Move tinycrypt function

This commit is contained in:
GengYuchao
2022-06-17 21:38:46 +08:00
parent 61ee34f713
commit 6658a46478
35 changed files with 6484 additions and 0 deletions

View File

@@ -0,0 +1,164 @@
/* aes_decrypt.c - TinyCrypt implementation of AES decryption procedure */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static const uint8_t inv_sbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0c, 0x7d
};
int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
return tc_aes128_set_encrypt_key(s, k);
}
#define mult8(a)(_double_byte(_double_byte(_double_byte(a))))
#define mult9(a)(mult8(a)^(a))
#define multb(a)(mult8(a)^_double_byte(a)^(a))
#define multd(a)(mult8(a)^_double_byte(_double_byte(a))^(a))
#define multe(a)(mult8(a)^_double_byte(_double_byte(a))^_double_byte(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = multe(in[0]) ^ multb(in[1]) ^ multd(in[2]) ^ mult9(in[3]);
out[1] = mult9(in[0]) ^ multe(in[1]) ^ multb(in[2]) ^ multd(in[3]);
out[2] = multd(in[0]) ^ mult9(in[1]) ^ multe(in[2]) ^ multb(in[3]);
out[3] = multb(in[0]) ^ multd(in[1]) ^ mult9(in[2]) ^ multe(in[3]);
}
static inline void inv_mix_columns(uint8_t *s)
{
uint8_t t[Nb*Nk];
mult_row_column(t, s);
mult_row_column(&t[Nb], s+Nb);
mult_row_column(&t[2*Nb], s+(2*Nb));
mult_row_column(&t[3*Nb], s+(3*Nb));
(void)_copy(s, sizeof(t), t, sizeof(t));
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void inv_sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb*Nk); ++i) {
s[i] = inv_sbox[s[i]];
}
}
/*
* This inv_shift_rows also implements the matrix flip required for
* inv_mix_columns, but performs it here to reduce the number of memory
* operations.
*/
static inline void inv_shift_rows(uint8_t *s)
{
uint8_t t[Nb*Nk];
t[0] = s[0]; t[1] = s[13]; t[2] = s[10]; t[3] = s[7];
t[4] = s[4]; t[5] = s[1]; t[6] = s[14]; t[7] = s[11];
t[8] = s[8]; t[9] = s[5]; t[10] = s[2]; t[11] = s[15];
t[12] = s[12]; t[13] = s[9]; t[14] = s[6]; t[15] = s[3];
(void)_copy(s, sizeof(t), t, sizeof(t));
}
int tc_aes_decrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk*Nb];
unsigned int i;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words + Nb*Nr);
for (i = Nr - 1; i > 0; --i) {
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, s->words + Nb*i);
inv_mix_columns(state);
}
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, s->words);
(void)_copy(out, sizeof(state), state, sizeof(state));
/*zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,191 @@
/* aes_encrypt.c - TinyCrypt implementation of AES encryption procedure */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/aes.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16
};
static inline unsigned int rotword(unsigned int a)
{
return (((a) >> 24)|((a) << 8));
}
#define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o))
#define subword(a)(subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0))
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
const unsigned int rconst[11] = {
0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
};
unsigned int i;
unsigned int t;
if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
} else if (k == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
for (i = 0; i < Nk; ++i) {
s->words[i] = (k[Nb*i]<<24) | (k[Nb*i+1]<<16) |
(k[Nb*i+2]<<8) | (k[Nb*i+3]);
}
for (; i < (Nb * (Nr + 1)); ++i) {
t = s->words[i-1];
if ((i % Nk) == 0) {
t = subword(rotword(t)) ^ rconst[i/Nk];
}
s->words[i] = s->words[i-Nk] ^ t;
}
return TC_CRYPTO_SUCCESS;
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) {
s[i] = sbox[s[i]];
}
}
#define triple(a)(_double_byte(a)^(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
}
static inline void mix_columns(uint8_t *s)
{
uint8_t t[Nb*Nk];
mult_row_column(t, s);
mult_row_column(&t[Nb], s+Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void) _copy(s, sizeof(t), t, sizeof(t));
}
/*
* This shift_rows also implements the matrix flip required for mix_columns, but
* performs it here to reduce the number of memory operations.
