mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-09 20:41:14 +00:00
Merge branch 'feat/esp32c61_adc_support' into 'master'
ADC: support ADC oneshot and continuous mode on ESP32C61 Closes IDF-9302 and IDF-9304 See merge request espressif/esp-idf!32907
This commit is contained in:
800
components/hal/esp32c61/include/hal/adc_ll.h
Normal file
800
components/hal/esp32c61/include/hal/adc_ll.h
Normal file
@@ -0,0 +1,800 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include "esp_attr.h"
|
||||
|
||||
#include "soc/adc_periph.h"
|
||||
#include "soc/apb_saradc_struct.h"
|
||||
#include "soc/apb_saradc_reg.h"
|
||||
#include "soc/pmu_reg.h"
|
||||
#include "soc/clk_tree_defs.h"
|
||||
#include "soc/pcr_struct.h"
|
||||
#include "hal/misc.h"
|
||||
#include "hal/assert.h"
|
||||
#include "hal/adc_types.h"
|
||||
#include "hal/adc_types_private.h"
|
||||
#include "hal/regi2c_ctrl.h"
|
||||
#include "hal/sar_ctrl_ll.h"
|
||||
|
||||
#include "soc/regi2c_saradc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
|
||||
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
|
||||
|
||||
#define ADC_LL_THRES_ALL_INTR_ST_M (SARADC_THRES0_HIGH_INT_ST_M | \
|
||||
SARADC_THRES1_HIGH_INT_ST_M | \
|
||||
SARADC_THRES0_LOW_INT_ST_M | \
|
||||
SARADC_THRES1_LOW_INT_ST_M)
|
||||
|
||||
#define ADC_LL_GET_HIGH_THRES_MASK(monitor_id) ((monitor_id == 0) ? SARADC_THRES0_HIGH_INT_ST_M : SARADC_THRES1_HIGH_INT_ST_M)
|
||||
#define ADC_LL_GET_LOW_THRES_MASK(monitor_id) ((monitor_id == 0) ? SARADC_THRES0_LOW_INT_ST_M : SARADC_THRES1_LOW_INT_ST_M)
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Oneshot
|
||||
---------------------------------------------------------------*/
|
||||
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
|
||||
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
DMA
|
||||
---------------------------------------------------------------*/
|
||||
#define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
|
||||
#define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
|
||||
#define ADC_LL_FSM_START_WAIT_DEFAULT (5)
|
||||
#define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
|
||||
#define ADC_LL_SAMPLE_CYCLE_DEFAULT (2)
|
||||
#define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1)
|
||||
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
|
||||
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
|
||||
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
|
||||
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
|
||||
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
|
||||
|
||||
#define ADC_LL_POWER_MANAGE_SUPPORTED 1 //ESP32C61 supported to manage power mode
|
||||
/*---------------------------------------------------------------
|
||||
PWDET (Power Detect)
|
||||
---------------------------------------------------------------*/
|
||||
#define ADC_LL_PWDET_CCT_DEFAULT (4)
|
||||
|
||||
typedef enum {
|
||||
ADC_LL_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
|
||||
ADC_LL_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
|
||||
ADC_LL_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
|
||||
} adc_ll_power_t;
|
||||
|
||||
typedef enum {
|
||||
ADC_LL_CTRL_DIG = 0, ///< ADC digital controller
|
||||
} adc_ll_controller_t;
|
||||
|
||||
/**
|
||||
* @brief ADC digital controller (DMA mode) work mode.
|
||||
*
|
||||
* @note The conversion mode affects the sampling frequency:
|
||||
* ESP32C61 only support ONLY_ADC1 mode
|
||||
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
|
||||
*/
|
||||
typedef enum {
|
||||
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
|
||||
} adc_ll_digi_convert_mode_t;
|
||||
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
uint8_t atten: 2;
|
||||
uint8_t channel: 3;
|
||||
uint8_t unit: 1;
|
||||
uint8_t reserved: 2;
|
||||
};
|
||||
uint8_t val;
|
||||
};
|
||||
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Digital controller setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
|
||||
*
|
||||
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
|
||||
* @param start_wait Delay time after open xpd.
