feat(mbedtls): adds support for RSA decryption with DS peripheral

This commit is contained in:
Ashish Sharma
2025-05-23 11:43:29 +08:00
parent 8bca0ba4fb
commit 466a365a02
14 changed files with 1041 additions and 217 deletions

View File

@@ -4,7 +4,6 @@ set(TEST_CRTS "crts/server_cert_chain.pem"
"crts/bad_md_crt.pem"
"crts/wrong_sig_crt_esp32_com.pem"
"crts/correct_sig_crt_esp32_com.pem")
idf_component_register(SRC_DIRS "."
PRIV_INCLUDE_DIRS "."
PRIV_REQUIRES efuse cmock test_utils mbedtls esp_timer unity spi_flash esp_psram esp_security
@@ -16,3 +15,6 @@ target_compile_definitions(${mbedtls} INTERFACE "-DMBEDTLS_DEPRECATED_WARNING")
target_compile_definitions(mbedtls PUBLIC "-DMBEDTLS_DEPRECATED_WARNING")
target_compile_definitions(mbedcrypto PUBLIC "-DMBEDTLS_DEPRECATED_WARNING")
target_compile_definitions(mbedx509 PUBLIC "-DMBEDTLS_DEPRECATED_WARNING")
# Add linker wrap option to override esp_ds_finish_sign
target_link_options(${COMPONENT_LIB} INTERFACE "-Wl,--wrap=esp_ds_finish_sign,--wrap=esp_ds_start_sign")