*/
static inline void shift_rows(uint8_t *s)
{
uint8_t t[Nb * Nk];
t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
(void) _copy(s, sizeof(t), t, sizeof(t));
}
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk*Nb];
unsigned int i;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words);
for (i = 0; i < (Nr - 1); ++i) {
sub_bytes(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, s->words + Nb*(i+1));
}
sub_bytes(state);
shift_rows(state);
add_round_key(state, s->words + Nb*(i+1));
(void)_copy(out, sizeof(state), state, sizeof(state));
/* zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,114 @@
/* cbc_mode.c - TinyCrypt implementation of CBC mode encryption & decryption */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/cbc_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
unsigned int n, m;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen + TC_AES_BLOCK_SIZE) {
return TC_CRYPTO_FAIL;
}
/* copy iv to the buffer */
(void)_copy(buffer, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
/* copy iv to the output buffer */
(void)_copy(out, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE;
for (n = m = 0; n < inlen; ++n) {
buffer[m++] ^= *in++;
if (m == TC_AES_BLOCK_SIZE) {
(void)tc_aes_encrypt(buffer, buffer, sched);
(void)_copy(out, TC_AES_BLOCK_SIZE,
buffer, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE;
m = 0;
}
}
return TC_CRYPTO_SUCCESS;
}
int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
const uint8_t *p;
unsigned int n, m;
/* sanity check the inputs */
if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen - TC_AES_BLOCK_SIZE) {
return TC_CRYPTO_FAIL;
}
/*
* Note that in == iv + ciphertext, i.e. the iv and the ciphertext are
* contiguous. This allows for a very efficient decryption algorithm
* that would not otherwise be possible.
*/
p = iv;
for (n = m = 0; n < inlen; ++n) {
if ((n % TC_AES_BLOCK_SIZE) == 0) {
(void)tc_aes_decrypt(buffer, in, sched);
in += TC_AES_BLOCK_SIZE;
m = 0;
}
*out++ = buffer[m++] ^ *p++;
}
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,266 @@
/* ccm_mode.c - TinyCrypt implementation of CCM mode */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ccm_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
#include <stdio.h>
int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
unsigned int nlen, unsigned int mlen)
{
/* input sanity check: */
if (c == (TCCcmMode_t) 0 ||
sched == (TCAesKeySched_t) 0 ||
nonce == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (nlen != 13) {
return TC_CRYPTO_FAIL; /* The allowed nonce size is: 13. See documentation.*/
} else if ((mlen < 4) || (mlen > 16) || (mlen & 1)) {
return TC_CRYPTO_FAIL; /* The allowed mac sizes are: 4, 6, 8, 10, 12, 14, 16.*/
}
c->mlen = mlen;
c->sched = sched;
c->nonce = nonce;
return TC_CRYPTO_SUCCESS;
}
/**
* Variation of CBC-MAC mode used in CCM.
*/
static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, unsigned int dlen,
unsigned int flag, TCAesKeySched_t sched)
{
unsigned int i;
if (flag > 0) {
T[0] ^= (uint8_t)(dlen >> 8);
T[1] ^= (uint8_t)(dlen);
dlen += 2; i = 2;
} else {
i = 0;
}
while (i < dlen) {
T[i++ % (Nb * Nk)] ^= *data++;
if (((i % (Nb * Nk)) == 0) || dlen == i) {
(void) tc_aes_encrypt(T, T, sched);
}
}
}
/**
* Variation of CTR mode used in CCM.
* The CTR mode used by CCM is slightly different than the conventional CTR
* mode (the counter is increased before encryption, instead of after
* encryption). Besides, it is assumed that the counter is stored in the last
* 2 bytes of the nonce.
