mirror of
https://github.com/espressif/esp-idf.git
synced 2025-11-26 12:50:30 +00:00
crypto: SHA and AES accelerator bring up for S2
Brings up, fixes and enables AES and SHA hardware acceleration. Closes IDF-714 Closes IDF-716
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
* based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
||||
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
@@ -28,34 +28,38 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/lock.h>
|
||||
#include <assert.h>
|
||||
#include "soc/soc.h"
|
||||
#include "esp32s2/crypto_dma.h"
|
||||
#include "esp32s2/sha.h"
|
||||
#include "soc/crypto_dma_reg.h"
|
||||
|
||||
#include "esp_log.h"
|
||||
#include "esp32s2/rom/ets_sys.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "esp32s2/rom/lldesc.h"
|
||||
|
||||
#include "esp32s2/rom/cache.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_log.h"
|
||||
#include "soc/periph_defs.h"
|
||||
|
||||
#include "soc/cache_memory.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
/* Single lock for SHA engine
|
||||
#include "esp32s2/sha.h"
|
||||
#include "esp32s2/crypto_dma.h"
|
||||
#include "esp32s2/rom/lldesc.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "soc/crypto_dma_reg.h"
|
||||
#include "driver/periph_ctrl.h"
|
||||
#include "sys/param.h"
|
||||
|
||||
|
||||
/* Max amount of bytes in a single DMA operation is 4095,
|
||||
for SHA this means that the biggest safe amount of bytes is
|
||||
31 blocks of 128 bytes = 3968
|
||||
*/
|
||||
#define SHA_DMA_MAX_BYTES 3968
|
||||
|
||||
/* Lock for SHA engine */
|
||||
static _lock_t s_sha_lock;
|
||||
|
||||
/* Enable if want to use SHA interrupt */
|
||||
//#define CONFIG_MBEDTLS_SHA_USE_INTERRUPT
|
||||
|
||||
#if defined(CONFIG_MBEDTLS_SHA_USE_INTERRUPT)
|
||||
static SemaphoreHandle_t op_complete_sem;
|
||||
#endif
|
||||
const static char *TAG = "esp-sha";
|
||||
|
||||
/* Return block size (in bytes) for a given SHA type */
|
||||
inline static size_t block_length(esp_sha_type type)
|
||||
@@ -96,190 +100,265 @@ inline static size_t state_length(esp_sha_type type)
|
||||
}
|
||||
}
|
||||
|
||||
/* This API was designed for ESP32, which has seperate
|
||||
engines for SHA1,256,512. ESP32C has a single engine.
|
||||
*/
|
||||
static void esp_sha_lock_engine_inner(void);
|
||||
|
||||
bool esp_sha_try_lock_engine(esp_sha_type sha_type)
|
||||
{
|
||||
if (_lock_try_acquire(&s_sha_lock) != 0) {
|
||||
/* SHA engine is already in use */
|
||||
return false;
|
||||
} else {
|
||||
esp_sha_lock_engine_inner();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_sha_lock_engine(esp_sha_type sha_type)
|
||||
{
|
||||
_lock_acquire(&s_sha_lock);
|
||||
esp_sha_lock_engine_inner();
|
||||
}
|
||||
|
||||
/* Enable SHA block and then lock it */
|
||||
static void esp_sha_lock_engine_inner(void)
|
||||
/* Enable SHA peripheral and then lock it */
|
||||
void esp_sha_acquire_hardware()
|
||||
{
|
||||
/* Need to lock DMA since it is shared with AES block */
|
||||
portENTER_CRITICAL(&crypto_dma_spinlock);
|
||||
_lock_acquire(&crypto_dma_lock);
|
||||
_lock_acquire(&s_sha_lock);
|
||||
|
||||
REG_SET_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_SHA_CLK_EN | DPORT_CRYPTO_DMA_CLK_EN);
|
||||
REG_CLR_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_SHA_RST | DPORT_CRYPTO_HMAC_RST |
|
||||
DPORT_CRYPTO_DMA_RST | DPORT_CRYPTO_DS_RST);
|
||||
/* Enable SHA and DMA hardware */
|
||||
periph_module_enable(PERIPH_SHA_DMA_MODULE);
|
||||
|
||||
/* DMA for SHA */
|
||||
REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 1);
|
||||
}
|
||||
|
||||
/* Disable SHA block and then unlock it */
|
||||
void esp_sha_unlock_engine(esp_sha_type sha_type)
|
||||
/* Disable SHA peripheral block and then release it */
|
||||
void esp_sha_release_hardware()
