mirror of
https://github.com/espressif/esp-idf.git
synced 2025-12-08 09:31:34 +00:00
esp32c6: add esp_hw_support
This commit is contained in:
committed by
Song Ruo Jing
parent
21663bd0b9
commit
23e37393a7
@@ -0,0 +1,68 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for HMAC cryptography peripheral
|
||||
*
|
||||
* Internally also locks the SHA peripheral, as the HMAC depends on the SHA peripheral
|
||||
*/
|
||||
void esp_crypto_hmac_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for HMAC cryptography peripheral
|
||||
*
|
||||
* Internally also releases the SHA peripheral, as the HMAC depends on the SHA peripheral
|
||||
*/
|
||||
void esp_crypto_hmac_lock_release(void);
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for DS cryptography peripheral
|
||||
*
|
||||
* Internally also locks the HMAC (which locks SHA), AES and MPI peripheral, as the DS depends on these peripherals
|
||||
*/
|
||||
void esp_crypto_ds_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for DS cryptography peripheral
|
||||
*
|
||||
* Internally also releases the HMAC (which locks SHA), AES and MPI peripheral, as the DS depends on these peripherals
|
||||
*/
|
||||
void esp_crypto_ds_lock_release(void);
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for the SHA and AES cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_sha_aes_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for the SHA and AES cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_sha_aes_lock_release(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for the mpi cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_mpi_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for the mpi/rsa cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_mpi_lock_release(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
220
components/esp_hw_support/include/soc/esp32c6/esp_ds.h
Normal file
220
components/esp_hw_support/include/soc/esp32c6/esp_ds.h
Normal file
@@ -0,0 +1,220 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_hmac.h"
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_HMAC_FAIL ESP_ERR_HW_CRYPTO_BASE + 0x1 /*!< HMAC peripheral problem */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_KEY ESP_ERR_HW_CRYPTO_BASE + 0x2 /*!< given HMAC key isn't correct,
|
||||
HMAC peripheral problem */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_DIGEST ESP_ERR_HW_CRYPTO_BASE + 0x4 /*!< message digest check failed,
|
||||
result is invalid */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_PADDING ESP_ERR_HW_CRYPTO_BASE + 0x5 /*!< padding check failed, but result
|
||||
is produced anyway and can be read*/
|
||||
|
||||
#define ESP_DS_IV_BIT_LEN 128
|
||||
#define ESP_DS_IV_LEN (ESP_DS_IV_BIT_LEN / 8)
|
||||
#define ESP_DS_SIGNATURE_MAX_BIT_LEN 3072
|
||||
#define ESP_DS_SIGNATURE_MD_BIT_LEN 256
|
||||
#define ESP_DS_SIGNATURE_M_PRIME_BIT_LEN 32
|
||||
#define ESP_DS_SIGNATURE_L_BIT_LEN 32
|
||||
#define ESP_DS_SIGNATURE_PADDING_BIT_LEN 64
|
||||
|
||||
/* Length of parameter 'C' stored in flash, in bytes
|
||||
- Operands Y, M and r_bar; each 3072 bits
|
||||
- Operand MD (message digest); 256 bits
|
||||
- Operands M' and L; each 32 bits
|
||||
- Operand beta (padding value; 64 bits
|
||||
*/
|
||||
#define ESP_DS_C_LEN (((ESP_DS_SIGNATURE_MAX_BIT_LEN * 3 \
|
||||
+ ESP_DS_SIGNATURE_MD_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_M_PRIME_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_L_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_PADDING_BIT_LEN) / 8))
|
||||
|
||||
typedef struct esp_ds_context esp_ds_context_t;
|
||||
|
||||
typedef enum {
|
||||
ESP_DS_RSA_1024 = (1024 / 32) - 1,
|
||||
ESP_DS_RSA_2048 = (2048 / 32) - 1,
|
||||
ESP_DS_RSA_3072 = (3072 / 32) - 1
|
||||
} esp_digital_signature_length_t;
|
||||
|
||||
/**
|
||||
* Encrypted private key data. Recommended to store in flash in this format.
|
||||
*
|
||||
* @note This struct has to match to one from the ROM code! This documentation is mostly taken from there.
|
||||
*/
|
||||
typedef struct esp_digital_signature_data {
|
||||
/**
|
||||
* RSA LENGTH register parameters
|
||||
* (number of words in RSA key & operands, minus one).
|
||||
*
|
||||
* Max value 127 (for RSA 3072).
