feature(I2S-ADC): add ADC mode for I2S.

1. Support built-in ADC for I2S.
2. Modify code of ADC, made no change to the original APIs.
3. Add APIs in I2S:
esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel);
4. Add I2S ADC/DAC example code.
5. add old-fashion definition to make it more compatible
6. replase spi_flash_ APIs with esp_partition_ APIs
7. add example of generating audio table from wav
8. change example sound
This commit is contained in:
Wangjialin
2017-08-23 23:12:56 +08:00
parent b2adaf2a4c
commit 2fceec4d85
24 changed files with 6242 additions and 162 deletions

View File

@@ -20,6 +20,8 @@
#include "soc/sens_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/syscon_reg.h"
#include "soc/syscon_struct.h"
#include "rtc_io.h"
#include "touch_pad.h"
#include "adc.h"
@@ -40,6 +42,18 @@
#include "rom/queue.h"
#define ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_FSM_START_WAIT_DEFAULT (5)
#define ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_TIME_KEEP (-1)
#define ADC_MAX_MEAS_NUM_DEFAULT (255)
#define ADC_MEAS_NUM_LIM_DEFAULT (1)
#define SAR_ADC_CLK_DIV_DEFUALT (2)
#define ADC_PATT_LEN_MAX (16)
#define TOUCH_PAD_FILTER_FACTOR_DEFAULT (16)
#define TOUCH_PAD_SHIFT_DEFAULT (4)
#define DAC_ERR_STR_CHANNEL_ERROR "DAC channel error"
static const char *RTC_MODULE_TAG = "RTC_MODULE";
#define RTC_MODULE_CHECK(a, str, ret_val) if (!(a)) { \
@@ -52,17 +66,16 @@ static const char *RTC_MODULE_TAG = "RTC_MODULE";
return (ret_val); \
}
#define ADC_CHECK_UNIT(unit) RTC_MODULE_CHECK(adc_unit < ADC_UNIT_2, "ADC unit error, only support ADC1 for now", ESP_ERR_INVALID_ARG)
#define ADC1_CHECK_FUNCTION_RET(fun_ret) if(fun_ret!=ESP_OK){\
ESP_LOGE(RTC_MODULE_TAG,"%s:%d\n",__FUNCTION__,__LINE__);\
return ESP_FAIL;\
}
#define DAC_ERR_STR_CHANNEL_ERROR "DAC channel error"
portMUX_TYPE rtc_spinlock = portMUX_INITIALIZER_UNLOCKED;
static SemaphoreHandle_t rtc_touch_mux = NULL;
typedef struct {
TimerHandle_t timer;
uint32_t filtered_val[TOUCH_PAD_MAX];
@@ -72,6 +85,12 @@ typedef struct {
} touch_pad_filter_t;
static touch_pad_filter_t *s_touch_pad_filter = NULL;
typedef enum {
ADC_FORCE_FSM = 0x0,
ADC_FORCE_DISABLE = 0x2,
ADC_FORCE_ENABLE = 0x3,
} adc_force_mode_t;
//Reg,Mux,Fun,IE,Up,Down,Rtc_number
const rtc_gpio_desc_t rtc_gpio_desc[GPIO_PIN_COUNT] = {
{RTC_IO_TOUCH_PAD1_REG, RTC_IO_TOUCH_PAD1_MUX_SEL_M, RTC_IO_TOUCH_PAD1_FUN_SEL_S, RTC_IO_TOUCH_PAD1_FUN_IE_M, RTC_IO_TOUCH_PAD1_RUE_M, RTC_IO_TOUCH_PAD1_RDE_M, RTC_IO_TOUCH_PAD1_SLP_SEL_M, RTC_IO_TOUCH_PAD1_SLP_IE_M, RTC_IO_TOUCH_PAD1_HOLD_M, RTC_CNTL_TOUCH_PAD1_HOLD_FORCE_M, RTC_IO_TOUCH_PAD1_DRV_V, RTC_IO_TOUCH_PAD1_DRV_S, RTCIO_GPIO0_CHANNEL}, //0
@@ -412,8 +431,6 @@ static esp_err_t touch_pad_get_io_num(touch_pad_t touch_num, gpio_num_t *gpio_nu
return ESP_OK;
}
#define TOUCH_PAD_FILTER_FACTOR_DEFAULT (16)
#define TOUCH_PAD_SHIFT_DEFAULT (4)
static uint32_t _touch_filter_iir(uint32_t in_now, uint32_t out_last, uint32_t k)
{
if (k == 0) {
@@ -909,69 +926,304 @@ static esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_nu
return ESP_OK;
}
static esp_err_t adc1_pad_init(adc1_channel_t channel)