View File

@@ -0,0 +1,259 @@
/*
* SPDX-FileCopyrightText: 2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "unity.h"
#include "mbedtls/rsa.h"
#include "esp_random.h"
#include "sdkconfig.h"
#ifdef CONFIG_HEAP_TRACING
#include <esp_heap_trace.h>
#define NUM_RECORDS 100
static heap_trace_record_t trace_record[NUM_RECORDS]; // This buffer must be in internal RAM
#endif
#ifdef SOC_DIG_SIGN_SUPPORTED
#include "soc/soc_caps.h"
#include "esp_ds.h"
#include "esp_ds/esp_ds_rsa.h"
int mbedtls_esp_random(void *ctx, unsigned char *output, size_t len)
{
if (len == 0 || output == NULL) {
return -1;
}
esp_fill_random(output, len);
return 0;
}
TEST_CASE("ds sign test pkcs1_v15", "[ds_rsa]")
{
mbedtls_rsa_context rsa_ctx;
rsa_ctx.MBEDTLS_PRIVATE(padding) = MBEDTLS_RSA_PKCS_V15;
unsigned char hash[32] = {0};
mbedtls_esp_random(NULL, hash, sizeof(hash)); // Fill hash with random data
unsigned int hashlen = sizeof(hash);
unsigned char signature[256] = {0};
// esp_ds is not initialized, so we expect an error
int err = esp_ds_rsa_sign(&rsa_ctx, mbedtls_esp_random, NULL, MBEDTLS_MD_SHA256, hashlen, hash, signature);
TEST_ASSERT_EQUAL(-1, err);
// Initialize the esp_ds context
esp_ds_data_ctx_t ctx;
esp_ds_data_t ds_data;
ds_data.rsa_length = ESP_DS_RSA_2048; // Example length
ctx.esp_ds_data = &ds_data;
ctx.efuse_key_id = 1; // Example efuse key ID
ctx.rsa_length_bits = 2048; // Example RSA length in bits
err = esp_ds_init_data_ctx(&ctx);
TEST_ASSERT_EQUAL(ESP_OK, err);
// Now we can call esp_ds_rsa_sign again
err = esp_ds_rsa_sign(&rsa_ctx, mbedtls_esp_random, NULL, MBEDTLS_MD_SHA256, hashlen, hash, signature);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_NOT_NULL(signature);
err = esp_ds_deinit_data_ctx();
TEST_ASSERT_EQUAL(ESP_OK, err);
// Because we have wrapped around the ds_start_sign and ds_finish_sign functions,
// we are not actually performing the real signing operation. That test is done in the
// crypto test_apps, so here we just check that the surrounding code works as expected.
// In this test, we have used v15 padding, so we expect the signature to be non-null
// and the hash to be part of the signature.
TEST_ASSERT_EQUAL(0, memcmp(hash, signature + (256 - hashlen), hashlen));
// Let's also ensure that signature has correct encoding
// Just before the hash start, it should have size of hash
TEST_ASSERT_EQUAL(hashlen, signature[256 - hashlen - 1]);
// One byte before should be MBEDTLS_ASN1_OCTET_STRING
TEST_ASSERT_EQUAL(0x04, signature[256 - hashlen - 2]);
// And the first byte should be 0x00, indicating that this is a valid PKCS#1 v1.5 signature
TEST_ASSERT_EQUAL(0x00, signature[0]);
}
#ifdef CONFIG_MBEDTLS_SSL_PROTO_TLS1_3