|
||||
*
|
||||
* This value must match the length field encrypted and stored in 'c',
|
||||
* or invalid results will be returned. (The DS peripheral will
|
||||
* always use the value in 'c', not this value, so an attacker can't
|
||||
* alter the DS peripheral results this way, it will just truncate or
|
||||
* extend the message and the resulting signature in software.)
|
||||
*
|
||||
* @note In IDF, the enum type length is the same as of type unsigned, so they can be used interchangably.
|
||||
* See the ROM code for the original declaration of struct \c ets_ds_data_t.
|
||||
*/
|
||||
esp_digital_signature_length_t rsa_length;
|
||||
|
||||
/**
|
||||
* IV value used to encrypt 'c'
|
||||
*/
|
||||
uint32_t iv[ESP_DS_IV_BIT_LEN / 32];
|
||||
|
||||
/**
|
||||
* Encrypted Digital Signature parameters. Result of AES-CBC encryption
|
||||
* of plaintext values. Includes an encrypted message digest.
|
||||
*/
|
||||
uint8_t c[ESP_DS_C_LEN];
|
||||
} esp_ds_data_t;
|
||||
|
||||
/**
|
||||
* Plaintext parameters used by Digital Signature.
|
||||
*
|
||||
* This is only used for encrypting the RSA parameters by calling esp_ds_encrypt_params().
|
||||
* Afterwards, the result can be stored in flash or in other persistent memory.
|
||||
* The encryption is a prerequisite step before any signature operation can be done.
|
||||
*/
|
||||
typedef struct {
|
||||
uint32_t Y[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA exponent
|
||||
uint32_t M[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA modulus
|
||||
uint32_t Rb[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA r inverse operand
|
||||
uint32_t M_prime; //!< RSA M prime operand
|
||||
uint32_t length; //!< RSA length in words (32 bit)
|
||||
} esp_ds_p_data_t;
|
||||
|
||||
/**
|
||||
* @brief Sign the message with a hardware key from specific key slot.
|
||||
* The function calculates a plain RSA signature with help of the DS peripheral.
|
||||
* The RSA encryption operation is as follows:
|
||||
* Z = XY mod M where,
|
||||
* Z is the signature, X is the input message,
|
||||
* Y and M are the RSA private key parameters.
|
||||
*
|
||||
* This function is a wrapper around \c esp_ds_finish_sign() and \c esp_ds_start_sign(), so do not use them
|
||||
* in parallel.
|
||||
* It blocks until the signing is finished and then returns the signature.
|
||||
*
|
||||
* @note This function locks the HMAC, SHA, AES and RSA components during its entire execution time.
|
||||
*
|
||||
* @param message the message to be signed; its length should be (data->rsa_length + 1)*4 bytes
|
||||
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
|
||||
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
|
||||
* signing key data
|
||||
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the signature was written to the parameter \c signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
|
||||
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
|
||||
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
|
||||
* since the message digest matches.
|
||||
*/
|
||||
esp_err_t esp_ds_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
void *signature);
|
||||
|
||||
/**
|
||||
* @brief Start the signing process.
|
||||
*
|
||||
* This function yields a context object which needs to be passed to \c esp_ds_finish_sign() to finish the signing
|
||||
* process.
|
||||
* The function calculates a plain RSA signature with help of the DS peripheral.
|
||||
* The RSA encryption operation is as follows:
|
||||
* Z = XY mod M where,
|
||||
* Z is the signature, X is the input message,
|
||||
* Y and M are the RSA private key parameters.
|
||||
*
|
||||
* @note This function locks the HMAC, SHA, AES and RSA components, so the user has to ensure to call
|
||||
* \c esp_ds_finish_sign() in a timely manner.
|
||||
*
|
||||
* @param message the message to be signed; its length should be (data->rsa_length + 1)*4 bytes
|
||||
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
|
||||
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
|
||||
* signing key data
|
||||
* @param esp_ds_ctx the context object which is needed for finishing the signing process later
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation was started now and has to be finished with \c esp_ds_finish_sign()
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
|
||||
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
|
||||
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
|
||||
*/
|
||||
esp_err_t esp_ds_start_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
esp_ds_context_t **esp_ds_ctx);
|
||||
|
||||
/**
|
||||
* Return true if the DS peripheral is busy, otherwise false.
|
||||
*
|
||||
* @note Only valid if \c esp_ds_start_sign() was called before.
|
||||
*/
|
||||
bool esp_ds_is_busy(void);
|
||||
|
||||
/**
|
||||
* @brief Finish the signing process.
|
||||
*
|
||||
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
|
||||
* @param esp_ds_ctx the context object retreived by \c esp_ds_start_sign()
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
|
||||
* This means that the encrypted RSA key parameters are invalid, indicating that they may have been tampered
|
||||
* with or indicating a flash error, etc.