static esp_err_t adc_set_fsm_time(int rst_wait, int start_wait, int standby_wait, int sample_cycle)
{
gpio_num_t gpio_num = 0;
ADC1_CHECK_FUNCTION_RET(adc1_pad_get_io_num(channel, &gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num));
ADC1_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
portENTER_CRITICAL(&rtc_spinlock);
// Internal FSM reset wait time
if (rst_wait >= 0) {
SYSCON.saradc_fsm.rstb_wait = rst_wait;
}
// Internal FSM start wait time
if (start_wait >= 0) {
SYSCON.saradc_fsm.start_wait = start_wait;
}
// Internal FSM standby wait time
if (standby_wait >= 0) {
SYSCON.saradc_fsm.standby_wait = standby_wait;
}
// Internal FSM standby sample cycle
if (sample_cycle >= 0) {
SYSCON.saradc_fsm.sample_cycle = sample_cycle;
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_data_format(adc_i2s_encode_t mode)
{
portENTER_CRITICAL(&rtc_spinlock);
//data format:
//0: ADC_ENCODE_12BIT [15:12]-channel [11:0]-12 bits ADC data
//1: ADC_ENCODE_11BIT [15]-1 [14:11]-channel [10:0]-11 bits ADC data, the resolution should not be larger than 11 bits in this case.
SYSCON.saradc_ctrl.data_sar_sel = mode;
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_measure_limit(uint8_t meas_num, bool lim_en)
{
portENTER_CRITICAL(&rtc_spinlock);
// Set max measure number
SYSCON.saradc_ctrl2.max_meas_num = meas_num;
// Enable max measure number limit
SYSCON.saradc_ctrl2.meas_num_limit = lim_en;
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_work_mode(adc_unit_t adc_unit)
{
portENTER_CRITICAL(&rtc_spinlock);
if (adc_unit == ADC_UNIT_1) {
// saradc mode sel : 0--single saradc; 1--double saradc; 2--alternative saradc
SYSCON.saradc_ctrl.work_mode = 0;
//ENABLE ADC 0: ADC1 1: ADC2, only work for single SAR mode
SYSCON.saradc_ctrl.sar_sel = 0;
} else if (adc_unit == ADC_UNIT_2) {
// saradc mode sel : 0--single saradc; 1--double saradc; 2--alternative saradc
SYSCON.saradc_ctrl.work_mode = 0;
//ENABLE ADC1 0: SAR1 1: SAR2 only work for single SAR mode
SYSCON.saradc_ctrl.sar_sel = 1;
} else if (adc_unit == ADC_UNIT_BOTH) {
// saradc mode sel : 0--single saradc; 1--double saradc; 2--alternative saradc
SYSCON.saradc_ctrl.work_mode = 1;
} else if (adc_unit == ADC_UNIT_ALTER) {
// saradc mode sel : 0--single saradc; 1--double saradc; 2--alternative saradc
SYSCON.saradc_ctrl.work_mode = 2;
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_atten(adc_unit_t adc_unit, adc_channel_t channel, adc_atten_t atten)
{
ADC_CHECK_UNIT(adc_unit);
if (adc_unit & ADC_UNIT_1) {
RTC_MODULE_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
}
RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
if (adc_unit & ADC_UNIT_1) {
//SAR1_atten
SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, SENS_SAR1_ATTEN_VAL_MASK, atten, (channel * 2));
}
if (adc_unit & ADC_UNIT_2) {
//SAR2_atten
SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, SENS_SAR2_ATTEN_VAL_MASK, atten, (channel * 2));
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
void adc_power_on()
{
portENTER_CRITICAL(&rtc_spinlock);
//Bit1 0:Fsm 1: SW mode
//Bit0 0:SW mode power down 1: SW mode power on
SENS.sar_meas_wait2.force_xpd_sar = ADC_FORCE_ENABLE;
portEXIT_CRITICAL(&rtc_spinlock);