TEST_CASE("ds sign test pkcs1_v21", "[ds_rsa]")
{
mbedtls_rsa_context rsa_ctx;
rsa_ctx.MBEDTLS_PRIVATE(padding) = MBEDTLS_RSA_PKCS_V21;
unsigned char hash[32] = {0};
mbedtls_esp_random(NULL, hash, sizeof(hash)); // Fill hash with random data
unsigned int hashlen = sizeof(hash);
unsigned char signature[256] = {0};
// esp_ds is not initialized, so we expect an error
int err = esp_ds_rsa_sign(&rsa_ctx, mbedtls_esp_random, NULL, MBEDTLS_MD_SHA256, hashlen, hash, signature);
TEST_ASSERT_EQUAL(-1, err);
// Initialize the esp_ds context
esp_ds_data_ctx_t ctx;
esp_ds_data_t ds_data;
ds_data.rsa_length = ESP_DS_RSA_2048; // Example length
ctx.esp_ds_data = &ds_data;
ctx.efuse_key_id = 1; // Example efuse key ID
ctx.rsa_length_bits = 2048; // Example RSA length in bits
err = esp_ds_init_data_ctx(&ctx);
TEST_ASSERT_EQUAL(ESP_OK, err);
// Now we can call esp_ds_rsa_sign again
err = esp_ds_rsa_sign(&rsa_ctx, mbedtls_esp_random, NULL, MBEDTLS_MD_SHA256, hashlen, hash, signature);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_NOT_NULL(signature);
err = esp_ds_deinit_data_ctx();
TEST_ASSERT_EQUAL(ESP_OK, err);
}
#endif // CONFIG_MBEDTLS_SSL_PROTO_TLS1_3
/* Generated external data for OAEP padding */
const unsigned char oaep_padded_v21[] = {
0x00, 0xb6, 0xd9, 0xe6, 0x62, 0xa5, 0xa0, 0xf7, 0xc7, 0xfe, 0xb9, 0x33, 0xdd, 0xdd, 0x67, 0xd7,
0x35, 0xa5, 0x9d, 0xf7, 0x21, 0x55, 0xf9, 0x60, 0xa8, 0x38, 0x86, 0xb2, 0x73, 0x90, 0xf5, 0x40,
0x06, 0x85, 0x51, 0x60, 0x10, 0x01, 0x91, 0x24, 0x47, 0x2e, 0x86, 0x16, 0xa6, 0xbc, 0x35, 0x5b,
0xe4, 0xca, 0x74, 0x9c, 0xe2, 0xe0, 0x2b, 0x2d, 0x63, 0x56, 0x0f, 0x71, 0xe0, 0x8e, 0x1c, 0xa5,
0x58, 0x72, 0x30, 0x2f, 0x93, 0xf7, 0xd9, 0x0f, 0x16, 0xed, 0x86, 0xd3, 0xbf, 0x42, 0x12, 0x0a,
0xaa, 0x3b, 0x16, 0x43, 0x84, 0x0d, 0x6d, 0xc8, 0xf9, 0x22, 0xc7, 0x25, 0xf6, 0x61, 0xb4, 0xb8,
0xd7, 0x07, 0x76, 0x1a, 0xfb, 0x01, 0x01, 0xd7, 0xd2, 0x9b, 0xc1, 0xec, 0x34, 0x53, 0x14, 0x78,
0xc4, 0x10, 0xf5, 0xf1, 0x28, 0xf6, 0x30, 0x32, 0xe7, 0x8c, 0x27, 0x62, 0x17, 0xf0, 0x47, 0x10,
0x87, 0xfa, 0xe6, 0x02, 0x90, 0x45, 0xf9, 0x20, 0x79, 0x42, 0xf9, 0x2a, 0x42, 0x06, 0xae, 0x37,
0xf4, 0xae, 0x12, 0x6b, 0x9c, 0x7b, 0x7e, 0xed, 0x85, 0xdf, 0xdd, 0x27, 0x27, 0xf5, 0xac, 0xb6,
0x9c, 0x7a, 0xd9, 0x1f, 0x45, 0xd8, 0xb3, 0xed, 0x73, 0xd7, 0x9e, 0xab, 0x68, 0xb8, 0x25, 0xeb,
0xc5, 0xcc, 0x8a, 0x04, 0x03, 0xd3, 0xd8, 0x60, 0xcc, 0xab, 0xe9, 0xd1, 0xb1, 0x18, 0x28, 0x84,
0xf9, 0x52, 0xd6, 0xe2, 0x3c, 0x2a, 0x19, 0x5c, 0xd8, 0x73, 0xff, 0x71, 0x94, 0xd6, 0x8b, 0x5f,
0x69, 0x09, 0x2f, 0xd2, 0xb0, 0x23, 0xda, 0x1a, 0xe4, 0x47, 0x2d, 0xb6, 0xbf, 0x08, 0xbd, 0x5d,
0x37, 0x9c, 0x81, 0xdd, 0x54, 0x42, 0xad, 0xf7, 0x65, 0xb2, 0x8e, 0xf7, 0x70, 0x7d, 0x62, 0x0a,