*/
static int ccm_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE];
uint16_t block_num;
unsigned int i;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
outlen != inlen) {
return TC_CRYPTO_FAIL;
}
/* copy the counter to the nonce */
(void) _copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 2 bytes of the nonce to be incremented */
block_num = (uint16_t) ((nonce[14] << 8)|(nonce[15]));
for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
block_num++;
nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num);
if (!tc_aes_encrypt(buffer, nonce, sched)) {
return TC_CRYPTO_FAIL;
}
}
/* update the output */
*out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
}
/* update the counter */
ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS;
}
int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c)
{
/* input sanity check: */
if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < (plen + c->mlen))) { /* invalid output buffer size */
return TC_CRYPTO_FAIL;
}
uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk];
unsigned int i;
/* GENERATING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40:0) | (((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i <= 13; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = (uint8_t)(plen >> 8);
b[15] = (uint8_t)(plen);
/* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(tag, b, c->sched);
if (alen > 0) {
ccm_cbc_mac(tag, associated_data, alen, 1, c->sched);
}
if (plen > 0) {
ccm_cbc_mac(tag, payload, plen, 0, c->sched);
}
/* ENCRYPTION: */
/* formatting the sequence b for encryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
b[14] = b[15] = TC_ZERO_BYTE;
/* encrypting payload using ctr mode: */
ccm_ctr_mode(out, plen, payload, plen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter for ctr_mode (0):*/
/* encrypting b and adding the tag to the output: */
(void) tc_aes_encrypt(b, b, c->sched);
out += plen;
for (i = 0; i < c->mlen; ++i) {
*out++ = tag[i] ^ b[i];
}
return TC_CRYPTO_SUCCESS;
}
int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c)
{
/* input sanity check: */
if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < plen - c->mlen)) { /* invalid output buffer size */
return TC_CRYPTO_FAIL;
}
uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk];
unsigned int i;
/* DECRYPTION: */
/* formatting the sequence b for decryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = b[15] = TC_ZERO_BYTE; /* initial counter value is 0 */
/* decrypting payload using ctr mode: */
ccm_ctr_mode(out, plen - c->mlen, payload, plen - c->mlen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter value (0) */
/* encrypting b and restoring the tag from input: */
(void) tc_aes_encrypt(b, b, c->sched);
for (i = 0; i < c->mlen; ++i) {
tag[i] = *(payload + plen - c->mlen + i) ^ b[i];
}
/* VERIFYING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40:0)|(((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = (uint8_t)((plen - c->mlen) >> 8);
b[15] = (uint8_t)(plen - c->mlen);
/* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(b, b, c->sched);
if (alen > 0) {
ccm_cbc_mac(b, associated_data, alen, 1, c->sched);
}
if (plen > 0) {
ccm_cbc_mac(b, out, plen - c->mlen, 0, c->sched);
}
/* comparing the received tag and the computed one: */
if (_compare(b, tag, c->mlen) == 0) {
return TC_CRYPTO_SUCCESS;
} else {
/* erase the decrypted buffer in case of mac validation failure: */
_set(out, 0, plen - c->mlen);
return TC_CRYPTO_FAIL;
}
}

View File

@@ -0,0 +1,254 @@
/* cmac_mode.c - TinyCrypt CMAC mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/aes.h>
#include <tinycrypt/cmac_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
/* max number of calls until change the key (2^48).*/
const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
/*
* gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
* array with byte 0 the most significant and byte 15 the least significant.
* High bit carry reduction is based on the primitive polynomial
*
* X^128 + X^7 + X^2 + X + 1,
*
* which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
* since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
* addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
* add X^128 to both sides to get
*
* X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
*
* and the coefficients of the polynomial on the right hand side form the
* string 1000 0111 = 0x87, which is the value of gf_wrap.
*
* This gets used in the following way. Doubling in GF(2^128) is just a left
* shift by 1 bit, except when the most significant bit is 1. In the latter
* case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
* that overflows beyond 128 bits can be replaced by addition of
* X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
* in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
* into the low order byte after a left shift when the starting high order
* bit is 1.
*/
const unsigned char gf_wrap = 0x87;
/*
* assumes: out != NULL and points to a GF(2^n) value to receive the
* doubled value;
* in != NULL and points to a 16 byte GF(2^n) value
* to double;
* the in and out buffers do not overlap.
* effects: doubles the GF(2^n) value pointed to by "in" and places
* the result in the GF(2^n) value pointed to by "out."
