esp32: Move hardware crypto implementation/headers to hwcrypto directories

This commit is contained in:
Angus Gratton
2016-09-02 14:40:43 +10:00
committed by Wu Jian Gang
parent fc2bfc1f49
commit 4167b68eef
8 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,262 @@
/**
* \file esp_aes.h
*
* \brief AES block cipher
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
#ifndef ESP_AES_H
#define ESP_AES_H
#include "esp_types.h"
#include "rom/ets_sys.h"
#include "rom/aes.h"
#ifdef __cplusplus
extern "C" {
#endif
/* padlock.c and aesni.c rely on these values! */
#define AES_ENCRYPT 1
#define AES_DECRYPT 0
#define ERR_AES_INVALID_KEY_LENGTH -0x0020 /**< Invalid key length. */
#define ERR_AES_INVALID_INPUT_LENGTH -0x0022 /**< Invalid data input length. */
typedef struct {
bool keyflag;
uint16_t keybits;
uint8_t key[32];
} key_context, KEY_CTX;
/**
* \brief AES context structure
*
* \note buf is able to hold 32 extra bytes, which can be used:
* - for alignment purposes if VIA padlock is used, and/or
* - to simplify key expansion in the 256-bit case by
* generating an extra round key
*/
typedef struct {
int nr; /*!< number of rounds */
uint32_t *rk; /*!< AES round keys */
KEY_CTX enc;
KEY_CTX dec;
} aes_context, AES_CTX;
/**
* \brief Initialize AES context
*
* \param ctx AES context to be initialized
*/
void esp_aes_init( AES_CTX *ctx );
/**
* \brief Clear AES context
*
* \param ctx AES context to be cleared
*/
void esp_aes_free( AES_CTX *ctx );
/**
* \brief AES key schedule (encryption)
*
* \param ctx AES context to be initialized
* \param key encryption key
* \param keybits must be 128, 192 or 256
*
* \return 0 if successful, or ERR_AES_INVALID_KEY_LENGTH
*/
int esp_aes_setkey_enc( AES_CTX *ctx, const unsigned char *key, unsigned int keybits );
/**
* \brief AES key schedule (decryption)
*
* \param ctx AES context to be initialized
* \param key decryption key
* \param keybits must be 128, 192 or 256
*
* \return 0 if successful, or ERR_AES_INVALID_KEY_LENGTH
*/
int esp_aes_setkey_dec( AES_CTX *ctx, const unsigned char *key, unsigned int keybits );
/**
* \brief AES-ECB block encryption/decryption
*
* \param ctx AES context
* \param mode AES_ENCRYPT or AES_DECRYPT
* \param input 16-byte input block
* \param output 16-byte output block
*
* \return 0 if successful
*/
int esp_aes_crypt_ecb( AES_CTX *ctx, int mode, const unsigned char input[16], unsigned char output[16] );
/**
* \brief AES-CBC buffer encryption/decryption
* Length should be a multiple of the block
* size (16 bytes)
*
* \note Upon exit, the content of the IV is updated so that you can
* call the function same function again on the following
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If on the other hand you need to retain the contents of the
* IV, you should either save it manually or use the cipher
* module instead.
*
* \param ctx AES context
* \param mode AES_ENCRYPT or AES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful, or ERR_AES_INVALID_INPUT_LENGTH
*/
int esp_aes_crypt_cbc( AES_CTX *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output );
/**
* \brief AES-CFB128 buffer encryption/decryption.
*
* Note: Due to the nature of CFB you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
*
* \note Upon exit, the content of the IV is updated so that you can
* call the function same function again on the following
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If on the other hand you need to retain the contents of the
* IV, you should either save it manually or use the cipher
* module instead.
*
* \param ctx AES context
* \param mode AES_ENCRYPT or AES_DECRYPT
* \param length length of the input data
* \param iv_off offset in IV (updated after use)
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful
*/
int esp_aes_crypt_cfb128( AES_CTX *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output );
/**
* \brief AES-CFB8 buffer encryption/decryption.