|
||||
* @param standby_wait Delay time to close xpd.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
|
||||
{
|
||||
// Internal FSM reset wait time
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_rstb_wait, rst_wait);
|
||||
// Internal FSM start wait time
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_xpd_wait, start_wait);
|
||||
// Internal FSM standby wait time
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_fsm_wait, saradc_standby_wait, standby_wait);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc sample cycle for digital controller.
|
||||
*
|
||||
* @note Normally, please use default value.
|
||||
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
|
||||
* Range: 2 ~ 0xFF.
|
||||
*/
|
||||
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
|
||||
{
|
||||
/* Peripheral reg i2c has powered up in rtc_init, write directly */
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set SAR ADC module clock division factor.
|
||||
* SAR ADC clock divided from digital controller clock.
|
||||
*
|
||||
* @param div Division factor.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_clk_div(uint32_t div)
|
||||
{
|
||||
/* ADC clock divided from digital controller clock clk */
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_ctrl, saradc_sar_clk_div, div);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc max conversion number for digital controller.
|
||||
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
|
||||
*
|
||||
* @param meas_num Max conversion number. Range: 0 ~ 255.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
|
||||
{
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_ctrl2, saradc_max_meas_num, meas_num);
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable max conversion number detection for digital controller.
|
||||
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
|
||||
*
|
||||
* @param enable true: enable; false: disable
|
||||
*/
|
||||
static inline void adc_ll_digi_convert_limit_enable(bool enable)
|
||||
{
|
||||
ADC.saradc_ctrl2.saradc_meas_num_limit = enable;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc conversion mode for digital controller.
|
||||
*
|
||||
* @note ESP32C61 only support ADC1 single mode.
|
||||
*
|
||||
* @param mode Conversion mode select.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
|
||||
{
|
||||
//ESP32C61 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
|
||||
}
|
||||
|
||||
/**
|
||||
* Set pattern table length for digital controller.
|
||||
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
|
||||
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
|
||||
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param patt_len Items range: 1 ~ 8.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
|
||||
{
|
||||
ADC.saradc_ctrl.saradc_sar_patt_len = patt_len - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set pattern table for digital controller.
|
||||
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
|
||||
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
|
||||
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param pattern_index Items index. Range: 0 ~ 7.
|
||||
* @param pattern Stored conversion rules.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
|
||||
{
|
||||
uint32_t tab;
|
||||
uint8_t index = pattern_index / 4;
|
||||
uint8_t offset = (pattern_index % 4) * 6;
|
||||
adc_ll_digi_pattern_table_t pattern = {0};
|
||||
|
||||
pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
|
||||
if (index == 0) {
|
||||
tab = ADC.saradc_sar_patt_tab1.saradc_sar_patt_tab1; // Read old register value
|
||||
tab &= (~(0xFC0000 >> offset)); // Clear old data
|
||||
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
|
||||
ADC.saradc_sar_patt_tab1.saradc_sar_patt_tab1 = tab; // Write back
|
||||
} else {
|
||||
tab = ADC.saradc_sar_patt_tab2.saradc_sar_patt_tab2; // Read old register value
|
||||
tab &= (~(0xFC0000 >> offset)); // Clear old data
|
||||
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
|
||||
ADC.saradc_sar_patt_tab2.saradc_sar_patt_tab2 = tab; // Write back
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
|
||||
{
|
||||
ADC.saradc_ctrl.saradc_sar_patt_p_clear = 1;
|
||||
ADC.saradc_ctrl.saradc_sar_patt_p_clear = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
|
||||
*
|
||||
* @note Only ADC2 have arbiter function.
|
||||
* @param cycle range: 0 ~ 4.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
|
||||
{
|
||||
ADC.saradc_ctrl.saradc_wait_arb_cycle = cycle;
|
||||
}
|
||||
|
||||
/**
|
||||
* ADC Digital controller output data invert or not.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param inv_en data invert or not.
|
||||
*/
|
||||
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
ADC.saradc_ctrl2.saradc_sar1_inv = inv_en; // Enable / Disable ADC data invert
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
ADC.saradc_ctrl2.saradc_sar2_inv = inv_en; // Enable / Disable ADC data invert
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the interval clock cycle for the digital controller to trigger the measurement.
|
||||
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
|
||||
*
|
||||
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
|
||||
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
|
||||
{
|
||||
ADC.saradc_ctrl2.saradc_timer_target = cycle;
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable digital controller timer to trigger the measurement.