*/
void gf_double(uint8_t *out, uint8_t *in)
{
/* start with low order byte */
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
out += (TC_AES_BLOCK_SIZE - 1);
for (;;) {
*out-- = (*x << 1) ^ carry;
if (x == in) {
break;
}
carry = *x-- >> 7;
}
}
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
{
/* input sanity check: */
if (s == (TCCmacState_t) 0 ||
key == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
/* put s into a known state */
_set(s, 0, sizeof(*s));
s->sched = sched;
/* configure the encryption key used by the underlying block cipher */
tc_aes128_set_encrypt_key(s->sched, key);
/* compute s->K1 and s->K2 from s->iv using s->keyid */
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
tc_aes_encrypt(s->iv, s->iv, s->sched);
gf_double (s->K1, s->iv);
gf_double (s->K2, s->K1);
/* reset s->iv to 0 in case someone wants to compute now */
tc_cmac_init(s);
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_erase(TCCmacState_t s)
{
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_init(TCCmacState_t s)
{
/* input sanity check: */
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* CMAC starts with an all zero initialization vector */
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
/* and the leftover buffer is empty */
_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
s->leftover_offset = 0;
/* Set countdown to max number of calls allowed before re-keying: */
s->countdown = MAX_CALLS;
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
{
unsigned int i;
/* input sanity check: */
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
if (data_length == 0) {
return TC_CRYPTO_SUCCESS;
}
if (data == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
if (s->countdown == 0) {
return TC_CRYPTO_FAIL;
}
s->countdown--;
if (s->leftover_offset > 0) {
/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
if (data_length < remaining_space) {
/* still not enough data to encrypt this time either */
_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
s->leftover_offset += data_length;
return TC_CRYPTO_SUCCESS;
}
/* leftover block is now full; encrypt it first */
_copy(&s->leftover[s->leftover_offset],
remaining_space,
data,
remaining_space);
data_length -= remaining_space;
data += remaining_space;
s->leftover_offset = 0;
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i];
}
tc_aes_encrypt(s->iv, s->iv, s->sched);
}
/* CBC encrypt each (except the last) of the data blocks */
while (data_length > TC_AES_BLOCK_SIZE) {
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= data[i];
}
tc_aes_encrypt(s->iv, s->iv, s->sched);
data += TC_AES_BLOCK_SIZE;
data_length -= TC_AES_BLOCK_SIZE;
}
if (data_length > 0) {
/* save leftover data for next time */
_copy(s->leftover, data_length, data, data_length);
s->leftover_offset = data_length;
}
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{
uint8_t *k;
unsigned int i;
/* input sanity check: */
if (tag == (uint8_t *) 0 ||
s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
/* the last message block is a full-sized block */
k = (uint8_t *) s->K1;
} else {
/* the final message block is not a full-sized block */
size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
_set(&s->leftover[s->leftover_offset], 0, remaining);
s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
k = (uint8_t *) s->K2;
}
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i] ^ k[i];
}
tc_aes_encrypt(tag, s->iv, s->sched);
/* erasing state: */
tc_cmac_erase(s);
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,85 @@
/* ctr_mode.c - TinyCrypt CTR mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ctr_mode.h>
#include <tinycrypt/utils.h>
int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE];
unsigned int block_num;
unsigned int i;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
outlen != inlen) {
return TC_CRYPTO_FAIL;
}
/* copy the ctr to the nonce */
(void)_copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 4 bytes of the nonce to be incremented */
block_num = (nonce[12] << 24) | (nonce[13] << 16) |
(nonce[14] << 8) | (nonce[15]);
for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
/* encrypt data using the current nonce */
if (tc_aes_encrypt(buffer, nonce, sched)) {
block_num++;
nonce[12] = (uint8_t)(block_num >> 24);
nonce[13] = (uint8_t)(block_num >> 16);
nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num);
} else {
return TC_CRYPTO_FAIL;
}
}
/* update the output */
*out++ = buffer[i%(TC_AES_BLOCK_SIZE)] ^ *in++;
}
/* update the counter */
ctr[12] = nonce[12]; ctr[13] = nonce[13];
ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,279 @@
/* ctr_prng.c - TinyCrypt implementation of CTR-PRNG */
/*
* Copyright (c) 2016, Chris Morrison
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ctr_prng.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
#include <string.h>
/*
* This PRNG is based on the CTR_DRBG described in Recommendation for Random
* Number Generation Using Deterministic Random Bit Generators,
* NIST SP 800-90A Rev. 1.
*
* Annotations to particular steps (e.g. 10.2.1.2 Step 1) refer to the steps
* described in that document.