*
* Note: Due to the nature of CFB you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
*
* \note Upon exit, the content of the IV is updated so that you can
* call the function same function again on the following
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If on the other hand you need to retain the contents of the
* IV, you should either save it manually or use the cipher
* module instead.
*
* \param ctx AES context
* \param mode AES_ENCRYPT or AES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful
*/
int esp_aes_crypt_cfb8( AES_CTX *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output );
/**
* \brief AES-CTR buffer encryption/decryption
*
* Warning: You have to keep the maximum use of your counter in mind!
*
* Note: Due to the nature of CTR you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* esp_aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
*
* \param ctx AES context
* \param length The length of the data
* \param nc_off The offset in the current stream_block (for resuming
* within current cipher stream). The offset pointer to
* should be 0 at the start of a stream.
* \param nonce_counter The 128-bit nonce and counter.
* \param stream_block The saved stream-block for resuming. Is overwritten
* by the function.
* \param input The input data stream
* \param output The output data stream
*
* \return 0 if successful
*/
int esp_aes_crypt_ctr( AES_CTX *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output );
/**
* \brief Internal AES block encryption function
* (Only exposed to allow overriding it,
* see AES_ENCRYPT_ALT)
*
* \param ctx AES context
* \param input Plaintext block
* \param output Output (ciphertext) block
*/
void esp_aes_encrypt( AES_CTX *ctx, const unsigned char input[16], unsigned char output[16] );
/**
* \brief Internal AES block decryption function
* (Only exposed to allow overriding it,
* see AES_DECRYPT_ALT)
*
* \param ctx AES context
* \param input Ciphertext block
* \param output Output (plaintext) block
*/
void esp_aes_decrypt( AES_CTX *ctx, const unsigned char input[16], unsigned char output[16] );
#ifdef __cplusplus
}
#endif
#endif /* aes.h */

View File

@@ -0,0 +1,706 @@
/**
* \file bignum_alt.h
*
* \brief Multi-precision integer library
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _ESP_BIGNUM_H
#define _ESP_BIGNUM_H
#include "esp_types.h"
#include "rom/ets_sys.h"
#include "rom/bigint.h"
#define MPI_DEBUG_ALT
#define ERR_MPI_FILE_IO_ERROR -0x0002 /**< An error occurred while reading from or writing to a file. */
#define ERR_MPI_BAD_INPUT_DATA -0x0004 /**< Bad input parameters to function. */
#define ERR_MPI_INVALID_CHARACTER -0x0006 /**< There is an invalid character in the digit string. */
#define ERR_MPI_BUFFER_TOO_SMALL -0x0008 /**< The buffer is too small to write to. */
#define ERR_MPI_NEGATIVE_VALUE -0x000A /**< The input arguments are negative or result in illegal output. */
#define ERR_MPI_DIVISION_BY_ZERO -0x000C /**< The input argument for division is zero, which is not allowed. */
#define ERR_MPI_NOT_ACCEPTABLE -0x000E /**< The input arguments are not acceptable. */
#define ERR_MPI_ALLOC_FAILED -0x0010 /**< Memory allocation failed. */
#define MPI_CHK(f) do { if( ( ret = f ) != 0 ) goto cleanup; } while( 0 )
#if defined(MPI_DEBUG_ALT)
#define esp_mpi_printf ets_printf
#else
#define esp_mpi_printf
#endif
/*
* Maximum size MPIs are allowed to grow to in number of limbs.
*/
#define MPI_MAX_LIMBS 10000
#if !defined(MPI_WINDOW_SIZE)
/*
* Maximum window size used for modular exponentiation. Default: 6
* Minimum value: 1. Maximum value: 6.
*
* Result is an array of ( 2 << MPI_WINDOW_SIZE ) MPIs used
* for the sliding window calculation. (So 64 by default)
*
* Reduction in size, reduces speed.