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
|
||||
* since the message digest matches (see TRM for more details).
|
||||
*/
|
||||
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx);
|
||||
|
||||
/**
|
||||
* @brief Encrypt the private key parameters.
|
||||
*
|
||||
* The encryption is a prerequisite step before any signature operation can be done.
|
||||
* It is not strictly necessary to use this encryption function, the encryption could also happen on an external
|
||||
* device.
|
||||
*
|
||||
* @param data Output buffer to store encrypted data, suitable for later use generating signatures.
|
||||
* The allocated memory must be in internal memory and word aligned since it's filled by DMA. Both is asserted
|
||||
* at run time.
|
||||
* @param iv Pointer to 16 byte IV buffer, will be copied into 'data'. Should be randomly generated bytes each time.
|
||||
* @param p_data Pointer to input plaintext key data. The expectation is this data will be deleted after this process
|
||||
* is done and 'data' is stored.
|
||||
* @param key Pointer to 32 bytes of key data. Type determined by key_type parameter. The expectation is the
|
||||
* corresponding HMAC key will be stored to efuse and then permanently erased.
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or p_data->rsa_length is too long
|
||||
*/
|
||||
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
|
||||
const void *iv,
|
||||
const esp_ds_p_data_t *p_data,
|
||||
const void *key);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
92
components/esp_hw_support/include/soc/esp32c6/esp_hmac.h
Normal file
92
components/esp_hw_support/include/soc/esp32c6/esp_hmac.h
Normal file
@@ -0,0 +1,92 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#ifndef _ESP_HMAC_H_
|
||||
#define _ESP_HMAC_H_
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* The possible efuse keys for the HMAC peripheral
|
||||
*/
|
||||
typedef enum {
|
||||
HMAC_KEY0 = 0,
|
||||
HMAC_KEY1,
|
||||
HMAC_KEY2,
|
||||
HMAC_KEY3,
|
||||
HMAC_KEY4,
|
||||
HMAC_KEY5,
|
||||
HMAC_KEY_MAX
|
||||
} hmac_key_id_t;
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* Calculate the HMAC of a given message.
|
||||
*
|
||||
* Calculate the HMAC \c hmac of a given message \c message with length \c message_len.
|
||||
* SHA256 is used for the calculation (fixed on ESP32S2).
|
||||
*
|
||||
* @note Uses the HMAC peripheral in "upstream" mode.
|
||||
*
|
||||
* @param key_id Determines which of the 6 key blocks in the efuses should be used for the HMAC calcuation.
|
||||
* The corresponding purpose field of the key block in the efuse must be set to the HMAC upstream purpose value.
|
||||
* @param message the message for which to calculate the HMAC
|
||||
* @param message_len message length
|
||||
* return ESP_ERR_INVALID_STATE if unsuccessful
|
||||
* @param [out] hmac the hmac result; the buffer behind the provided pointer must be a writeable buffer of 32 bytes
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK, if the calculation was successful,
|
||||
* * ESP_ERR_INVALID_ARG if message or hmac is a nullptr or if key_id out of range
|
||||
* * ESP_FAIL, if the hmac calculation failed
|
||||
*/
|
||||
esp_err_t esp_hmac_calculate(hmac_key_id_t key_id,
|
||||
const void *message,
|
||||
size_t message_len,
|
||||
uint8_t *hmac);
|
||||
|
||||
/**
|
||||
* @brief Use HMAC peripheral in Downstream mode to re-enable the JTAG, if it is not permanently disabled by HW.
|
||||
* In downstream mode, HMAC calculations performed by peripheral are used internally and not provided back to user.
|
||||
*
|
||||
* @param key_id Determines which of the 6 key blocks in the efuses should be used for the HMAC calculation.
|
||||
* The corresponding purpose field of the key block in the efuse must be set to HMAC downstream purpose.
|
||||
*
|
||||
* @param token Pre calculated HMAC value of the 32-byte 0x00 using SHA-256 and the known private HMAC key. The key is already
|
||||
* programmed to a eFuse key block. The key block number is provided as the first parameter to this function.