|
||||
*/
|
||||
static inline void adc_ll_digi_trigger_enable(void)
|
||||
{
|
||||
ADC.saradc_ctrl2.saradc_timer_en = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable digital controller timer to trigger the measurement.
|
||||
*/
|
||||
static inline void adc_ll_digi_trigger_disable(void)
|
||||
{
|
||||
ADC.saradc_ctrl2.saradc_timer_en = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
|
||||
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
|
||||
*
|
||||
* @param div_num Division factor. Range: 0 ~ 255.
|
||||
* @param div_b Division factor. Range: 1 ~ 63.
|
||||
* @param div_a Division factor. Range: 0 ~ 63.
|
||||
*/
|
||||
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
|
||||
{
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.saradc_clkm_conf, saradc_clkm_div_num, div_num);
|
||||
PCR.saradc_clkm_conf.saradc_clkm_div_b = div_b;
|
||||
PCR.saradc_clkm_conf.saradc_clkm_div_a = div_a;
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable clock and select clock source for ADC digital controller.
|
||||
*
|
||||
* @param clk_src clock source for ADC digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
|
||||
{
|
||||
switch (clk_src) {
|
||||
case ADC_DIGI_CLK_SRC_XTAL:
|
||||
PCR.saradc_clkm_conf.saradc_clkm_sel = 0;
|
||||
break;
|
||||
case ADC_DIGI_CLK_SRC_RC_FAST:
|
||||
PCR.saradc_clkm_conf.saradc_clkm_sel = 1;
|
||||
break;
|
||||
case ADC_DIGI_CLK_SRC_PLL_F80M:
|
||||
PCR.saradc_clkm_conf.saradc_clkm_sel = 2;
|
||||
break;
|
||||
default:
|
||||
HAL_ASSERT(false && "unsupported clock");
|
||||
}
|
||||
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
|
||||
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable clock for ADC digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_controller_clk_disable(void)
|
||||
{
|
||||
ADC.saradc_ctrl.saradc_sar_clk_gated = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset adc digital controller filter.
|
||||
*
|
||||
* @param idx Filter index
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
|
||||
{
|
||||
(void)adc_n;
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_reset = 1;
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_reset = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc digital controller filter coeff.
|
||||
*
|
||||
* @param idx filter index
|
||||
* @param adc_n adc unit
|
||||
* @param channel adc channel
|
||||
* @param coeff filter coeff
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
|
||||
{
|
||||
uint32_t factor_reg_val = 0;
|
||||
switch (coeff) {
|
||||
case ADC_DIGI_IIR_FILTER_COEFF_2:
|
||||
factor_reg_val = 1;
|
||||
break;
|
||||
case ADC_DIGI_IIR_FILTER_COEFF_4:
|
||||
factor_reg_val = 2;
|
||||
break;
|
||||
case ADC_DIGI_IIR_FILTER_COEFF_8:
|
||||
factor_reg_val = 3;
|
||||
break;
|
||||
case ADC_DIGI_IIR_FILTER_COEFF_16:
|
||||
factor_reg_val = 4;
|
||||
break;
|
||||
case ADC_DIGI_IIR_FILTER_COEFF_64:
|
||||
factor_reg_val = 6;
|
||||
break;
|
||||
default:
|
||||
HAL_ASSERT(false);
|
||||
}
|
||||
|
||||
if (idx == ADC_DIGI_IIR_FILTER_0) {
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
|
||||
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor0 = factor_reg_val;
|
||||
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
|
||||
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor1 = factor_reg_val;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable adc digital controller filter.
|
||||
* Filtering the ADC data to obtain smooth data at higher sampling rates.
|
||||
*
|
||||
* @param idx filter index
|
||||
* @param adc_n ADC unit
|
||||
* @param enable Enable / Disable
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
|
||||
{
|
||||
(void)adc_n;
|
||||
if (!enable) {
|
||||
if (idx == ADC_DIGI_IIR_FILTER_0) {
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel0 = 0xF;
|
||||
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor0 = 0;
|
||||
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
|
||||
ADC.saradc_filter_ctrl0.saradc_adc_filter_channel1 = 0xF;
|
||||
ADC.saradc_filter_ctrl1.saradc_adc_filter_factor1 = 0;
|
||||
}
|
||||
}
|
||||
//nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
|
||||
}
|
||||
|
||||
/**
|
||||
* Set monitor threshold of adc digital controller on specific channel.
|
||||
*
|
||||
* @param monitor_id ADC digi monitor unit index.
|
||||
* @param adc_n Which adc unit the channel belong to.
|
||||
* @param channel Which channel of adc want to be monitored.
|
||||
* @param h_thresh High threshold of this monitor.
|
||||
* @param l_thresh Low threshold of this monitor.