*/
#define MPI_WINDOW_SIZE 6 /**< Maximum windows size used. */
#endif /* !MPI_WINDOW_SIZE */
#if !defined(MPI_MAX_SIZE)
/*
* Maximum size of MPIs allowed in bits and bytes for user-MPIs.
* ( Default: 512 bytes => 4096 bits, Maximum tested: 2048 bytes => 16384 bits )
*
* Note: Calculations can results temporarily in larger MPIs. So the number
* of limbs required (MPI_MAX_LIMBS) is higher.
*/
#define MPI_MAX_SIZE 1024 /**< Maximum number of bytes for usable MPIs. */
#endif /* !MPI_MAX_SIZE */
#define MPI_MAX_BITS ( 8 * MPI_MAX_SIZE ) /**< Maximum number of bits for usable MPIs. */
/*
* When reading from files with esp_mpi_read_file() and writing to files with
* esp_mpi_write_file() the buffer should have space
* for a (short) label, the MPI (in the provided radix), the newline
* characters and the '\0'.
*
* By default we assume at least a 10 char label, a minimum radix of 10
* (decimal) and a maximum of 4096 bit numbers (1234 decimal chars).
* Autosized at compile time for at least a 10 char label, a minimum radix
* of 10 (decimal) for a number of MPI_MAX_BITS size.
*
* This used to be statically sized to 1250 for a maximum of 4096 bit
* numbers (1234 decimal chars).
*
* Calculate using the formula:
* MPI_RW_BUFFER_SIZE = ceil(MPI_MAX_BITS / ln(10) * ln(2)) +
* LabelSize + 6
*/
#define MPI_MAX_BITS_SCALE100 ( 100 * MPI_MAX_BITS )
#define LN_2_DIV_LN_10_SCALE100 332
#define MPI_RW_BUFFER_SIZE ( ((MPI_MAX_BITS_SCALE100 + LN_2_DIV_LN_10_SCALE100 - 1) / LN_2_DIV_LN_10_SCALE100) + 10 + 6 )
/*
* Define the base integer type, architecture-wise.
*
* 32-bit integers can be forced on 64-bit arches (eg. for testing purposes)
* by defining HAVE_INT32 and undefining HAVE_ASM
*/
#if ( ! defined(HAVE_INT32) && \
defined(_MSC_VER) && defined(_M_AMD64) )
#define HAVE_INT64
typedef int64_t esp_mpi_sint;
typedef uint64_t esp_mpi_uint;
#else
#if ( ! defined(HAVE_INT32) && \
defined(__GNUC__) && ( \
defined(__amd64__) || defined(__x86_64__) || \
defined(__ppc64__) || defined(__powerpc64__) || \
defined(__ia64__) || defined(__alpha__) || \
(defined(__sparc__) && defined(__arch64__)) || \
defined(__s390x__) || defined(__mips64) ) )
#define HAVE_INT64
typedef int64_t esp_mpi_sint;
typedef uint64_t esp_mpi_uint;
/* t_udbl defined as 128-bit unsigned int */
typedef unsigned int t_udbl __attribute__((mode(TI)));
#define HAVE_UDBL
#else
#define HAVE_INT32
typedef int32_t esp_mpi_sint;
typedef uint32_t esp_mpi_uint;
typedef uint64_t t_udbl;
#define HAVE_UDBL
#endif /* !HAVE_INT32 && __GNUC__ && 64-bit platform */
#endif /* !HAVE_INT32 && _MSC_VER && _M_AMD64 */
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief MPI structure
*/
typedef struct
{
int s; /*!< integer sign */
size_t n; /*!< total # of limbs */
esp_mpi_uint *p; /*!< pointer to limbs */
}mpi, MPI_CTX;
/**
* \brief Initialize one MPI (make internal references valid)
* This just makes it ready to be set or freed,
* but does not define a value for the MPI.
*
* \param X One MPI to initialize.
*/
void esp_mpi_init( mpi *X );
/**
* \brief Unallocate one MPI
*
* \param X One MPI to unallocate.
