Modify as Angus's suggestion:

1. Set XXX_TAG static, remove extern XXX_TAG in uart.h/ledc.h/gpio.h
2. I removed uart_set/get_print_port() functions, these functions are not well tested, I removed them for now.
3. Modify some function names for uart_read/write_bytes
4. Modify uart_write_bytes and uart_write_bytes_with_break.
This commit is contained in:
Wangjialin
2016-11-04 12:52:34 +08:00
parent 15474b9b7e
commit 3ec23f1b83
6 changed files with 96 additions and 247 deletions

View File

@@ -29,7 +29,7 @@
#include "driver/gpio.h"
#include "soc/uart_struct.h"
const char* UART_TAG = "UART";
static const char* UART_TAG = "UART";
#define UART_CHECK(a, str, ret) if (!(a)) { \
ESP_LOGE(UART_TAG,"%s:%d (%s):%s\n", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret); \
@@ -249,28 +249,19 @@ esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
return ESP_OK;
}
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
return ESP_OK;
}
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_ena.txfifo_empty = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
return ESP_OK;
}
@@ -391,7 +382,7 @@ esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
return ESP_OK;
}
esp_err_t uart_param_config(uart_port_t uart_num, uart_config_t *uart_config)
esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((uart_config), "param null\n", ESP_FAIL);
@@ -413,25 +404,25 @@ esp_err_t uart_param_config(uart_port_t uart_num, uart_config_t *uart_config)
return ESP_OK;
}
esp_err_t uart_intr_config(uart_port_t uart_num, uart_intr_config_t *p_intr_conf)
esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_intr_conf), "param null\n", ESP_FAIL);
UART_CHECK((intr_conf), "param null\n", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.val = UART_INTR_MASK;
if(p_intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
UART[uart_num]->conf1.rx_tout_thrhd = ((p_intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
UART[uart_num]->conf1.rx_tout_en = 1;
} else {
UART[uart_num]->conf1.rx_tout_en = 0;
}
if(p_intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
UART[uart_num]->conf1.rxfifo_full_thrhd = p_intr_conf->rxfifo_full_thresh;
if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
}
if(p_intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
UART[uart_num]->conf1.txfifo_empty_thrhd = p_intr_conf->txfifo_empty_intr_thresh;
if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
}
UART[uart_num]->int_ena.val = p_intr_conf->intr_enable_mask;
UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_FAIL;
}
@@ -459,8 +450,8 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
if(p_uart->tx_waiting_brk) {
return;
}
//TX semaphore used in none tx ringbuffer mode.
if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size > 0) {
//TX semaphore will only be used when tx_buf_size is zero.
if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, NULL);
}
@@ -682,7 +673,7 @@ static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
//Fill UART tx_fifo and return a number,
//This function by itself is not thread-safe, always call from within a muxed section.
static int uart_fill_fifo(uart_port_t uart_num, char* buffer, uint32_t len)
static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
{
uint8_t i = 0;
uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
@@ -694,7 +685,7 @@ static int uart_fill_fifo(uart_port_t uart_num, char* buffer, uint32_t len)
return copy_cnt;
}
int uart_tx_chars(uart_port_t uart_num, char* buffer, uint32_t len)
int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
@@ -703,7 +694,7 @@ int uart_tx_chars(uart_port_t uart_num, char* buffer, uint32_t len)
return 0;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
int tx_len = uart_fill_fifo(uart_num, buffer, len);
int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return tx_len;
}
@@ -713,44 +704,21 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
if(size == 0) {
return 0;
}
size_t original_size = size;
//lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
size_t original_size = size;
while(size) {
//semaphore for tx_fifo available
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
if(sent < size) {
p_uart_obj[uart_num]->tx_waiting_fifo = true;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
size -= sent;
src += sent;
}
}
if(brk_en) {
uart_set_break(uart_num, brk_len);
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return original_size;
}
int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
UART_CHECK(src, "buffer null", (-1));
//Push data to TX ring buffer and return, ISR will send the data.
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int ori_size = size;
int offset = 0;
uart_event_t evt;
evt.type = UART_DATA;
evt.data.size = size;
evt.data.brk_len = brk_len;
if(brk_en) {
evt.type = UART_DATA_BREAK;
} else {
evt.type = UART_DATA;
}
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
while(size > 0) {
int send_size = size > max_size / 2 ? max_size / 2 : size;
@@ -760,86 +728,45 @@ int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
return ori_size;
} else {
//Send data without TX ring buffer, the task will block until all data have been sent out
return uart_tx_all(uart_num, src, size, 0, 0);
while(size) {
//semaphore for tx_fifo available
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
if(sent < size) {
p_uart_obj[uart_num]->tx_waiting_fifo = true;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
size -= sent;
src += sent;
}
}
if(brk_en) {
uart_set_break(uart_num, brk_len);
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return original_size;
}
int uart_tx_all_chars_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
UART_CHECK(src, "buffer null", (-1));
return uart_tx_all(uart_num, src, size, 0, 0);
}
int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK((size > 0), "uart size error", (-1));
UART_CHECK((src), "uart data null", (-1));
UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
//Push data to TX ring buffer and return, ISR will send the data.
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int ori_size = size;
int offset = 0;
uart_event_t evt;
evt.type = UART_DATA_BREAK;
evt.data.size = size;
evt.data.brk_len = brk_len;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
while(size > 0) {
int send_size = size > max_size / 2 ? max_size / 2 : size;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
size -= send_size;
offset += send_size;
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
return ori_size;
} else {
//Send data without TX ring buffer, the task will block until all data have been sent out
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
}
int uart_read_char(uart_port_t uart_num, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
uint8_t* data;
size_t size;
int val;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
return -1;
}
if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
ticks_to_wait = ticks_end - xTaskGetTickCount();
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
if(data) {
p_uart_obj[uart_num]->rx_head_ptr = data;
p_uart_obj[uart_num]->rx_ptr = data;
p_uart_obj[uart_num]->rx_cur_remain = size;
} else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return -1;
}
}
val = *(p_uart_obj[uart_num]->rx_ptr);
p_uart_obj[uart_num]->rx_ptr++;
p_uart_obj[uart_num]->rx_cur_remain--;
if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ptr = NULL;
if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) {
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return val;
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
@@ -952,59 +879,6 @@ esp_err_t uart_flush(uart_port_t uart_num)
return ESP_OK;
}
//-----------------------------------
//Should not enable hw flow control the debug print port.
//Use uart_tx_all_chars() as a thread-safe function to send data.
static int s_uart_print_nport = UART_NUM_0;
static void uart2_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_2, (const char*)&chr, 1);
}
static void uart1_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_1, (const char*)&chr, 1);
}
static void uart0_write_char(char chr)
{
uart_tx_all_chars(UART_NUM_0, (const char*)&chr, 1);
}
static void uart_ignore_char(char chr)
{
}
//Only effective to ets_printf function, not ESP_LOGX macro.
esp_err_t uart_set_print_port(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "UART driver error", ESP_FAIL);
s_uart_print_nport = uart_num;
switch(s_uart_print_nport) {
case UART_NUM_0:
ets_install_putc1(uart0_write_char);
break;
case UART_NUM_1:
ets_install_putc1(uart1_write_char);
break;
case UART_NUM_2:
ets_install_putc1(uart2_write_char);
break;
case UART_NUM_MAX:
default:
ets_install_putc1(uart_ignore_char);
break;
}
return ESP_OK;
}
int uart_get_print_port()
{
return s_uart_print_nport;
}
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);