0x3a, 0x1c, 0xf5, 0xe8, 0x9f, 0x17, 0x22, 0x66, 0x3d, 0xc5, 0xab, 0xf6, 0x51, 0xe9, 0x84, 0x73,
};
const unsigned char message[] = {
0x62, 0x1c, 0xaa, 0x4a, 0xae, 0xf8, 0x1f, 0x4b, 0x59, 0x70, 0xee, 0xcb, 0x0c, 0x91, 0x35, 0xc9,
0x4a, 0xe2, 0x85, 0xf4, 0xfc, 0x21, 0x18, 0x3e, 0xa6, 0xed, 0xa6, 0x71, 0xdb, 0xfe, 0x2b, 0x95,
0x67, 0x45, 0xb7,
};
const size_t message_len = 35;
TEST_CASE("ds decrypt test pkcs1_v21", "[ds_rsa]")
{
#ifdef CONFIG_HEAP_TRACING
heap_trace_init_standalone(trace_record, NUM_RECORDS);
heap_trace_start(HEAP_TRACE_LEAKS);
#endif
mbedtls_rsa_context rsa_ctx;
rsa_ctx.MBEDTLS_PRIVATE(padding) = MBEDTLS_RSA_PKCS_V21;
// Initialize the esp_ds context
esp_ds_data_ctx_t ctx;
esp_ds_data_t ds_data;
ds_data.rsa_length = ESP_DS_RSA_2048; // Example length
ctx.esp_ds_data = &ds_data;
ctx.efuse_key_id = 1; // Example efuse key ID
ctx.rsa_length_bits = 2048; // Example RSA length in bits
unsigned char decrypted[256] = {0};
size_t decrypted_len = 0;
// esp_ds is not initialized, so we expect an error
int err = esp_ds_rsa_decrypt(&rsa_ctx, &decrypted_len, oaep_padded_v21, decrypted, sizeof(decrypted));
TEST_ASSERT_EQUAL(-1, err);
err = esp_ds_init_data_ctx(&ctx);
TEST_ASSERT_EQUAL(ESP_OK, err);
err = esp_ds_rsa_decrypt(&rsa_ctx, &decrypted_len, oaep_padded_v21, decrypted, sizeof(decrypted));
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_NOT_NULL(decrypted);
err = esp_ds_deinit_data_ctx();
TEST_ASSERT_EQUAL(ESP_OK, err);
TEST_ASSERT_EQUAL(decrypted_len, message_len);
TEST_ASSERT_EQUAL_MEMORY(decrypted, message, message_len);
#ifdef CONFIG_HEAP_TRACING
heap_trace_stop();
heap_trace_dump();
#endif
}
const unsigned char v15_padded[] = {
0x00, 0x02, 0xdf, 0x36, 0xfc, 0x41, 0x57, 0x40, 0x87, 0x3f, 0x88, 0xa7, 0x7f, 0x7a, 0x33, 0xbe,
0x2f, 0xf7, 0xdd, 0x8a, 0xb6, 0x6a, 0xb4, 0x6a, 0x96, 0xdb, 0x63, 0xbf, 0x50, 0xd8, 0x08, 0x5b,
0x07, 0x9e, 0xdf, 0x4c, 0x1e, 0xb2, 0x6c, 0x83, 0x22, 0xff, 0x21, 0xc8, 0x99, 0xe1, 0x6c, 0x3d,
0x31, 0x82, 0x8e, 0xb6, 0xb3, 0x3f, 0x77, 0xc6, 0x7d, 0xb1, 0x05, 0x97, 0xd0, 0x96, 0x49, 0x78,
0x62, 0xd5, 0x7b, 0x5b, 0x49, 0x8c, 0xb0, 0x4e, 0x5f, 0xf2, 0x92, 0xc2, 0x9f, 0xd4, 0x77, 0x0a,
0x77, 0x94, 0x9f, 0x80, 0xff, 0xde, 0x6a, 0xe7, 0x62, 0x36, 0x9f, 0x73, 0x78, 0xb3, 0xc0, 0x2f,
0xd8, 0xf9, 0x06, 0x60, 0x78, 0xbc, 0x50, 0x06, 0x0d, 0x33, 0x6c, 0x5f, 0xcc, 0x4d, 0x40, 0x4e,
0x12, 0x53, 0x39, 0x3b, 0x24, 0x4f, 0x9c, 0x14, 0x20, 0xbd, 0x71, 0x1d, 0xdc, 0xc5, 0xbc, 0x88,
0xd1, 0x87, 0x4a, 0xac, 0x21, 0xb6, 0x06, 0x9d, 0x56, 0xe5, 0xb7, 0x05, 0x61, 0x32, 0x30, 0x97,
0x7d, 0x72, 0x2f, 0x45, 0xf0, 0xc6, 0x55, 0x01, 0x87, 0x78, 0xbc, 0xa4, 0x9b, 0x4f, 0xe1, 0xc5,
0x59, 0x8a, 0xaa, 0x3c, 0xd1, 0x0a, 0xe3, 0xbe, 0x0b, 0xde, 0x21, 0xa8, 0x3b, 0x89, 0x9f, 0x0a,