*/
void esp_mpi_free( mpi *X );
/**
* \brief Enlarge to the specified number of limbs
*
* \param X MPI to grow
* \param nblimbs The target number of limbs
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_grow( mpi *X, size_t nblimbs );
/**
* \brief Resize down, keeping at least the specified number of limbs
*
* \param X MPI to shrink
* \param nblimbs The minimum number of limbs to keep
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_shrink( mpi *X, size_t nblimbs );
/**
* \brief Copy the contents of Y into X
*
* \param X Destination MPI
* \param Y Source MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_copy( mpi *X, const mpi *Y );
/**
* \brief Swap the contents of X and Y
*
* \param X First MPI value
* \param Y Second MPI value
*/
void esp_mpi_swap( mpi *X, mpi *Y );
/**
* \brief Safe conditional assignement X = Y if assign is 1
*
* \param X MPI to conditionally assign to
* \param Y Value to be assigned
* \param assign 1: perform the assignment, 0: keep X's original value
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
*
* \note This function is equivalent to
* if( assign ) esp_mpi_copy( X, Y );
* except that it avoids leaking any information about whether
* the assignment was done or not (the above code may leak
* information through branch prediction and/or memory access
* patterns analysis).
*/
int esp_mpi_safe_cond_assign( mpi *X, const mpi *Y, unsigned char assign );
/**
* \brief Safe conditional swap X <-> Y if swap is 1
*
* \param X First mpi value
* \param Y Second mpi value
* \param assign 1: perform the swap, 0: keep X and Y's original values
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
*
* \note This function is equivalent to
* if( assign ) esp_mpi_swap( X, Y );
* except that it avoids leaking any information about whether
* the assignment was done or not (the above code may leak
* information through branch prediction and/or memory access
* patterns analysis).
*/
int esp_mpi_safe_cond_swap( mpi *X, mpi *Y, unsigned char assign );
/**
* \brief Set value from integer
*
* \param X MPI to set
* \param z Value to use
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_lset( mpi *X, esp_mpi_sint z );
/**
* \brief Get a specific bit from X
*
* \param X MPI to use
* \param pos Zero-based index of the bit in X
*
* \return Either a 0 or a 1
*/
int esp_mpi_get_bit( const mpi *X, size_t pos );
/**
* \brief Set a bit of X to a specific value of 0 or 1
*
* \note Will grow X if necessary to set a bit to 1 in a not yet
* existing limb. Will not grow if bit should be set to 0
*
* \param X MPI to use
* \param pos Zero-based index of the bit in X
* \param val The value to set the bit to (0 or 1)
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_BAD_INPUT_DATA if val is not 0 or 1
*/
int esp_mpi_set_bit( mpi *X, size_t pos, unsigned char val );
/**
* \brief Return the number of zero-bits before the least significant
* '1' bit
*
* Note: Thus also the zero-based index of the least significant '1' bit
*
* \param X MPI to use
*/
size_t esp_mpi_lsb( const mpi *X );
/**
* \brief Return the number of bits up to and including the most
* significant '1' bit'
*
* Note: Thus also the one-based index of the most significant '1' bit
*
* \param X MPI to use
*/
size_t esp_mpi_bitlen( const mpi *X );
/**
* \brief Return the total size in bytes
*
* \param X MPI to use
*/
size_t esp_mpi_size( const mpi *X );
/**
* \brief Import from an ASCII string
*
* \param X Destination MPI
* \param radix Input numeric base
* \param s Null-terminated string buffer
*
* \return 0 if successful, or a ERR_MPI_XXX error code
*/
int esp_mpi_read_string( mpi *X, int radix, const char *s );
/**
* \brief Export into an ASCII string
*
* \param X Source MPI
* \param radix Output numeric base
* \param buf Buffer to write the string to
* \param buflen Length of buf
* \param olen Length of the string written, including final NUL byte
*
* \return 0 if successful, or a ERR_MPI_XXX error code.
