bootloader: add flash encryption support for C3

Adds flash encryption support for C3 and updates docs for S2 & C3
This commit is contained in:
Marius Vikhammer
2020-12-21 14:48:49 +08:00
parent e82fe93b3d
commit 03fa63b0c9
12 changed files with 1191 additions and 238 deletions

View File

@@ -13,7 +13,6 @@
// limitations under the License.
#include <strings.h>
#include "bootloader_flash_priv.h"
#include "bootloader_random.h"
#include "bootloader_utility.h"
@@ -23,88 +22,142 @@
#include "esp_secure_boot.h"
#include "esp_log.h"
#include "esp32c3/rom/secure_boot.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/efuse.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "hal/wdt_hal.h"
static const char *TAG = "flash_encrypt";
/* Static functions for stages of flash encryption */
static esp_err_t initialise_flash_encryption(void);
static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis);
static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) __attribute__((unused));
static esp_err_t encrypt_bootloader(void);
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions);
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition);
esp_err_t esp_flash_encrypt_check_and_update(void)
{
// TODO ESP32-C3 IDF-2116
uint32_t cnt = REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_SPI_BOOT_CRYPT_CNT);
ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", cnt);
uint8_t flash_crypt_wr_dis = 0;
uint32_t flash_crypt_cnt = 0;
bool flash_crypt_wr_dis = false; // TODO: check if CRYPT_CNT is write disabled
esp_efuse_read_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &flash_crypt_cnt, 3);
esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &flash_crypt_wr_dis, 1);
_Static_assert(EFUSE_SPI_BOOT_CRYPT_CNT == 0x7, "assuming CRYPT_CNT is only 3 bits wide");
ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_cnt);
ESP_LOGV(TAG, "EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_wr_dis);
if (cnt == 1 || cnt == 3 || cnt == 7) {
if (__builtin_parity(flash_crypt_cnt) == 1) {
/* Flash is already encrypted */
int left;
if (cnt == 7 /* || disabled */) {
left = 0;
} else if (cnt == 3) {
left = 1;
} else {
left = 2;
int left = (flash_crypt_cnt == 1) ? 1 : 0;
if (flash_crypt_wr_dis) {
left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */
}
ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left);
return ESP_OK;
} else {
#ifndef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
/* Flash is not encrypted, so encrypt it! */
return encrypt_flash_contents(cnt, flash_crypt_wr_dis);
return encrypt_flash_contents(flash_crypt_cnt, flash_crypt_wr_dis);
#else
ESP_LOGE(TAG, "flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED "
"is set, refusing to boot.");
return ESP_ERR_INVALID_STATE;
#endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
}
}
static esp_err_t initialise_flash_encryption(void)
static esp_err_t check_and_generate_encryption_keys(void)
{
/* Before first flash encryption pass, need to initialise key & crypto config */
esp_efuse_block_t aes_128_key_block;
/* Find out if a key is already set */
bool has_key = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL);
bool has_key = esp_efuse_find_purpose(ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, &aes_128_key_block);
bool dis_write = false;
bool dis_read = false;
if (has_key) {
ESP_LOGI(TAG, "Using pre-existing key in efuse");
ESP_LOGE(TAG, "TODO: Check key is read & write protected"); // TODO
} else {
ESP_LOGI(TAG, "Generating new flash encryption key...");
const unsigned BLOCKS_NEEDED = 1;
const ets_efuse_purpose_t PURPOSE_START = ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY;
const ets_efuse_purpose_t PURPOSE_END = ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY;
if (ets_efuse_count_unused_key_blocks() < BLOCKS_NEEDED) {
ESP_LOGE(TAG, "Not enough free efuse key blocks (need %d) to continue", BLOCKS_NEEDED);
return ESP_ERR_INVALID_STATE;
}
for (ets_efuse_purpose_t purpose = PURPOSE_START; purpose <= PURPOSE_END; purpose++) {
uint32_t buf[8] = {0};
bootloader_fill_random(buf, sizeof(buf));
ets_efuse_block_t block = ets_efuse_find_unused_key_block();
ESP_LOGD(TAG, "Writing ETS_EFUSE_BLOCK_KEY%d with purpose %d",
block - ETS_EFUSE_BLOCK_KEY0, purpose);
bootloader_debug_buffer(buf, sizeof(buf), "Key content");
int r = ets_efuse_write_key(block, purpose, buf, sizeof(buf));
bzero(buf, sizeof(buf));
if (r != 0) {
ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.");
return ESP_FAIL;
}
}
ESP_LOGD(TAG, "Key generation complete");
// If there are keys set, they must be write and read protected!
if(has_key) {
dis_write = esp_efuse_get_key_dis_write(aes_128_key_block);
dis_read = esp_efuse_get_key_dis_read(aes_128_key_block);
}
ESP_LOGE(TAG, "TODO: burn remaining security protection bits");
return ESP_OK;
if(has_key && (!dis_read || !dis_write)) {
ESP_LOGE(TAG, "Invalid key state, a key was set but not read and write protected.");
return ESP_ERR_INVALID_STATE;
}
if(!has_key && !dis_write && !dis_read) {
ESP_LOGI(TAG, "Generating new flash encryption key...");
enum { BLOCKS_NEEDED = 1 };
esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = {
ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY,
};
uint8_t keys[BLOCKS_NEEDED][32] = { 0 };
for (int i = 0; i < BLOCKS_NEEDED; ++i) {
bootloader_fill_random(keys[i], 32);