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_set_thres(adc_monitor_id_t monitor_id, adc_unit_t adc_n, uint8_t channel, int32_t h_thresh, int32_t l_thresh)
|
||||
{
|
||||
if (monitor_id == ADC_MONITOR_0) {
|
||||
ADC.saradc_thres0_ctrl.saradc_adc_thres0_channel = (adc_n << 3) | (channel & 0x7);
|
||||
ADC.saradc_thres0_ctrl.saradc_adc_thres0_high = h_thresh;
|
||||
ADC.saradc_thres0_ctrl.saradc_adc_thres0_low = l_thresh;
|
||||
} else { // ADC_MONITOR_1
|
||||
ADC.saradc_thres1_ctrl.saradc_adc_thres1_channel = (adc_n << 3) | (channel & 0x7);
|
||||
ADC.saradc_thres1_ctrl.saradc_adc_thres1_high = h_thresh;
|
||||
ADC.saradc_thres1_ctrl.saradc_adc_thres1_low = l_thresh;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Start/Stop monitor of adc digital controller.
|
||||
*
|
||||
* @param monitor_id ADC digi monitor unit index.
|
||||
* @param start 1 for start, 0 for stop
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_user_start(adc_monitor_id_t monitor_id, bool start)
|
||||
{
|
||||
if (monitor_id == ADC_MONITOR_0) {
|
||||
ADC.saradc_thres_ctrl.saradc_adc_thres0_en = start;
|
||||
} else {
|
||||
ADC.saradc_thres_ctrl.saradc_adc_thres1_en = start;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable/disable a intr of adc digital monitor.
|
||||
*
|
||||
* @param monitor_id ADC digi monitor unit index.
|
||||
* @param mode monit mode to enable/disable intr.
|
||||
* @param enable enable or disable.
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_enable_intr(adc_monitor_id_t monitor_id, adc_monitor_mode_t mode, bool enable)
|
||||
{
|
||||
if (monitor_id == ADC_MONITOR_0) {
|
||||
if (mode == ADC_MONITOR_MODE_HIGH) {
|
||||
ADC.saradc_int_ena.saradc_adc_thres0_high_int_ena = enable;
|
||||
} else {
|
||||
ADC.saradc_int_ena.saradc_adc_thres0_low_int_ena = enable;
|
||||
}
|
||||
}
|
||||
if (monitor_id == ADC_MONITOR_1) {
|
||||
if (mode == ADC_MONITOR_MODE_HIGH) {
|
||||
ADC.saradc_int_ena.saradc_adc_thres1_high_int_ena = enable;
|
||||
} else {
|
||||
ADC.saradc_int_ena.saradc_adc_thres1_low_int_ena = enable;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Clear intr raw for adc digi monitors.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline void adc_ll_digi_monitor_clear_intr(void)
|
||||
{
|
||||
ADC.saradc_int_clr.val |= ADC_LL_THRES_ALL_INTR_ST_M;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the address of digi monitor intr statue register.
|
||||
*
|
||||
* @return address of register.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline volatile const void *adc_ll_digi_monitor_get_intr_status_addr(void)
|
||||
{
|
||||
return &ADC.saradc_int_st.val;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set DMA eof num of adc digital controller.
|
||||
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
|
||||
*
|
||||
* @param num eof num of DMA.
|
||||
*/
|
||||
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
|
||||
{
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.saradc_dma_conf, saradc_apb_adc_eof_num, num);
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable output data to DMA from adc digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_dma_enable(void)
|
||||
{
|
||||
ADC.saradc_dma_conf.saradc_apb_adc_trans = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable output data to DMA from adc digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_dma_disable(void)
|
||||
{
|
||||
ADC.saradc_dma_conf.saradc_apb_adc_trans = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset adc digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_reset(void)
|
||||
{
|
||||
ADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 1;
|
||||
ADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 0;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
PWDET(Power detect) controller setting
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* Set adc cct for PWDET controller.