* *olen is always updated to reflect the amount
* of data that has (or would have) been written.
*
* \note Call this function with buflen = 0 to obtain the
* minimum required buffer size in *olen.
*/
int esp_mpi_write_string( const mpi *X, int radix,
char *buf, size_t buflen, size_t *olen );
#if defined(FS_IO)
/**
* \brief Read X from an opened file
*
* \param X Destination MPI
* \param radix Input numeric base
* \param fin Input file handle
*
* \return 0 if successful, ERR_MPI_BUFFER_TOO_SMALL if
* the file read buffer is too small or a
* ERR_MPI_XXX error code
*/
int esp_mpi_read_file( mpi *X, int radix, FILE *fin );
/**
* \brief Write X into an opened file, or stdout if fout is NULL
*
* \param p Prefix, can be NULL
* \param X Source MPI
* \param radix Output numeric base
* \param fout Output file handle (can be NULL)
*
* \return 0 if successful, or a ERR_MPI_XXX error code
*
* \note Set fout == NULL to print X on the console.
*/
int esp_mpi_write_file( const char *p, const mpi *X, int radix, FILE *fout );
#endif /* FS_IO */
/**
* \brief Import X from unsigned binary data, big endian
*
* \param X Destination MPI
* \param buf Input buffer
* \param buflen Input buffer size
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_read_binary( mpi *X, const unsigned char *buf, size_t buflen );
/**
* \brief Export X into unsigned binary data, big endian.
* Always fills the whole buffer, which will start with zeros
* if the number is smaller.
*
* \param X Source MPI
* \param buf Output buffer
* \param buflen Output buffer size
*
* \return 0 if successful,
* ERR_MPI_BUFFER_TOO_SMALL if buf isn't large enough
*/
int esp_mpi_write_binary( const mpi *X, unsigned char *buf, size_t buflen );
/**
* \brief Left-shift: X <<= count
*
* \param X MPI to shift
* \param count Amount to shift
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_shift_l( mpi *X, size_t count );
/**
* \brief Right-shift: X >>= count
*
* \param X MPI to shift
* \param count Amount to shift
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_shift_r( mpi *X, size_t count );
/**
* \brief Compare unsigned values
*
* \param X Left-hand MPI
* \param Y Right-hand MPI
*
* \return 1 if |X| is greater than |Y|,
* -1 if |X| is lesser than |Y| or
* 0 if |X| is equal to |Y|
*/
int esp_mpi_cmp_abs( const mpi *X, const mpi *Y );
/**
* \brief Compare signed values
*
* \param X Left-hand MPI
* \param Y Right-hand MPI
*
* \return 1 if X is greater than Y,
* -1 if X is lesser than Y or
* 0 if X is equal to Y
*/
int esp_mpi_cmp_mpi( const mpi *X, const mpi *Y );
/**
* \brief Compare signed values
*
* \param X Left-hand MPI
* \param z The integer value to compare to
*
* \return 1 if X is greater than z,
* -1 if X is lesser than z or
* 0 if X is equal to z
*/
int esp_mpi_cmp_int( const mpi *X, esp_mpi_sint z );
/**
* \brief Unsigned addition: X = |A| + |B|
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_add_abs( mpi *X, const mpi *A, const mpi *B );
/**
* \brief Unsigned subtraction: X = |A| - |B|
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_NEGATIVE_VALUE if B is greater than A
*/
int esp_mpi_sub_abs( mpi *X, const mpi *A, const mpi *B );
/**
* \brief Signed addition: X = A + B
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_add_mpi( mpi *X, const mpi *A, const mpi *B );
/**
* \brief Signed subtraction: X = A - B
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_sub_mpi( mpi *X, const mpi *A, const mpi *B );
/**
* \brief Signed addition: X = A + b
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param b The integer value to add
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_add_int( mpi *X, const mpi *A, esp_mpi_sint b );
/**
* \brief Signed subtraction: X = A - b
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param b The integer value to subtract
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_sub_int( mpi *X, const mpi *A, esp_mpi_sint b );
/**
* \brief Baseline multiplication: X = A * B
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_mul_mpi( mpi *X, const mpi *A, const mpi *B );
/**
* \brief Baseline multiplication: X = A * b
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param b The unsigned integer value to multiply with
*
* \note b is unsigned
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_mul_int( mpi *X, const mpi *A, esp_mpi_uint b );
/**
* \brief Division by mpi: A = Q * B + R
*
* \param Q Destination MPI for the quotient
* \param R Destination MPI for the rest value
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_DIVISION_BY_ZERO if B == 0
*
* \note Either Q or R can be NULL.