}
void adc_power_off()
{
portENTER_CRITICAL(&rtc_spinlock);
//Bit1 0:Fsm 1: SW mode
//Bit0 0:SW mode power down 1: SW mode power on
SENS.sar_meas_wait2.force_xpd_sar = ADC_FORCE_DISABLE;
portEXIT_CRITICAL(&rtc_spinlock);
}
esp_err_t adc_set_clk_div(uint8_t clk_div)
{
portENTER_CRITICAL(&rtc_spinlock);
// ADC clock devided from APB clk, 80 / 2 = 40Mhz,
SYSCON.saradc_ctrl.sar_clk_div = clk_div;
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)
{
RTC_MODULE_CHECK(src < ADC_I2S_DATA_SRC_MAX, "ADC i2s data source error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
// 1: I2S input data is from SAR ADC (for DMA) 0: I2S input data is from GPIO matrix
SYSCON.saradc_ctrl.data_to_i2s = src;
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
ADC_CHECK_UNIT(adc_unit);
gpio_num_t gpio_num = 0;
if (adc_unit & ADC_UNIT_1) {
RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
ADC1_CHECK_FUNCTION_RET(adc1_pad_get_io_num((adc1_channel_t) channel, &gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num));
ADC1_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num));
ADC1_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
}
return ESP_OK;
}
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
portENTER_CRITICAL(&rtc_spinlock);
if (adc_unit & ADC_UNIT_1) {
// Enable ADC data invert
SENS.sar_read_ctrl.sar1_data_inv = inv_en;
}
if (adc_unit & ADC_UNIT_2) {
// Enable ADC data invert
SENS.sar_read_ctrl2.sar2_data_inv = inv_en;
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
{
ADC_CHECK_UNIT(adc_unit);
RTC_MODULE_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
if (adc_unit & ADC_UNIT_1) {
SENS.sar_start_force.sar1_bit_width = bits;
SENS.sar_read_ctrl.sar1_sample_bit = bits;
}
if (adc_unit & ADC_UNIT_2) {
SENS.sar_start_force.sar2_bit_width = bits;
SENS.sar_read_ctrl2.sar2_sample_bit = bits;
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_i2s_data_len(adc_unit_t adc_unit, int patt_len)
{
ADC_CHECK_UNIT(adc_unit);
RTC_MODULE_CHECK((patt_len < ADC_PATT_LEN_MAX) && (patt_len > 0), "ADC pattern length error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
if(adc_unit & ADC_UNIT_1) {
SYSCON.saradc_ctrl.sar1_patt_len = patt_len - 1;
}
if(adc_unit & ADC_UNIT_2) {
SYSCON.saradc_ctrl.sar2_patt_len = patt_len - 1;
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
static esp_err_t adc_set_i2s_data_pattern(adc_unit_t adc_unit, int seq_num, adc_channel_t channel, adc_bits_width_t bits, adc_atten_t atten)
{
ADC_CHECK_UNIT(adc_unit);
if (adc_unit & ADC_UNIT_1) {
RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
}
RTC_MODULE_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
//Configure pattern table, each 8 bit defines one channel
//[7:4]-channel [3:2]-bit width [1:0]- attenuation
//BIT WIDTH: 3: 12BIT 2: 11BIT 1: 10BIT 0: 9BIT
//ATTEN: 3: ATTEN = 11dB 2: 6dB 1: 2.5dB 0: 0dB
uint8_t val = (channel << 4) | (bits << 2) | (atten << 0);
if (adc_unit & ADC_UNIT_1) {
SYSCON.saradc_sar1_patt_tab[seq_num / 4] &= (~(0xff << ((3 - (seq_num % 4)) * 8)));
SYSCON.saradc_sar1_patt_tab[seq_num / 4] |= (val << ((3 - (seq_num % 4)) * 8));
}
if (adc_unit & ADC_UNIT_2) {