*
*/
/**
* @brief Array incrementer
* Treats the supplied array as one contiguous number (MSB in arr[0]), and
* increments it by one
* @return none
* @param arr IN/OUT -- array to be incremented
* @param len IN -- size of arr in bytes
*/
static void arrInc(uint8_t arr[], unsigned int len)
{
unsigned int i;
if (0 != arr) {
for (i = len; i > 0U; i--) {
if (++arr[i-1] != 0U) {
break;
}
}
}
}
/**
* @brief CTR PRNG update
* Updates the internal state of supplied the CTR PRNG context
* increments it by one
* @return none
* @note Assumes: providedData is (TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE) bytes long
* @param ctx IN/OUT -- CTR PRNG state
* @param providedData IN -- data used when updating the internal state
*/
static void tc_ctr_prng_update(TCCtrPrng_t * const ctx, uint8_t const * const providedData)
{
if (0 != ctx) {
/* 10.2.1.2 step 1 */
uint8_t temp[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
unsigned int len = 0U;
/* 10.2.1.2 step 2 */
while (len < sizeof temp) {
unsigned int blocklen = sizeof(temp) - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.2 step 2.1 */
arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.2 step 2.2 */
if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.2 step 2.3/step 3 */
memcpy(&(temp[len]), output_block, blocklen);
len += blocklen;
}
/* 10.2.1.2 step 4 */
if (0 != providedData) {
unsigned int i;
for (i = 0U; i < sizeof temp; i++) {
temp[i] ^= providedData[i];
}
}
/* 10.2.1.2 step 5 */
(void)tc_aes128_set_encrypt_key(&ctx->key, temp);
/* 10.2.1.2 step 6 */
memcpy(ctx->V, &(temp[TC_AES_KEY_SIZE]), TC_AES_BLOCK_SIZE);
}
}
int tc_ctr_prng_init(TCCtrPrng_t * const ctx,
uint8_t const * const entropy,
unsigned int entropyLen,
uint8_t const * const personalization,
unsigned int pLen)
{
int result = TC_CRYPTO_FAIL;
unsigned int i;
uint8_t personalization_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
uint8_t zeroArr[TC_AES_BLOCK_SIZE] = {0U};
if (0 != personalization) {
/* 10.2.1.3.1 step 1 */
unsigned int len = pLen;
if (len > sizeof personalization_buf) {
len = sizeof personalization_buf;
}
/* 10.2.1.3.1 step 2 */
memcpy(personalization_buf, personalization, len);
}
if ((0 != ctx) && (0 != entropy) && (entropyLen >= sizeof seed_material)) {
/* 10.2.1.3.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= personalization_buf[i];
}
/* 10.2.1.3.1 step 4 */
(void)tc_aes128_set_encrypt_key(&ctx->key, zeroArr);
/* 10.2.1.3.1 step 5 */
memset(ctx->V, 0x00, sizeof ctx->V);
/* 10.2.1.3.1 step 6 */
tc_ctr_prng_update(ctx, seed_material);
/* 10.2.1.3.1 step 7 */
ctx->reseedCount = 1U;
result = TC_CRYPTO_SUCCESS;
}
return result;
}
int tc_ctr_prng_reseed(TCCtrPrng_t * const ctx,
uint8_t const * const entropy,
unsigned int entropyLen,
uint8_t const * const additional_input,
unsigned int additionallen)
{
unsigned int i;
int result = TC_CRYPTO_FAIL;
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
if (0 != additional_input) {
/* 10.2.1.4.1 step 1 */
unsigned int len = additionallen;
if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf;
}
/* 10.2.1.4.1 step 2 */
memcpy(additional_input_buf, additional_input, len);
}
unsigned int seedlen = (unsigned int)TC_AES_KEY_SIZE + (unsigned int)TC_AES_BLOCK_SIZE;
if ((0 != ctx) && (entropyLen >= seedlen)) {
/* 10.2.1.4.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= additional_input_buf[i];
}
/* 10.2.1.4.1 step 4 */
tc_ctr_prng_update(ctx, seed_material);
/* 10.2.1.4.1 step 5 */
ctx->reseedCount = 1U;
result = TC_CRYPTO_SUCCESS;
}
return result;
}
int tc_ctr_prng_generate(TCCtrPrng_t * const ctx,
uint8_t const * const additional_input,
unsigned int additionallen,
uint8_t * const out,
unsigned int outlen)
{
/* 2^48 - see section 10.2.1 */
static const uint64_t MAX_REQS_BEFORE_RESEED = 0x1000000000000ULL;
/* 2^19 bits - see section 10.2.1 */
static const unsigned int MAX_BYTES_PER_REQ = 65536U;
unsigned int result = TC_CRYPTO_FAIL;
if ((0 != ctx) && (0 != out) && (outlen < MAX_BYTES_PER_REQ)) {
/* 10.2.1.5.1 step 1 */
if (ctx->reseedCount > MAX_REQS_BEFORE_RESEED) {
result = TC_CTR_PRNG_RESEED_REQ;
} else {
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