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK, if the key_purpose of the key_id matches to HMAC downstread mode,
|
||||
* The API returns success even if calculated HMAC does not match with the provided token.
|
||||
* However, The JTAG will be re-enabled only if the calculated HMAC value matches with provided token,
|
||||
* otherwise JTAG will remain disabled.
|
||||
* * ESP_FAIL, if the key_purpose of the key_id is not set to HMAC downstream purpose
|
||||
* or JTAG is permanently disabled by EFUSE_HARD_DIS_JTAG eFuse parameter.
|
||||
* * ESP_ERR_INVALID_ARG, invalid input arguments
|
||||
*
|
||||
* @note Return value of the API does not indicate the JTAG status.
|
||||
*/
|
||||
esp_err_t esp_hmac_jtag_enable(hmac_key_id_t key_id, const uint8_t *token);
|
||||
|
||||
/**
|
||||
* @brief Disable the JTAG which might be enabled using the HMAC downstream mode. This function just clears the result generated
|
||||
* by calling esp_hmac_jtag_enable() API.
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK return ESP_OK after writing the HMAC_SET_INVALIDATE_JTAG_REG with value 1.
|
||||
*/
|
||||
esp_err_t esp_hmac_jtag_disable(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // _ESP_HMAC_H_
|
||||
32
components/esp_hw_support/include/soc/esp32c6/rtc.h
Normal file
32
components/esp_hw_support/include/soc/esp32c6/rtc.h
Normal file
@@ -0,0 +1,32 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @file esp32c6/rtc.h
|
||||
*
|
||||
* This file contains declarations of rtc related functions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Get current value of RTC counter in microseconds
|
||||
*
|
||||
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
|
||||
*
|
||||
* @return current value of RTC counter in microseconds
|
||||
*/
|
||||
uint64_t esp_rtc_get_time_us(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -0,0 +1,175 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// ESP32-C6 PMS memory protection types
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Memory types recognized by PMS
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_TYPE_NONE = 0x00000000,
|
||||
MEMPROT_TYPE_IRAM0_SRAM = 0x00000001,
|
||||
MEMPROT_TYPE_DRAM0_SRAM = 0x00000002,
|
||||
MEMPROT_TYPE_IRAM0_RTCFAST = 0x00000004,
|
||||
MEMPROT_TYPE_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_TYPE_INVALID = 0x80000000,
|
||||
MEMPROT_TYPE_IRAM0_ANY = MEMPROT_TYPE_IRAM0_SRAM | MEMPROT_TYPE_IRAM0_RTCFAST
|
||||
} esp_mprot_mem_t;
|
||||
|
||||
/**
|
||||
* @brief Splitting address (line) type
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_SPLIT_ADDR_NONE = 0x00000000,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_DRAM0 = 0x00000001,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_LINE_0 = 0x00000002,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_LINE_1 = 0x00000004,
|
||||
MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_0 = 0x00000008,
|
||||
MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_1 = 0x00000010,
|
||||
MEMPROT_SPLIT_ADDR_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_SPLIT_ADDR_INVALID = 0x80000000,
|
||||
MEMPROT_SPLIT_ADDR_MAIN = MEMPROT_SPLIT_ADDR_IRAM0_DRAM0
|
||||
} esp_mprot_split_addr_t;
|
||||
|
||||
/**
|
||||
* @brief PMS area type (memory space between adjacent splitting addresses or above/below the main splt.address)
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_PMS_AREA_NONE = 0x00000000,
|
||||
MEMPROT_PMS_AREA_IRAM0_0 = 0x00000001,
|
||||
MEMPROT_PMS_AREA_IRAM0_1 = 0x00000002,
|
||||
MEMPROT_PMS_AREA_IRAM0_2 = 0x00000004,
|
||||
MEMPROT_PMS_AREA_IRAM0_3 = 0x00000008,
|
||||
MEMPROT_PMS_AREA_DRAM0_0 = 0x00000010,
|
||||
MEMPROT_PMS_AREA_DRAM0_1 = 0x00000020,
|
||||
MEMPROT_PMS_AREA_DRAM0_2 = 0x00000040,
|
||||
MEMPROT_PMS_AREA_DRAM0_3 = 0x00000080,
|
||||