*/
int esp_mpi_div_mpi( mpi *Q, mpi *R, const mpi *A, const mpi *B );
/**
* \brief Division by int: A = Q * b + R
*
* \param Q Destination MPI for the quotient
* \param R Destination MPI for the rest value
* \param A Left-hand MPI
* \param b Integer to divide by
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_DIVISION_BY_ZERO if b == 0
*
* \note Either Q or R can be NULL.
*/
int esp_mpi_div_int( mpi *Q, mpi *R, const mpi *A, esp_mpi_sint b );
/**
* \brief Modulo: R = A mod B
*
* \param R Destination MPI for the rest value
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_DIVISION_BY_ZERO if B == 0,
* ERR_MPI_NEGATIVE_VALUE if B < 0
*/
int esp_mpi_mod_mpi( mpi *R, const mpi *A, const mpi *B );
/**
* \brief Modulo: r = A mod b
*
* \param r Destination esp_mpi_uint
* \param A Left-hand MPI
* \param b Integer to divide by
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_DIVISION_BY_ZERO if b == 0,
* ERR_MPI_NEGATIVE_VALUE if b < 0
*/
int esp_mpi_mod_int( esp_mpi_uint *r, const mpi *A, esp_mpi_sint b );
/**
* \brief Sliding-window exponentiation: X = A^E mod N
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param E Exponent MPI
* \param N Modular MPI
* \param _RR Speed-up MPI used for recalculations
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_BAD_INPUT_DATA if N is negative or even or
* if E is negative
*
* \note _RR is used to avoid re-computing R*R mod N across
* multiple calls, which speeds up things a bit. It can
* be set to NULL if the extra performance is unneeded.
*/
int esp_mpi_exp_mod( mpi *X, const mpi *A, const mpi *E, const mpi *N, mpi *_RR );
/**
* \brief Fill an MPI X with size bytes of random
*
* \param X Destination MPI
* \param size Size in bytes
* \param f_rng RNG function
* \param p_rng RNG parameter
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_fill_random( mpi *X, size_t size,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/**
* \brief Greatest common divisor: G = gcd(A, B)
*
* \param G Destination MPI
* \param A Left-hand MPI
* \param B Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed
*/
int esp_mpi_gcd( mpi *G, const mpi *A, const mpi *B );
/**
* \brief Modular inverse: X = A^-1 mod N
*
* \param X Destination MPI
* \param A Left-hand MPI
* \param N Right-hand MPI
*
* \return 0 if successful,
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_BAD_INPUT_DATA if N is negative or nil
ERR_MPI_NOT_ACCEPTABLE if A has no inverse mod N
*/
int esp_mpi_inv_mod( mpi *X, const mpi *A, const mpi *N );
/**
* \brief Miller-Rabin primality test
*
* \param X MPI to check
* \param f_rng RNG function
* \param p_rng RNG parameter
*
* \return 0 if successful (probably prime),
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_NOT_ACCEPTABLE if X is not prime
*/
int esp_mpi_is_prime( const mpi *X,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/**
* \brief Prime number generation
*
* \param X Destination MPI
* \param nbits Required size of X in bits
* ( 3 <= nbits <= MPI_MAX_BITS )
* \param dh_flag If 1, then (X-1)/2 will be prime too
* \param f_rng RNG function