if (0 != additional_input) {
/* 10.2.1.5.1 step 2 */
unsigned int len = additionallen;
if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf;
}
memcpy(additional_input_buf, additional_input, len);
tc_ctr_prng_update(ctx, additional_input_buf);
}
/* 10.2.1.5.1 step 3 - implicit */
/* 10.2.1.5.1 step 4 */
unsigned int len = 0U;
while (len < outlen) {
unsigned int blocklen = outlen - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.5.1 step 4.1 */
arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.5.1 step 4.2 */
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.5.1 step 4.3/step 5 */
if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
memcpy(&(out[len]), output_block, blocklen);
len += blocklen;
}
/* 10.2.1.5.1 step 6 */
tc_ctr_prng_update(ctx, additional_input_buf);
/* 10.2.1.5.1 step 7 */
ctx->reseedCount++;
/* 10.2.1.5.1 step 8 */
result = TC_CRYPTO_SUCCESS;
}
}
return result;
}
void tc_ctr_prng_uninstantiate(TCCtrPrng_t * const ctx)
{
if (0 != ctx) {
memset(ctx->key.words, 0x00, sizeof ctx->key.words);
memset(ctx->V, 0x00, sizeof ctx->V);
ctx->reseedCount = 0U;
}
}

View File

@@ -0,0 +1,939 @@
/* ecc.c - TinyCrypt implementation of common ECC functions */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_platform_specific.h>
#include <string.h>
/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
* has access to enough entropy in order to feed the PRNG regularly. */
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
void uECC_set_rng(uECC_RNG_Function rng_function)
{
g_rng_function = rng_function;
}
uECC_RNG_Function uECC_get_rng(void)
{
return g_rng_function;
}
int uECC_curve_private_key_size(uECC_Curve curve)
{
return BITS_TO_BYTES(curve->num_n_bits);
}
int uECC_curve_public_key_size(uECC_Curve curve)
{
return 2 * curve->num_bytes;
}
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
{
wordcount_t i;
for (i = 0; i < num_words; ++i) {
vli[i] = 0;
}
}
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
{
uECC_word_t bits = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
bits |= vli[i];
}
return (bits == 0);
}
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
{
return (vli[bit >> uECC_WORD_BITS_SHIFT] &
((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
}
/* Counts the number of words in vli. */
static wordcount_t vli_numDigits(const uECC_word_t *vli,
const wordcount_t max_words)
{
wordcount_t i;
/* Search from the end until we find a non-zero digit. We do it in reverse
* because we expect that most digits will be nonzero. */
for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
}
return (i + 1);
}
bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
const wordcount_t max_words)
{
uECC_word_t i;
uECC_word_t digit;
wordcount_t num_digits = vli_numDigits(vli, max_words);
if (num_digits == 0) {
return 0;
}
digit = vli[num_digits - 1];
for (i = 0; digit; ++i) {
digit >>= 1;
}
return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
}
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
wordcount_t num_words)
{
wordcount_t i;
for (i = 0; i < num_words; ++i) {
dest[i] = src[i];
}
}
cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
const uECC_word_t *right,
wordcount_t num_words)
{
wordcount_t i;
for (i = num_words - 1; i >= 0; --i) {
if (left[i] > right[i]) {
return 1;
} else if (left[i] < right[i]) {
return -1;
}
}
return 0;
}
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words)
{
uECC_word_t diff = 0;
wordcount_t i;
for (i = num_words - 1; i >= 0; --i) {
diff |= (left[i] ^ right[i]);
}
return !(diff == 0);
}
uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
{
return (p_true*(cond)) | (p_false*(!cond));
}
/* Computes result = left - right, returning borrow, in constant time.
* Can modify in place. */
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t borrow = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
uECC_word_t diff = left[i] - right[i] - borrow;
uECC_word_t val = (diff > left[i]);
borrow = cond_set(val, borrow, (diff != left[i]));
result[i] = diff;
}
return borrow;
}
/* Computes result = left + right, returning carry, in constant time.