MEMPROT_PMS_AREA_IRAM0_RTCFAST_LO = 0x00000100,
|
||||
MEMPROT_PMS_AREA_IRAM0_RTCFAST_HI = 0x00000200,
|
||||
MEMPROT_PMS_AREA_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_PMS_AREA_INVALID = 0x80000000
|
||||
} esp_mprot_pms_area_t;
|
||||
|
||||
/**
|
||||
* @brief Memory protection configuration
|
||||
*/
|
||||
typedef struct {
|
||||
bool invoke_panic_handler; /*!< Register PMS violation interrupt for panic-handling */
|
||||
bool lock_feature; /*!< Lock all PMS settings */
|
||||
void *split_addr; /*!< Main I/D splitting address */
|
||||
uint32_t mem_type_mask; /*!< Memory types required to protect. See esp_mprot_mem_t enum */
|
||||
} esp_memp_config_t;
|
||||
|
||||
#define ESP_MEMPROT_DEFAULT_CONFIG() { \
|
||||
.invoke_panic_handler = true, \
|
||||
.lock_feature = true, \
|
||||
.split_addr = NULL, \
|
||||
.mem_type_mask = MEMPROT_TYPE_ALL \
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts Memory protection type to string
|
||||
*
|
||||
* @param mem_type Memory protection type
|
||||
*/
|
||||
static inline const char *esp_mprot_mem_type_to_str(const esp_mprot_mem_t mem_type)
|
||||
{
|
||||
switch (mem_type) {
|
||||
case MEMPROT_TYPE_NONE:
|
||||
return "NONE";
|
||||
case MEMPROT_TYPE_IRAM0_SRAM:
|
||||
return "IRAM0_SRAM";
|
||||
case MEMPROT_TYPE_DRAM0_SRAM:
|
||||
return "DRAM0_SRAM";
|
||||
case MEMPROT_TYPE_IRAM0_RTCFAST:
|
||||
return "IRAM0_RTCFAST";
|
||||
case MEMPROT_TYPE_IRAM0_ANY:
|
||||
return "IRAM0_ANY";
|
||||
case MEMPROT_TYPE_ALL:
|
||||
return "ALL";
|
||||
default:
|
||||
return "INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts Splitting address type to string
|
||||
*
|
||||
* @param line_type Split line type
|
||||
*/
|
||||
static inline const char *esp_mprot_split_addr_to_str(const esp_mprot_split_addr_t line_type)
|
||||
{
|
||||
switch (line_type) {
|
||||
case MEMPROT_SPLIT_ADDR_NONE:
|
||||
return "SPLIT_ADDR_NONE";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_DRAM0:
|
||||
return "SPLIT_ADDR_IRAM0_DRAM0";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_LINE_0:
|
||||
return "SPLIT_ADDR_IRAM0_LINE_0";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_LINE_1:
|
||||
return "SPLIT_ADDR_IRAM0_LINE_1";
|
||||
case MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_0:
|
||||
return "SPLIT_ADDR_DRAM0_DMA_LINE_0";
|
||||
case MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_1:
|
||||
return "SPLIT_ADDR_DRAM0_DMA_LINE_1";
|
||||
case MEMPROT_SPLIT_ADDR_ALL:
|
||||
return "SPLIT_ADDR_ALL";
|
||||
default:
|
||||
return "SPLIT_ADDR_INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts PMS Area type to string
|
||||
*
|
||||
* @param area_type PMS Area type
|
||||
*/
|
||||
static inline const char *esp_mprot_pms_area_to_str(const esp_mprot_pms_area_t area_type)
|
||||
{
|
||||
switch (area_type) {
|
||||
case MEMPROT_PMS_AREA_NONE:
|
||||
return "PMS_AREA_NONE";
|
||||
case MEMPROT_PMS_AREA_IRAM0_0:
|
||||
return "PMS_AREA_IRAM0_0";
|
||||
case MEMPROT_PMS_AREA_IRAM0_1:
|
||||
return "PMS_AREA_IRAM0_1";
|
||||
case MEMPROT_PMS_AREA_IRAM0_2:
|
||||
return "PMS_AREA_IRAM0_2";
|
||||
case MEMPROT_PMS_AREA_IRAM0_3:
|
||||
return "PMS_AREA_IRAM0_3";
|
||||
case MEMPROT_PMS_AREA_DRAM0_0:
|
||||
return "PMS_AREA_DRAM0_0";
|
||||
case MEMPROT_PMS_AREA_DRAM0_1:
|
||||
return "PMS_AREA_DRAM0_1";
|
||||
case MEMPROT_PMS_AREA_DRAM0_2:
|
||||
return "PMS_AREA_DRAM0_2";
|
||||
case MEMPROT_PMS_AREA_DRAM0_3:
|
||||
return "PMS_AREA_DRAM0_3";
|
||||
case MEMPROT_PMS_AREA_IRAM0_RTCFAST_LO:
|
||||
return "PMS_AREA_IRAM0_RTCFAST_LO";
|
||||
case MEMPROT_PMS_AREA_IRAM0_RTCFAST_HI:
|
||||
return "PMS_AREA_IRAM0_RTCFAST_HI";
|
||||
case MEMPROT_PMS_AREA_ALL:
|
||||
return "PMS_AREA_ALL";
|
||||
default:
|
||||
return "PMS_AREA_INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user