* \param p_rng RNG parameter
*
* \return 0 if successful (probably prime),
* ERR_MPI_ALLOC_FAILED if memory allocation failed,
* ERR_MPI_BAD_INPUT_DATA if nbits is < 3
*/
int esp_mpi_gen_prime( mpi *X, size_t nbits, int dh_flag,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
#endif

View File

@@ -0,0 +1,56 @@
#ifndef _MULTI_CRYPTO_H_
#define _MULTI_CRYPTO_H_
#include "esp_types.h"
#include "rom/ets_sys.h"
#ifdef __cplusplus
extern "C" {
#endif
enum {
AES_MUTEX = 0,
BIGNUM_MUTEX,
SHA_MUTEX,
MUTEX_MAX_NUM,
};
int esp_crypto_init(void);
void esp_crypto_lock(unsigned int num);
void esp_crypto_unlock(unsigned int num);
void esp_crypto_take(unsigned int num);
void esp_crypto_give(unsigned int num);
bool esp_crypto_is_used(unsigned int num);
#define MUTEX_LOCK(num) esp_crypto_lock(num)
#define MUTEX_UNLOCK(num) esp_crypto_unlock(num)
#define SIG_TAKE(num) esp_crypto_take(num)
#define SIG_GIVE(num) esp_crypto_give(num)
#define SIG_IS_USED(num) esp_crypto_is_used(num)
#define AES_LOCK() MUTEX_LOCK(AES_MUTEX)
#define AES_UNLOCK() MUTEX_UNLOCK(AES_MUTEX)
#define BIGNUM_LOCK() MUTEX_LOCK(BIGNUM_MUTEX)
#define BIGNUM_UNLOCK() MUTEX_UNLOCK(BIGNUM_MUTEX)
#define SHA_LOCK() MUTEX_LOCK(SHA_MUTEX)
#define SHA_UNLOCK() MUTEX_UNLOCK(SHA_MUTEX)
#define AES_TAKE() SIG_TAKE(AES_MUTEX)
#define AES_GIVE() SIG_GIVE(AES_MUTEX)
#define AES_IS_USED() SIG_IS_USED(AES_MUTEX)
#define BIGNUM_TAKE() SIG_TAKE(BIGNUM_MUTEX)
#define BIGNUM_GIVE() SIG_GIVE(BIGNUM_MUTEX)
#define BIGNUM_IS_USED() SIG_IS_USED(BIGNUM_MUTEX)
#define SHA_TAKE() SIG_TAKE(SHA_MUTEX)
#define SHA_GIVE() SIG_GIVE(SHA_MUTEX)
#define SHA_IS_USED() SIG_IS_USED(SHA_MUTEX)
#ifdef __cplusplus
}
#endif
#endif /* esp_crypto.h */

View File

@@ -0,0 +1,235 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP_SHA_H_
#define _ESP_SHA_H_
#include "esp_types.h"
#include "rom/ets_sys.h"
#include "rom/sha.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief SHA-1 context structure
*/
typedef struct {
SHA_CTX context;
int context_type;
} sha_context;
typedef sha_context SHA1_CTX;
/**
* \brief Initialize SHA-1 context
*
* \param ctx SHA-1 context to be initialized
*/
void esp_sha1_init( SHA1_CTX *ctx );
/**
* \brief Clear SHA-1 context
*
* \param ctx SHA-1 context to be cleared
*/
void esp_sha1_free( SHA1_CTX *ctx );
/**
* \brief Clone (the state of) a SHA-1 context
*
* \param dst The destination context
* \param src The context to be cloned
*/
void esp_sha1_clone( SHA1_CTX *dst, const SHA1_CTX *src );
void esp_sha1_process(SHA1_CTX *ctx, const unsigned char data[64]);
/**
* \brief SHA-1 context setup
*
* \param ctx context to be initialized
*/
void esp_sha1_start( SHA1_CTX *ctx );
/**
* \brief SHA-1 process buffer
*
* \param ctx SHA-1 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void esp_sha1_update( SHA1_CTX *ctx, const unsigned char *input, size_t ilen );
/**
* \brief SHA-1 final digest
*
* \param ctx SHA-1 context
* \param output SHA-1 checksum result
*/
void esp_sha1_finish( SHA1_CTX *ctx, unsigned char output[20] );
/**
* \brief Output = SHA-1( input buffer )