* Can modify in place. */
static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t carry = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
uECC_word_t sum = left[i] + right[i] + carry;
uECC_word_t val = (sum < left[i]);
carry = cond_set(val, carry, (sum != left[i]));
result[i] = sum;
}
return carry;
}
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
return (!equal - 2 * neg);
}
/* Computes vli = vli >> 1. */
static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
{
uECC_word_t *end = vli;
uECC_word_t carry = 0;
vli += num_words;
while (vli-- > end) {
uECC_word_t temp = *vli;
*vli = (temp >> 1) | carry;
carry = temp << (uECC_WORD_BITS - 1);
}
}
static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
uECC_word_t *r1, uECC_word_t *r2)
{
uECC_dword_t p = (uECC_dword_t)a * b;
uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
r01 += p;
*r2 += (r01 < p);
*r1 = r01 >> uECC_WORD_BITS;
*r0 = (uECC_word_t)r01;
}
/* Computes result = left * right. Result must be 2 * num_words long. */
static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t r0 = 0;
uECC_word_t r1 = 0;
uECC_word_t r2 = 0;
wordcount_t i, k;
/* Compute each digit of result in sequence, maintaining the carries. */
for (k = 0; k < num_words; ++k) {
for (i = 0; i <= k; ++i) {
muladd(left[i], right[k - i], &r0, &r1, &r2);
}
result[k] = r0;
r0 = r1;
r1 = r2;
r2 = 0;
}
for (k = num_words; k < num_words * 2 - 1; ++k) {
for (i = (k + 1) - num_words; i < num_words; ++i) {
muladd(left[i], right[k - i], &r0, &r1, &r2);
}
result[k] = r0;
r0 = r1;
r1 = r2;
r2 = 0;
}
result[num_words * 2 - 1] = r0;
}
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
/* result > mod (result = mod + remainder), so subtract mod to get
* remainder. */
uECC_vli_sub(result, result, mod, num_words);
}
}
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
if (l_borrow) {
/* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
* we can get the correct result from result + mod (with overflow). */
uECC_vli_add(result, result, mod, num_words);
}
}
/* Computes result = product % mod, where product is 2N words long. */
/* Currently only designed to work for curve_p or curve_n. */
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
const uECC_word_t *mod, wordcount_t num_words)
{
uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
uECC_word_t tmp[2 * NUM_ECC_WORDS];
uECC_word_t *v[2] = {tmp, product};
uECC_word_t index;
/* Shift mod so its highest set bit is at the maximum position. */
bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
uECC_vli_numBits(mod, num_words);
wordcount_t word_shift = shift / uECC_WORD_BITS;
wordcount_t bit_shift = shift % uECC_WORD_BITS;
uECC_word_t carry = 0;
uECC_vli_clear(mod_multiple, word_shift);
if (bit_shift > 0) {
for(index = 0; index < (uECC_word_t)num_words; ++index) {
mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
}
} else {
uECC_vli_set(mod_multiple + word_shift, mod, num_words);
}
for (index = 1; shift >= 0; --shift) {
uECC_word_t borrow = 0;
wordcount_t i;
for (i = 0; i < num_words * 2; ++i) {
uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
if (diff != v[index][i]) {
borrow = (diff > v[index][i]);
}
v[1 - index][i] = diff;
}
/* Swap the index if there was no borrow */
index = !(index ^ borrow);
uECC_vli_rshift1(mod_multiple, num_words);
mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
(uECC_WORD_BITS - 1);
uECC_vli_rshift1(mod_multiple + num_words, num_words);
}
uECC_vli_set(result, v[index], num_words);
}
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t product[2 * NUM_ECC_WORDS];
uECC_vli_mult(product, left, right, num_words);
uECC_vli_mmod(result, product, mod, num_words);
}
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, uECC_Curve curve)
{
uECC_word_t product[2 * NUM_ECC_WORDS];
uECC_vli_mult(product, left, right, curve->num_words);
curve->mmod_fast(result, product);
}
static void uECC_vli_modSquare_fast(uECC_word_t *result,
const uECC_word_t *left,
uECC_Curve curve)
{
uECC_vli_modMult_fast(result, left, left, curve);
}
#define EVEN(vli) (!(vli[0] & 1))
static void vli_modInv_update(uECC_word_t *uv,
const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t carry = 0;
if (!EVEN(uv)) {
carry = uECC_vli_add(uv, uv, mod, num_words);
}
uECC_vli_rshift1(uv, num_words);
if (carry) {
uv[num_words - 1] |= HIGH_BIT_SET;
}
}
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
const uECC_word_t *mod, wordcount_t num_words)
{
uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
cmpresult_t cmpResult;
if (uECC_vli_isZero(input, num_words)) {
uECC_vli_clear(result, num_words);
return;
}
uECC_vli_set(a, input, num_words);
uECC_vli_set(b, mod, num_words);
uECC_vli_clear(u, num_words);
u[0] = 1;
uECC_vli_clear(v, num_words);
while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