|
||||
*
|
||||
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
|
||||
* @param cct Range: 0 ~ 7.
|
||||
*/
|
||||
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
|
||||
{
|
||||
(void)cct;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get adc cct for PWDET controller.
|
||||
*
|
||||
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
|
||||
* @return cct Range: 0 ~ 7.
|
||||
*/
|
||||
static inline uint32_t adc_ll_pwdet_get_cct(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Common setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* @brief Enable the ADC APB clock
|
||||
* @param enable true to enable, false to disable
|
||||
*/
|
||||
static inline void adc_ll_enable_bus_clock(bool enable)
|
||||
{
|
||||
PCR.saradc_conf.saradc_reg_clk_en = enable;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the ADC function clock
|
||||
* @param enable true to enable, false to disable
|
||||
*/
|
||||
static inline void adc_ll_enable_func_clock(bool enable)
|
||||
{
|
||||
PCR.saradc_clkm_conf.saradc_clkm_en = enable;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reset ADC module
|
||||
*/
|
||||
static inline void adc_ll_reset_register(void)
|
||||
{
|
||||
PCR.saradc_conf.saradc_reg_rst_en = 1;
|
||||
PCR.saradc_conf.saradc_reg_rst_en = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set ADC module power management.
|
||||
*
|
||||
* @param manage Set ADC power status.
|
||||
*/
|
||||
static inline void adc_ll_set_power_manage(adc_unit_t adc_n, adc_ll_power_t manage)
|
||||
{
|
||||
(void) adc_n;
|
||||
/* Bit1 0:Fsm 1: SW mode
|
||||
Bit0 0:SW mode power down 1: SW mode power on */
|
||||
if (manage == ADC_LL_POWER_SW_ON) {
|
||||
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
|
||||
ADC.saradc_ctrl.saradc_xpd_sar_force = 3;
|
||||
} else if (manage == ADC_LL_POWER_BY_FSM) {
|
||||
ADC.saradc_ctrl.saradc_sar_clk_gated = 1;
|
||||
ADC.saradc_ctrl.saradc_xpd_sar_force = 0;
|
||||
} else if (manage == ADC_LL_POWER_SW_OFF) {
|
||||
ADC.saradc_ctrl.saradc_sar_clk_gated = 0;
|
||||
ADC.saradc_ctrl.saradc_xpd_sar_force = 2;
|
||||
}
|
||||
}
|
||||
|
||||
__attribute__((always_inline))
|
||||
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
|
||||
{
|
||||
//Not used on ESP32C61
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Oneshot Read
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* Set adc output data format for oneshot mode
|
||||
*
|
||||
* @note ESP32C61 Oneshot mode only supports 12bit.
|
||||
* @param adc_n ADC unit.
|
||||
* @param bits Output data bits width option.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
|
||||
{
|
||||
(void) adc_n;
|
||||
//ESP32C61 only supports 12bit, leave here for compatibility
|
||||
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected for measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
|
||||
{
|
||||
ADC.saradc_onetime_sample.saradc_onetime_channel = ((adc_n << 3) | channel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected in once measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
|
||||
{
|
||||
ADC.saradc_onetime_sample.saradc_onetime_channel = ((adc_n << 3) | 0xF);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start oneshot conversion by software
|
||||
*
|
||||
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
|
||||
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
|
||||
* This hardware limitation will be removed in future versions.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_start(bool val)
|
||||
{
|
||||
ADC.saradc_onetime_sample.saradc_onetime_start = val;
|
||||
}
|
||||
|
||||
/**
|
||||
* Clear the event for each ADCn for Oneshot mode
|
||||
*
|
||||
* @param event ADC event
|
||||
*/
|
||||
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
|
||||
{
|
||||
ADC.saradc_int_clr.val |= event_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check the event for each ADCn for Oneshot mode
|
||||
*
|
||||
* @param event ADC event
|
||||
*
|
||||
* @return
|
||||
* -true : The conversion process is finish.
|
||||
* -false : The conversion process is not finish.
|
||||
*/
|
||||
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
|
||||
{
|
||||
return (ADC.saradc_int_raw.val & event_mask);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the converted value for each ADCn for controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @return
|
||||
* - Converted value.
