop");
while (1)
{
ESP_ERROR_CHECK(ina219_get_bus_voltage(&dev, &bus_voltage));
ESP_ERROR_CHECK(ina219_get_shunt_voltage(&dev, &shunt_voltage));
ESP_ERROR_CHECK(ina219_get_current(&dev, &current));
ESP_ERROR_CHECK(ina219_get_power(&dev, &power));
/* Using float in printf() requires non-default configuration in
* sdkconfig. See sdkconfig.defaults.esp32 and
* sdkconfig.defaults.esp8266 */
printf("VBUS: %.04f V, VSHUNT: %.04f mV, IBUS: %.04f mA, PBUS: %.04f mW\n",
bus_voltage, shunt_voltage * 1000, current * 1000, power * 1000);
uint8_t channel;
wifi_band_t band;
esp_wifi_get_channel(&channel, NULL);
esp_wifi_get_band(&band);
printf("Wi-Fi Channel: %d, Band:%d\n", channel, band);
//ESP_LOGE(TAG, "Wi-Fi Channel: %d, Band: %d", channel, band);
mqtt_update_battery_voltage(bus_voltage);
mqtt_update_sys_current(1000.00*current);
mqtt_update_sys_power(power);
vTaskDelay(pdMS_TO_TICKS(2500));
}
}
void app_main(void)
{
// Initialize NVS before Wi-Fi
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
// MOTORS
motors_init();
// Use wifi_init() for ESP-NOW and Wi-Fi setup
wifi_init();
// Initialize internal temperature sensor
chip_sensor_init();
xTaskCreate(temp_sensor_task, "ESP32C3 Sensor", 2048, NULL, 15, NULL);
// Initialize LED
ledc_init();
int var = 8191;
gpio_config_t io_conf = {};
// Configure on-board LED
gpio_reset_pin(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
xTaskCreate(led_task, "LED", 2048, NULL, 15, NULL);
// Configure on-board push button
io_conf.intr_type = GPIO_INTR_POSEDGE;
io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
gpio_config(&io_conf);
gpio_set_intr_type(PUSH_BTN_GPIO, GPIO_INTR_NEGEDGE);
gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));
xTaskCreate(gpio_task, "GPIO task", 2048, NULL, 10, NULL);
gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);
gpio_isr_handler_add(PUSH_BTN_GPIO, gpio_isr_handler, (void*) PUSH_BTN_GPIO);
// Configure navigation button
io_conf.intr_type = GPIO_INTR_NEGEDGE;
io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
gpio_config(&io_conf);
gpio_set_intr_type(NAV_BTN, GPIO_INTR_NEGEDGE);
gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));
xTaskCreate(nav_key_task, "NAV Keys task", 2048, NULL, 10, NULL);
gpio_isr_handler_add(NAV_BTN, gpio_isr_handler, (void*) NAV_BTN);
configure_button();
printf("Added button interrupt");
mqtt_app_start();
// Initialize buffer with 0s
buf.x_axis = 0;
buf.y_axis = 0;
buf.motor1_rpm_pcm = 0;
esp_now_init();
esp_now_register_recv_cb((void*)onDataReceived);
// ADC
rc_adc_init();
xTaskCreate(rc_task, "RC", 2048, NULL, 5, NULL);
ESP_ERROR_CHECK(i2cdev_init());
xTaskCreate(task, "test", configMINIMAL_STACK_SIZE * 8, NULL, 5, NULL);
xTaskCreate(display_xy, "coordinates", configMINIMAL_STACK_SIZE * 8, NULL, 4, NULL);
}