|
||||
{
|
||||
REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 0);
|
||||
|
||||
REG_SET_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_SHA_RST | DPORT_CRYPTO_DMA_RST |
|
||||
DPORT_CRYPTO_DS_RST);
|
||||
REG_CLR_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_SHA_CLK_EN | DPORT_CRYPTO_DMA_CLK_EN);
|
||||
|
||||
portEXIT_CRITICAL(&crypto_dma_spinlock);
|
||||
/* Disable SHA and DMA hardware */
|
||||
periph_module_disable(PERIPH_SHA_DMA_MODULE);
|
||||
|
||||
/* Need to lock DMA since it is shared with AES block */
|
||||
_lock_release(&s_sha_lock);
|
||||
_lock_release(&crypto_dma_lock);
|
||||
|
||||
}
|
||||
|
||||
#if defined (CONFIG_MBEDTLS_SHA_USE_INTERRUPT)
|
||||
static IRAM_ATTR void esp_sha_dma_isr(void *arg)
|
||||
|
||||
/* Busy wait until SHA is idle */
|
||||
static void esp_sha_wait_idle(void)
|
||||
{
|
||||
BaseType_t higher_woken;
|
||||
REG_WRITE(SHA_CLEAR_IRQ_REG, 1);
|
||||
xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
|
||||
if (higher_woken) {
|
||||
portYIELD_FROM_ISR();
|
||||
while (DPORT_REG_READ(SHA_BUSY_REG) != 0) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Check if SHA operation completed */
|
||||
static int esp_sha_dma_complete(void)
|
||||
|
||||
void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state)
|
||||
{
|
||||
#if defined (CONFIG_MBEDTLS_SHA_USE_INTERRUPT)
|
||||
if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
|
||||
ESP_LOGE("SHA", "Timed out waiting for completion of SHA Interrupt");
|
||||
return -1;
|
||||
uint32_t *digest_state_words = (uint32_t *)digest_state;
|
||||
uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE);
|
||||
|
||||
for (int i = 0; i < state_length(sha_type) / 4; i++) {
|
||||
REG_WRITE(®_addr_buf[i], digest_state_words[i]);
|
||||
}
|
||||
#else
|
||||
esp_sha_wait_idle();
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Wait until SHA is busy */
|
||||
void esp_sha_wait_idle(void)
|
||||
{
|
||||
while (DPORT_REG_READ(SHA_BUSY_REG) != 0) { }
|
||||
}
|
||||
|
||||
/* Read the SHA digest from hardware */
|
||||
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
||||
{
|
||||
uint32_t *digest_state_words = (uint32_t *)digest_state;
|
||||
int word_len = state_length(sha_type) / 4;
|
||||
|
||||
esp_dport_access_read_buffer(digest_state_words, SHA_H_BASE, word_len);
|
||||
|
||||
/* Fault injection check: verify SHA engine actually ran,
|
||||
state is not all zeroes.
|
||||
*/
|
||||
for (int i = 0; i < word_len; i++) {
|
||||
if (digest_state_words[i] != 0) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
abort(); // SHA peripheral returned all zero state, probably due to fault injection
|
||||
}
|
||||
|
||||
/* The initial hash value for SHA512/t is generated according to the
|
||||
algorithm described in the TRM, chapter SHA-Accelerator
|
||||
*/
|
||||
int esp_sha_512_t_init_hash(uint16_t t)
|
||||
{
|
||||
uint32_t t_string = 0;
|
||||
uint8_t t0, t1, t2, t_len;
|
||||
|
||||
if (t == 384) {
|
||||
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u,cannot be 384", t);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (t <= 9) {
|
||||
t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24));
|
||||
t_len = 0x48;
|
||||
} else if (t <= 99) {
|
||||
t0 = t % 10;
|
||||
t1 = (t / 10) % 10;
|
||||
t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) |
|
||||
(((0x30 + t1) << 24)));
|
||||
t_len = 0x50;
|
||||
} else if (t <= 512) {
|
||||
t0 = t % 10;
|
||||
t1 = (t / 10) % 10;
|
||||
t2 = t / 100;
|
||||
t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) |
|
||||
(((0x30 + t1) << 16) + ((0x30 + t2) << 24)));
|
||||
t_len = 0x58;
|
||||
} else {
|
||||
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u, must equal or less than 512", t);
|
||||
return -1;
|
||||
}
|