|
||||
*/
|
||||
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
|
||||
{
|
||||
uint32_t ret_val = 0;
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
ret_val = ADC.saradc_sar1data_status.saradc_adc1_data & 0xfff;
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
ret_val = ADC.saradc_sar2data_status.saradc_adc2_data & 0xfff;
|
||||
}
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Analyze whether the obtained raw data is correct.
|
||||
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param raw_data ADC raw data input (convert value).
|
||||
* @return
|
||||
* - 1: The data is correct to use.
|
||||
* - 0: The data is invalid.
|
||||
*/
|
||||
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
|
||||
{
|
||||
(void)adc_n;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* ADC module RTC output data invert or not.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param inv_en data invert or not.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
|
||||
{
|
||||
(void)adc_n;
|
||||
(void)inv_en;
|
||||
//For compatibility
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable oneshot conversion trigger
|
||||
*
|
||||
* @param adc_n ADC unit
|
||||
*/
|
||||
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
ADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 1;
|
||||
} else {
|
||||
ADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable oneshot conversion trigger for all the ADC units
|
||||
*/
|
||||
static inline void adc_oneshot_ll_disable_all_unit(void)
|
||||
{
|
||||
ADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 0;
|
||||
ADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set attenuation
|
||||
*
|
||||
* @note Attenuation is for all channels
|
||||
*
|
||||
* @param adc_n ADC unit
|
||||
* @param channel ADC channel
|
||||
* @param atten ADC attenuation
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
(void)adc_n;
|
||||
(void)channel;
|
||||
// Attenuation is for all channels, unit and channel are for compatibility
|
||||
ADC.saradc_onetime_sample.saradc_onetime_atten = atten;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the attenuation of a particular channel on ADCn.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADCn channel number.
|
||||
* @return atten The attenuation option.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
|
||||
{
|
||||
(void)adc_n;
|
||||
(void)channel;
|
||||
return (adc_atten_t)ADC.saradc_onetime_sample.saradc_onetime_atten;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
73
components/hal/esp32c61/include/hal/sar_ctrl_ll.h
Normal file
73
components/hal/esp32c61/include/hal/sar_ctrl_ll.h
Normal file
@@ -0,0 +1,73 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
/**
|
||||
* SAR related peripherals are interdependent.
|
||||
* Related peripherals are:
|
||||
* - ADC
|
||||
* - PWDET
|
||||
*
|
||||
* All of above peripherals require SAR to work correctly.
|
||||
* As SAR has some registers that will influence above mentioned peripherals.
|
||||
* This file gives an abstraction for such registers
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include "soc/soc.h"
|
||||
#include "soc/apb_saradc_struct.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define PWDET_LL_SAR_POWER_FORCE_BIT BIT(24)
|
||||
#define PWDET_LL_SAR_POWER_CNTL_BIT BIT(23)
|
||||
|
||||
|
||||
typedef enum {
|
||||
SAR_CTRL_LL_POWER_FSM, //SAR power controlled by FSM
|
||||
SAR_CTRL_LL_POWER_ON, //SAR power on
|
||||
SAR_CTRL_LL_POWER_OFF, //SAR power off
|
||||
} sar_ctrl_ll_power_t;
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
SAR power control
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* @brief Set SAR power mode when controlled by PWDET
|
||||
*
|
||||
* @param[in] mode See `sar_ctrl_ll_power_t`
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline void sar_ctrl_ll_set_power_mode_from_pwdet(sar_ctrl_ll_power_t mode)
|
||||
{
|
||||
if (mode == SAR_CTRL_LL_POWER_FSM) {
|
||||
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
|
||||
} else if (mode == SAR_CTRL_LL_POWER_ON) {
|
||||
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
|
||||
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
|
||||
} else if (mode == SAR_CTRL_LL_POWER_OFF) {
|
||||
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
|
||||
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set SAR power ctrl source
|
||||
*
|
||||
* @param[in] force set PWDET as SAR power ctrl source when force is true
|
||||
*/
|
||||
static inline void sar_ctrl_ll_force_power_ctrl_from_pwdet(bool force)
|
||||
{
|
||||
ADC.saradc_ctrl.saradc_saradc2_pwdet_drv = force;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user