0x30, 0x22, 0x64, 0x4e, 0x90, 0x71, 0x52, 0x27, 0x23, 0x7b, 0xe7, 0x0b, 0x07, 0xa9, 0x7e, 0x15,
0xb1, 0xfe, 0x0e, 0x0e, 0x1b, 0x8e, 0xc3, 0xf0, 0x26, 0x66, 0xfb, 0xdf, 0x78, 0xf8, 0x03, 0xd5,
0xf5, 0x90, 0x08, 0x04, 0x7c, 0x9f, 0x11, 0xa5, 0x5e, 0x5b, 0x2b, 0x01, 0x00, 0x62, 0x1c, 0xaa,
0x4a, 0xae, 0xf8, 0x1f, 0x4b, 0x59, 0x70, 0xee, 0xcb, 0x0c, 0x91, 0x35, 0xc9, 0x4a, 0xe2, 0x85,
0xf4, 0xfc, 0x21, 0x18, 0x3e, 0xa6, 0xed, 0xa6, 0x71, 0xdb, 0xfe, 0x2b, 0x95, 0x67, 0x45, 0xb7,
};
TEST_CASE("ds decrypt test pkcs1_v15", "[ds_rsa]")
{
mbedtls_rsa_context rsa_ctx;
rsa_ctx.MBEDTLS_PRIVATE(padding) = MBEDTLS_RSA_PKCS_V15;
// Initialize the esp_ds context
esp_ds_data_ctx_t ctx;
esp_ds_data_t ds_data;
ds_data.rsa_length = ESP_DS_RSA_2048; // Example length
ctx.esp_ds_data = &ds_data;
ctx.efuse_key_id = 1; // Example efuse key ID
ctx.rsa_length_bits = 2048; // Example RSA length in bits
int err = esp_ds_init_data_ctx(&ctx);
TEST_ASSERT_EQUAL(ESP_OK, err);
unsigned char decrypted[256] = {0};
size_t decrypted_len = 0;
err = esp_ds_rsa_decrypt(&rsa_ctx, &decrypted_len, v15_padded, decrypted, sizeof(decrypted));
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_NOT_NULL(decrypted);
err = esp_ds_deinit_data_ctx();
TEST_ASSERT_EQUAL(ESP_OK, err);
TEST_ASSERT_EQUAL(decrypted_len, message_len);
TEST_ASSERT_EQUAL_MEMORY(decrypted, message, message_len);
}
int __wrap_esp_ds_start_sign(const void *message, const esp_ds_data_t *data, hmac_key_id_t key_id, esp_ds_context_t **esp_ds_ctx)
{
// This function will be called instead of the original esp_ds_start_sign
if (message == NULL || data == NULL || esp_ds_ctx == NULL) {
return ESP_ERR_INVALID_ARG;
}
*esp_ds_ctx = malloc(sizeof(esp_ds_context_t));
if (*esp_ds_ctx == NULL) {
return ESP_ERR_NO_MEM;
}
// Simulate successful start sign
return ESP_OK;
}
// Test implementation using linker wrap
int __wrap_esp_ds_finish_sign(void *sig, esp_ds_context_t *ctx)
{
// This function will be called instead of the original esp_ds_finish_sign
free(ctx);
return 0;
// Or we can call the real implementation if needed:
// return __real_esp_ds_finish_sign(sig, ctx);
}
#endif /* SOC_DIG_SIGN_SUPPORTED */

View File

@@ -86,3 +86,16 @@ def test_mbedtls_ecdsa_sign(dut: Dut) -> None:
@idf_parametrize('target', ['esp32c2'], indirect=['target'])
def test_mbedtls_rom_impl_esp32c2(dut: Dut) -> None:
dut.run_all_single_board_cases()
@pytest.mark.generic
@pytest.mark.parametrize(
'config',
[
'ds_rsa',
],
indirect=True,
)
@idf_parametrize('target', ['esp32s3'], indirect=['target'])
def test_mbedtls_ds_rsa(dut: Dut) -> None:
dut.run_all_single_board_cases(group='ds_rsa')

View File

@@ -0,0 +1 @@
CONFIG_MBEDTLS_SSL_PROTO_TLS1_3=y