||||
|
||||
REG_WRITE(SHA_T_LENGTH_REG, t_len);
|
||||
REG_WRITE(SHA_T_STRING_REG, t_string);
|
||||
REG_WRITE(SHA_MODE_REG, SHA2_512T);
|
||||
REG_WRITE(SHA_START_REG, 1);
|
||||
|
||||
esp_sha_wait_idle();
|
||||
memcpy(digest_state, (void *)SHA_H_BASE, state_length(sha_type));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Internally calls DMA API for single block */
|
||||
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
|
||||
{
|
||||
esp_sha_dma(sha_type, data_block, block_length(sha_type), is_first_block);
|
||||
}
|
||||
|
||||
/* Performs SHA on multiple blocks at a time */
|
||||
int esp_sha_dma(esp_sha_type sha_type, const void *data_block, uint32_t ilen, bool is_first_block)
|
||||
static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
||||
const void *buf, uint32_t buf_len, bool is_first_block);
|
||||
|
||||
/* Performs SHA on multiple blocks at a time using DMA
|
||||
splits up into smaller operations for inputs that exceed a single DMA list
|
||||
*/
|
||||
int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
||||
const void *buf, uint32_t buf_len, bool is_first_block)
|
||||
{
|
||||
size_t blk_len = 0;
|
||||
const uint8_t *local_buf = data_block;
|
||||
int ret = 0;
|
||||
volatile lldesc_t dma_descr;
|
||||
const void *dma_input;
|
||||
unsigned char *non_icache_input = NULL;
|
||||
unsigned char *non_icache_buf = NULL;
|
||||
int dma_op_num = ( ilen / (SHA_DMA_MAX_BYTES + 1) ) + 1;
|
||||
|
||||
if (ilen == 0) {
|
||||
return ret;
|
||||
if (buf_len > 128) {
|
||||
ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
|
||||
return -1;
|
||||
}
|
||||
|
||||
blk_len = block_length(sha_type);
|
||||
|
||||
REG_WRITE(SHA_MODE_REG, sha_type);
|
||||
if ((sha_type == SHA2_512T) && (is_first_block == true)) {
|
||||
REG_WRITE(SHA_START_REG, 1);
|
||||
}
|
||||
|
||||
REG_WRITE(SHA_BLOCK_NUM_REG, (ilen / blk_len));
|
||||
|
||||
if ((sha_type == SHA2_512T) && (is_first_block == true)) {
|
||||
esp_sha_wait_idle();
|
||||
is_first_block = false;
|
||||
}
|
||||
|
||||
bzero( (void *)&dma_descr, sizeof( dma_descr ) );
|
||||
|
||||
/* DMA descriptor for Memory to DMA-AES transfer */
|
||||
dma_descr.length = ilen;
|
||||
dma_descr.size = ilen;
|
||||
dma_descr.owner = 1;
|
||||
dma_descr.eof = 1;
|
||||
dma_descr.buf = local_buf;
|
||||
dma_descr.sosf = 0;
|
||||
dma_descr.empty = 0;
|
||||
|
||||
#if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
|
||||
if ((unsigned int)data_block >= SOC_EXTRAM_DATA_LOW && (unsigned int)data_block <= SOC_EXTRAM_DATA_HIGH) {
|
||||
if (esp_ptr_external_ram(input) || esp_ptr_external_ram(buf)) {
|
||||
Cache_WriteBack_All();
|
||||
}
|
||||
#endif
|
||||
|
||||
/* DMA cannot access memory in the iCache range, copy data to temporary buffers before transfer */
|
||||
if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input)) {
|
||||
non_icache_input = malloc(sizeof(unsigned char) * MIN(ilen, SHA_DMA_MAX_BYTES));
|
||||
if (non_icache_input == NULL) {
|
||||
ESP_LOGE(TAG, "Failed to allocate memory");
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
if (!esp_ptr_dma_ext_capable(buf) && !esp_ptr_dma_capable(buf)) {
|
||||
non_icache_buf = malloc(sizeof(unsigned char) * buf_len);
|
||||
if (non_icache_buf == NULL) {
|
||||
ESP_LOGE(TAG, "Failed to allocate memory");
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
}
|
||||
memcpy(non_icache_buf, buf, buf_len);
|
||||
buf = non_icache_buf;
|
||||
}
|
||||
|
||||
/* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
|
||||
Thus we only do a single DMA input list + dma buf list,
|
||||
which is max 3968/64 + 64/64 = 63 blocks */
|
||||
for (int i = 0; i < dma_op_num; i++) {
|
||||
int dma_chunk_len = MIN(ilen, SHA_DMA_MAX_BYTES);
|
||||
|
||||
|
||||
/* Input depends on if it's a temp alloc buffer or supplied by user */