}
esp_err_t err = esp_efuse_write_keys(purposes, keys, BLOCKS_NEEDED);
if (err != ESP_OK) {
if (err == ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS) {
ESP_LOGE(TAG, "Not enough free efuse key blocks (need %d) to continue", BLOCKS_NEEDED);
} else {
ESP_LOGE(TAG, "Failed to write efuse block with purpose (err=0x%x). Can't continue.", err);
}
return err;
}
ESP_LOGD(TAG, "Key generation complete");
return ESP_OK;
} else {
ESP_LOGI(TAG, "Using pre-existing key in efuse");
return ESP_OK;
}
}
static esp_err_t initialise_flash_encryption(void)
{
esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
esp_err_t key_state = check_and_generate_encryption_keys();
if(key_state != ESP_OK) {
esp_efuse_batch_write_cancel();
return key_state;
}
#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
ESP_LOGI(TAG, "Disable UART bootloader encryption...");
esp_efuse_write_field_bit(ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT);
#else
ESP_LOGW(TAG, "Not disabling UART bootloader encryption");
#endif
#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
ESP_LOGI(TAG, "Disable UART bootloader cache...");
esp_efuse_write_field_bit(ESP_EFUSE_DIS_DOWNLOAD_ICACHE);
#else
ESP_LOGW(TAG, "Not disabling UART bootloader cache - SECURITY COMPROMISED");
#endif
#ifndef CONFIG_SECURE_BOOT_ALLOW_JTAG
ESP_LOGI(TAG, "Disable JTAG...");
esp_efuse_write_field_bit(ESP_EFUSE_DIS_PAD_JTAG);
esp_efuse_write_field_bit(ESP_EFUSE_DIS_USB_JTAG);
#else
ESP_LOGW(TAG, "Not disabling JTAG - SECURITY COMPROMISED");
#endif
esp_efuse_write_field_bit(ESP_EFUSE_DIS_LEGACY_SPI_BOOT);
esp_err_t err = esp_efuse_batch_write_commit();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error programming security eFuses (err=0x%x).", err);
}
return err;
}
/* Encrypt all flash data that should be encrypted */
@@ -117,7 +170,7 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
/* If the last spi_boot_crypt_cnt bit is burned or write-disabled, the
device can't re-encrypt itself. */
if (flash_crypt_wr_dis || spi_boot_crypt_cnt == EFUSE_SPI_BOOT_CRYPT_CNT) {
ESP_LOGE(TAG, "Cannot re-encrypt data (SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
ESP_LOGE(TAG, "Cannot re-encrypt data SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
return ESP_FAIL;
}
@@ -155,13 +208,17 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
/* Set least significant 0-bit in spi_boot_crypt_cnt */
int ffs_inv = __builtin_ffs((~spi_boot_crypt_cnt) & 0x7);
/* ffs_inv shouldn't be zero, as zero implies spi_boot_crypt_cnt == 0xFF */
uint32_t new_spi_boot_crypt_cnt = spi_boot_crypt_cnt + (1 << (ffs_inv - 1));
ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt);
uint32_t new_spi_boot_crypt_cnt = (1 << (ffs_inv - 1));
ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt + spi_boot_crypt_cnt);
ets_efuse_clear_program_registers();
REG_SET_FIELD(EFUSE_PGM_DATA2_REG, EFUSE_SPI_BOOT_CRYPT_CNT, new_spi_boot_crypt_cnt);
ets_efuse_program(ETS_EFUSE_BLOCK0);
esp_efuse_write_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &new_spi_boot_crypt_cnt, 3);
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE
//Secure SPI boot cnt after its update if needed.
const uint32_t spi_boot_cnt_wr_dis = 1;
ESP_LOGI(TAG, "Write protecting SPI_CRYPT_CNT eFuse");
esp_efuse_write_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &spi_boot_cnt_wr_dis, 1);
#endif
ESP_LOGI(TAG, "Flash encryption completed");
return ESP_OK;
@@ -174,20 +231,28 @@ static esp_err_t encrypt_bootloader(void)
/* Check for plaintext bootloader (verification will fail if it's already encrypted) */
if (esp_image_verify_bootloader(&image_length) == ESP_OK) {
ESP_LOGD(TAG, "bootloader is plaintext. Encrypting...");
#if CONFIG_SECURE_BOOT_V2_ENABLED
/* The image length obtained from esp_image_verify_bootloader includes the sector boundary padding and the signature block lengths */
if (ESP_BOOTLOADER_OFFSET + image_length > ESP_PARTITION_TABLE_OFFSET) {
ESP_LOGE(TAG, "Bootloader is too large to fit Secure Boot V2 signature sector and partition table (configured offset 0x%x)", ESP_PARTITION_TABLE_OFFSET);
return ESP_ERR_INVALID_SIZE;
}
#endif // CONFIG_SECURE_BOOT_V2_ENABLED
err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err);
return err;
}
if (esp_secure_boot_enabled()) {
// TODO: anything different for secure boot?
}
} else {
ESP_LOGW(TAG, "no valid bootloader was found");
ESP_LOGI(TAG, "bootloader encrypted successfully");
return err;
}
else {
ESP_LOGW(TAG, "no valid bootloader was found");
return ESP_ERR_NOT_FOUND;
}
return ESP_OK;
}
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions)
@@ -213,9 +278,11 @@ static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partitio
}
/* Valid partition table loaded */
ESP_LOGI(TAG, "partition table encrypted and loaded successfully");
return ESP_OK;
}
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition)
{
esp_err_t err;
@@ -248,6 +315,7 @@ static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partit
}
}
esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
{
esp_err_t err;
@@ -258,7 +326,12 @@ esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
return ESP_FAIL;
}
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
uint32_t sec_start = i + src_addr;
err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false);
if (err != ESP_OK) {