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-1 checksum result
*/
void esp_sha1_output( const unsigned char *input, size_t ilen, unsigned char output[20] );
///
#define SHA256 SHA2_256
#define SHA224 4
/**
* \brief SHA-256 context structure
*/
typedef sha_context SHA256_CTX;
/**
* \brief Initialize SHA-256 context
*
* \param ctx SHA-256 context to be initialized
*/
void esp_sha256_init( SHA256_CTX *ctx );
/**
* \brief Clear SHA-256 context
*
* \param ctx SHA-256 context to be cleared
*/
void esp_sha256_free( SHA256_CTX *ctx );
void esp_sha256_process(SHA256_CTX *ctx, const unsigned char data[64]);
/**
* \brief Clone (the state of) a SHA-256 context
*
* \param dst The destination context
* \param src The context to be cloned
*/
void esp_sha256_clone( SHA256_CTX *dst, const SHA256_CTX *src );
/**
* \brief SHA-256 context setup
*
* \param ctx context to be initialized
* \param is224 0 = use SHA256, 1 = use SHA224
*/
void esp_sha256_start( SHA256_CTX *ctx, int is224 );
/**
* \brief SHA-256 process buffer
*
* \param ctx SHA-256 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void esp_sha256_update( SHA256_CTX *ctx, const unsigned char *input, size_t ilen );
/**
* \brief SHA-256 final digest
*
* \param ctx SHA-256 context
* \param output SHA-224/256 checksum result
*/
void esp_sha256_finish( SHA256_CTX *ctx, unsigned char output[32] );
/**
* \brief Output = SHA-256( input buffer )
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-224/256 checksum result
* \param is224 0 = use SHA256, 1 = use SHA224
*/
void esp_sha256_output( const unsigned char *input, size_t ilen, unsigned char output[32], int is224 );
//
/**
* \brief SHA-512 context structure
*/
typedef sha_context SHA512_CTX;
/**
* \brief Initialize SHA-512 context
*
* \param ctx SHA-512 context to be initialized
*/
void esp_sha512_init( SHA512_CTX *ctx );
void esp_sha512_process( SHA512_CTX *ctx, const unsigned char data[128] );
/**
* \brief Clear SHA-512 context
*
* \param ctx SHA-512 context to be cleared
*/
void esp_sha512_free( SHA512_CTX *ctx );
/**
* \brief Clone (the state of) a SHA-512 context
*
* \param dst The destination context
* \param src The context to be cloned
*/
void esp_sha512_clone( SHA512_CTX *dst, const SHA512_CTX *src );
/**
* \brief SHA-512 context setup
*
* \param ctx context to be initialized
* \param is384 0 = use SHA512, 1 = use SHA384
*/
void esp_sha512_start( SHA512_CTX *ctx, int is384 );
/**
* \brief SHA-512 process buffer
*
* \param ctx SHA-512 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void esp_sha512_update( SHA512_CTX *ctx, const unsigned char *input, size_t ilen );
/**
* \brief SHA-512 final digest
*
* \param ctx SHA-512 context
* \param output SHA-384/512 checksum result
*/
void esp_sha512_finish( SHA512_CTX *ctx, unsigned char output[64] );
/**
* \brief Output = SHA-512( input buffer )
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-384/512 checksum result
* \param is384 0 = use SHA512, 1 = use SHA384
*/
void esp_sha512_output( const unsigned char *input, size_t ilen, unsigned char output[64], int is384 );
//
#ifdef __cplusplus
}
#endif
#endif