|
||||
if (non_icache_input != NULL) {
|
||||
memcpy(non_icache_input, input, dma_chunk_len);
|
||||
dma_input = non_icache_input;
|
||||
} else {
|
||||
dma_input = input;
|
||||
}
|
||||
|
||||
ret = esp_sha_dma_process(sha_type, dma_input, dma_chunk_len, buf, buf_len, is_first_block);
|
||||
|
||||
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
is_first_block = false;
|
||||
|
||||
|
||||
ilen -= dma_chunk_len;
|
||||
input += dma_chunk_len;
|
||||
|
||||
// Only append buf to the first operation
|
||||
buf_len = 0;
|
||||
}
|
||||
|
||||
cleanup:
|
||||
free(non_icache_input);
|
||||
free(non_icache_buf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void esp_sha_dma_init(lldesc_t *input)
|
||||
{
|
||||
/* Reset DMA */
|
||||
SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
|
||||
CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
|
||||
|
||||
/* Set descriptors */
|
||||
CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR);
|
||||
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(&dma_descr))&OUT_LINK_REG_OUTLINK_ADDR);
|
||||
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR);
|
||||
/* Start transfer */
|
||||
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START);
|
||||
}
|
||||
|
||||
#if defined (CONFIG_MBEDTLS_SHA_USE_INTERRUPT)
|
||||
REG_WRITE(SHA_CLEAR_IRQ_REG, 1);
|
||||
if (op_complete_sem == NULL) {
|
||||
op_complete_sem = xSemaphoreCreateBinary();
|
||||
esp_intr_alloc(ETS_SHA_INTR_SOURCE, 0, esp_sha_dma_isr, 0, 0);
|
||||
/* Performs SHA on multiple blocks at a time */
|
||||
static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
||||
const void *buf, uint32_t buf_len, bool is_first_block)
|
||||
{
|
||||
size_t blk_len = 0;
|
||||
int ret = 0;
|
||||
lldesc_t dma_descr_input = {};
|
||||
lldesc_t dma_descr_buf = {};
|
||||
lldesc_t *dma_descr_head;
|
||||
|
||||
blk_len = block_length(sha_type);
|
||||
|
||||
REG_WRITE(SHA_MODE_REG, sha_type);
|
||||
REG_WRITE(SHA_BLOCK_NUM_REG, ((ilen + buf_len) / blk_len));
|
||||
|
||||
|
||||
/* DMA descriptor for Memory to DMA-SHA transfer */
|
||||
if (ilen) {
|
||||
dma_descr_input.length = ilen;
|
||||
dma_descr_input.size = ilen;
|
||||
dma_descr_input.owner = 1;
|
||||
dma_descr_input.eof = 1;
|
||||
dma_descr_input.buf = input;
|
||||
dma_descr_head = &dma_descr_input;
|
||||
}
|
||||
/* Check after input to overide head if there is any buf*/
|
||||
if (buf_len) {
|
||||
dma_descr_buf.length = buf_len;
|
||||
dma_descr_buf.size = buf_len;
|
||||
dma_descr_buf.owner = 1;
|
||||
dma_descr_buf.eof = 1;
|
||||
dma_descr_buf.buf = buf;
|
||||
dma_descr_head = &dma_descr_buf;
|
||||
}
|
||||
REG_WRITE(SHA_INT_ENA_REG, 1);
|
||||
#endif
|
||||
|
||||
/* Link DMA lists */
|
||||
if (buf_len && ilen) {
|
||||
dma_descr_buf.eof = 0;
|
||||
dma_descr_buf.empty = (uint32_t)(&dma_descr_input);
|
||||
}
|
||||
|
||||
esp_sha_dma_init(dma_descr_head);
|
||||
|
||||
/* Start hashing */
|
||||
if (is_first_block) {
|
||||
REG_WRITE(SHA_DMA_START_REG, 1);
|
||||
} else {
|
||||
REG_WRITE(SHA_DMA_CONTINUE_REG, 1);
|
||||
}
|
||||
|
||||
ret = esp_sha_dma_complete();
|
||||
|
||||
#if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
|
||||
if ((unsigned int)data_block >= SOC_EXTRAM_DATA_LOW && (unsigned int)data_block <= SOC_EXTRAM_DATA_HIGH) {
|
||||
Cache_Invalidate_DCache_All();
|
||||
}
|
||||
#endif
|
||||
esp_sha_wait_idle();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
|
||||
{
|
||||
SHA_CTX ctx;
|
||||
|
||||
esp_sha_lock_engine(sha_type);
|
||||
|
||||
ets_sha_init(&ctx, sha_type);
|
||||
ets_sha_starts(&ctx, 0);
|
||||
ets_sha_update(&ctx, input, ilen, false);
|
||||
ets_sha_finish(&ctx, output);
|
||||
|
||||
esp_sha_unlock_engine(sha_type);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user