SYSCON.saradc_sar2_patt_tab[seq_num / 4] &= (~(0xff << ((3 - (seq_num % 4)) * 8)));
SYSCON.saradc_sar2_patt_tab[seq_num / 4] |= (val << ((3 - (seq_num % 4)) * 8));
}
portEXIT_CRITICAL(&rtc_spinlock);
return ESP_OK;
}
esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
{
ADC_CHECK_UNIT(adc_unit);
if (adc_unit & ADC_UNIT_1) {
RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
}
uint8_t table_len = 1;
//POWER ON SAR
adc_power_on();
adc_gpio_init(adc_unit, channel);
adc_set_i2s_data_len(adc_unit, table_len);
adc_set_i2s_data_pattern(adc_unit, 0, channel, ADC_WIDTH_BIT_12, ADC_ATTEN_DB_11);
portENTER_CRITICAL(&rtc_spinlock);
if (adc_unit & ADC_UNIT_1) {
//switch SARADC into DIG channel
SENS.sar_read_ctrl.sar1_dig_force = 1;
}
if (adc_unit & ADC_UNIT_2) {
//switch SARADC into DIG channel
SENS.sar_read_ctrl2.sar2_dig_force = 1;
//1: SAR ADC2 is controlled by DIG ADC2 CTRL 0: SAR ADC2 is controlled by PWDET CTRL
SYSCON.saradc_ctrl.sar2_mux = 1;
}
portEXIT_CRITICAL(&rtc_spinlock);
adc_set_i2s_data_source(ADC_I2S_DATA_SRC_ADC);
adc_set_clk_div(SAR_ADC_CLK_DIV_DEFUALT);
// Set internal FSM wait time.
adc_set_fsm_time(ADC_FSM_RSTB_WAIT_DEFAULT, ADC_FSM_START_WAIT_DEFAULT, ADC_FSM_STANDBY_WAIT_DEFAULT,
ADC_FSM_TIME_KEEP);
adc_set_work_mode(adc_unit);
adc_set_data_format(ADC_ENCODE_12BIT);
adc_set_measure_limit(ADC_MAX_MEAS_NUM_DEFAULT, ADC_MEAS_NUM_LIM_DEFAULT);
//Invert The Level, Invert SAR ADC1 data
adc_set_data_inv(adc_unit, true);
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
RTC_MODULE_CHECK(atten <= ADC_ATTEN_11db, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc1_pad_init(channel);
portENTER_CRITICAL(&rtc_spinlock);
SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, (channel * 2)); //SAR1_atten
portEXIT_CRITICAL(&rtc_spinlock);
RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc_gpio_init(ADC_UNIT_1, channel);
adc_set_atten(ADC_UNIT_1, channel, atten);
return ESP_OK;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
portENTER_CRITICAL(&rtc_spinlock);
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH_V, width_bit, SENS_SAR1_BIT_WIDTH_S); //SAR2_BIT_WIDTH[1:0]=0x3, SAR1_BIT_WIDTH[1:0]=0x3
//Invert the adc value,the Output value is invert
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
//Set The adc sample width,invert adc value,must
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT_V, width_bit, SENS_SAR1_SAMPLE_BIT_S); //digital sar1_bit_width[1:0]=3
portEXIT_CRITICAL(&rtc_spinlock);
RTC_MODULE_CHECK(width_bit < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
adc_set_data_width(ADC_UNIT_1, width_bit);
adc_set_data_inv(ADC_UNIT_1, true);
return ESP_OK;
}
int adc1_get_raw(adc1_channel_t channel)
{
uint16_t adc_value;
RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rtc_spinlock);
//Adc Controler is Rtc module,not ulp coprocessor
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_FORCE_S); //force pad mux and force start
SENS.sar_meas_start1.meas1_start_force = 1;
//Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup)
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); //force XPD_SAR=0, use XPD_FSM
SENS.sar_meas_wait2.force_xpd_sar = 0;
