spi_flash: fix race condition when doing operations in unpinned tasks

spi_flash_enable_interrupts_caches_and_other_cpu function used to enable
non-IRAM interrupts after giving up flash operation lock, which would
cause problems if another task was waiting on the lock to start a flash
operation. In fact, non-IRAM interrupts should be re-enabled before the
task scheduler is resumed. Otherwise non-pinned task can be moved to the
other CPU due to preemption, causing esp_intr_noniram_enable to be
called on the other CPU, causing an abort to be triggered.

Fixes the issue reported in
https://github.com/espressif/esp-idf/pull/258
This commit is contained in:
Ivan Grokhotkov
2017-01-18 15:07:27 +08:00
parent 0b2962f41e
commit 4676d159ad
2 changed files with 58 additions and 43 deletions

View File

@@ -41,6 +41,9 @@ static uint32_t s_flash_op_cache_state[2];
static SemaphoreHandle_t s_flash_op_mutex;
static volatile bool s_flash_op_can_start = false;
static volatile bool s_flash_op_complete = false;
#ifndef NDEBUG
static volatile int s_flash_op_cpu = -1;
#endif
void spi_flash_init_lock()
{
@@ -85,6 +88,11 @@ void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
#ifndef NDEBUG
// For sanity check later: record the CPU which has started doing flash operation
assert(s_flash_op_cpu == -1);
s_flash_op_cpu = cpuid;
#endif
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
// Scheduler hasn't been started yet, it means that spi_flash API is being
@@ -98,12 +106,13 @@ void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
// disable cache there and block other tasks from executing.
s_flash_op_can_start = false;
s_flash_op_complete = false;
esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void*) other_cpuid);
esp_err_t ret = esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void*) other_cpuid);
assert(ret == ESP_OK);
while (!s_flash_op_can_start) {
// Busy loop and wait for spi_flash_op_block_func to disable cache
// on the other CPU
}
// Disable scheduler on CPU cpuid
// Disable scheduler on the current CPU
vTaskSuspendAll();
// This is guaranteed to run on CPU <cpuid> because the other CPU is now
// occupied by highest priority task
@@ -119,6 +128,11 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
{
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
#ifndef NDEBUG
// Sanity check: flash operation ends on the same CPU as it has started
assert(cpuid == s_flash_op_cpu);
s_flash_op_cpu = -1;
#endif
// Re-enable cache on this CPU
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
@@ -132,13 +146,21 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
} else {
// Signal to spi_flash_op_block_task that flash operation is complete
s_flash_op_complete = true;
// Resume tasks on the current CPU
}
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
// Resume tasks on the current CPU, if the scheduler has started.
// NOTE: enabling non-IRAM interrupts has to happen before this,
// because once the scheduler has started, due to preemption the
// current task can end up being moved to the other CPU.
// But esp_intr_noniram_enable has to be called on the same CPU which
// called esp_intr_noniram_disable
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
xTaskResumeAll();
}
// Release API lock
spi_flash_op_unlock();
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()