//Disable Amp Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup)
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S); //force XPD_AMP=0
SENS.sar_meas_wait2.force_xpd_amp = 0x2;
//Open the ADC1 Data port Not ulp coprocessor
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_SAR1_EN_PAD_FORCE_S); //open the ADC1 data port
SENS.sar_meas_start1.sar1_en_pad_force = 1;
//Select channel
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD, (1 << channel), SENS_SAR1_EN_PAD_S); //pad enable
SET_PERI_REG_BITS(SENS_SAR_MEAS_CTRL_REG, 0xfff, 0x0, SENS_AMP_RST_FB_FSM_S); //[11:8]:short ref ground, [7:4]:short ref, [3:0]:rst fb
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S);
while (GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR1_REG, 0x7, SENS_MEAS_STATUS_S) != 0); //wait det_fsm==0
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 0, SENS_MEAS1_START_SAR_S); //start force 0
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_SAR_S); //start force 1
while (GET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DONE_SAR) == 0) {}; //read done
adc_value = GET_PERI_REG_BITS2(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DATA_SAR, SENS_MEAS1_DATA_SAR_S);
SENS.sar_meas_start1.sar1_en_pad = (1 << channel);
SENS.sar_meas_ctrl.amp_rst_fb_fsm = 0;
SENS.sar_meas_ctrl.amp_short_ref_fsm = 0;
SENS.sar_meas_ctrl.amp_short_ref_gnd_fsm = 0;
SENS.sar_meas_wait1.sar_amp_wait1 = 1;
SENS.sar_meas_wait1.sar_amp_wait2 = 1;
SENS.sar_meas_wait2.sar_amp_wait3 = 1;
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas_start1.meas1_start_sar = 0;
SENS.sar_meas_start1.meas1_start_sar = 1;
while (SENS.sar_meas_start1.meas1_done_sar == 0);
adc_value = SENS.sar_meas_start1.meas1_data_sar;
portEXIT_CRITICAL(&rtc_spinlock);
return adc_value;
}
@@ -983,14 +1235,16 @@ int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw()
void adc1_ulp_enable(void)
{
portENTER_CRITICAL(&rtc_spinlock);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_CTRL_REG, 0xfff, 0x0, SENS_AMP_RST_FB_FSM_S); //[11:8]:short ref ground, [7:4]:short ref, [3:0]:rst fb
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S);
SENS.sar_meas_start1.meas1_start_force = 0;
SENS.sar_meas_start1.sar1_en_pad_force = 0;
SENS.sar_meas_wait2.force_xpd_amp = 0x2;
SENS.sar_meas_wait2.force_xpd_sar = 0;
SENS.sar_meas_ctrl.amp_rst_fb_fsm = 0;
SENS.sar_meas_ctrl.amp_short_ref_fsm = 0;
SENS.sar_meas_ctrl.amp_short_ref_gnd_fsm = 0;
SENS.sar_meas_wait1.sar_amp_wait1 = 0x1;
SENS.sar_meas_wait1.sar_amp_wait2 = 1;
SENS.sar_meas_wait2.sar_amp_wait3 = 0x1;
portEXIT_CRITICAL(&rtc_spinlock);
}
@@ -1199,10 +1453,10 @@ static int hall_sensor_get_value() //hall sensor without LNA
int hall_sensor_read()
{
adc1_pad_init(ADC1_CHANNEL_0);
adc1_pad_init(ADC1_CHANNEL_3);
adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_0db);
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_0db);
adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_0);
adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_3);
adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_0);
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_0);
return hall_sensor_get_value();
}