if (EVEN(a)) {
uECC_vli_rshift1(a, num_words);
vli_modInv_update(u, mod, num_words);
} else if (EVEN(b)) {
uECC_vli_rshift1(b, num_words);
vli_modInv_update(v, mod, num_words);
} else if (cmpResult > 0) {
uECC_vli_sub(a, a, b, num_words);
uECC_vli_rshift1(a, num_words);
if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
uECC_vli_add(u, u, mod, num_words);
}
uECC_vli_sub(u, u, v, num_words);
vli_modInv_update(u, mod, num_words);
} else {
uECC_vli_sub(b, b, a, num_words);
uECC_vli_rshift1(b, num_words);
if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
uECC_vli_add(v, v, mod, num_words);
}
uECC_vli_sub(v, v, u, num_words);
vli_modInv_update(v, mod, num_words);
}
}
uECC_vli_set(result, u, num_words);
}
/* ------ Point operations ------ */
void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
uECC_word_t * Z1, uECC_Curve curve)
{
/* t1 = X, t2 = Y, t3 = Z */
uECC_word_t t4[NUM_ECC_WORDS];
uECC_word_t t5[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
if (uECC_vli_isZero(Z1, num_words)) {
return;
}
uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
if (uECC_vli_testBit(X1, 0)) {
uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
uECC_vli_rshift1(X1, num_words);
X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
} else {
uECC_vli_rshift1(X1, num_words);
}
/* t1 = 3/2*(x1^2 - z1^4) = B */
uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
/* t4 = B * (A - x3) - y1^4 = y3: */
uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
uECC_vli_set(X1, Z1, num_words);
uECC_vli_set(Z1, Y1, num_words);
uECC_vli_set(Y1, t4, num_words);
}
void x_side_default(uECC_word_t *result,
const uECC_word_t *x,
uECC_Curve curve)
{
uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
wordcount_t num_words = curve->num_words;
uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
/* r = x^3 - 3x + b: */
uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
}
uECC_Curve uECC_secp256r1(void)
{
return &curve_secp256r1;
}
void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
{
unsigned int tmp[NUM_ECC_WORDS];
int carry;
/* t */
uECC_vli_set(result, product, NUM_ECC_WORDS);
/* s1 */
tmp[0] = tmp[1] = tmp[2] = 0;
tmp[3] = product[11];
tmp[4] = product[12];
tmp[5] = product[13];
tmp[6] = product[14];
tmp[7] = product[15];
carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s2 */
tmp[3] = product[12];
tmp[4] = product[13];
tmp[5] = product[14];
tmp[6] = product[15];
tmp[7] = 0;
carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s3 */
tmp[0] = product[8];
tmp[1] = product[9];
tmp[2] = product[10];
tmp[3] = tmp[4] = tmp[5] = 0;
tmp[6] = product[14];
tmp[7] = product[15];
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s4 */
tmp[0] = product[9];
tmp[1] = product[10];
tmp[2] = product[11];
tmp[3] = product[13];
tmp[4] = product[14];
tmp[5] = product[15];
tmp[6] = product[13];
tmp[7] = product[8];
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* d1 */
tmp[0] = product[11];
tmp[1] = product[12];
tmp[2] = product[13];
tmp[3] = tmp[4] = tmp[5] = 0;
tmp[6] = product[8];
tmp[7] = product[10];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d2 */
tmp[0] = product[12];
tmp[1] = product[13];
tmp[2] = product[14];
tmp[3] = product[15];
tmp[4] = tmp[5] = 0;
tmp[6] = product[9];
tmp[7] = product[11];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d3 */
tmp[0] = product[13];
tmp[1] = product[14];
tmp[2] = product[15];
tmp[3] = product[8];
tmp[4] = product[9];
tmp[5] = product[10];
tmp[6] = 0;
tmp[7] = product[12];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d4 */
tmp[0] = product[14];
tmp[1] = product[15];
tmp[2] = 0;
tmp[3] = product[9];
tmp[4] = product[10];
tmp[5] = product[11];
tmp[6] = 0;
tmp[7] = product[13];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
if (carry < 0) {
do {
carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
}
while (carry < 0);
} else {
while (carry ||
uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
}
}
}
uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
{
return uECC_vli_isZero(point, curve->num_words * 2);
}
void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
uECC_Curve curve)
{
uECC_word_t t1[NUM_ECC_WORDS];
uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
uECC_word_t * X2, uECC_word_t * Y2,
const uECC_word_t * const initial_Z,
uECC_Curve curve)
{
uECC_word_t z[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
if (initial_Z) {
uECC_vli_set(z, initial_Z, num_words);
} else {
uECC_vli_clear(z, num_words);
z[0] = 1;
}
uECC_vli_set(X2, X1, num_words);
uECC_vli_set(Y2, Y1, num_words);
apply_z(X1, Y1, z, curve);
curve->double_jacobian(X1, Y1, z, curve);
apply_z(X2, Y2, z, curve);
}
void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
uECC_word_t * X2, uECC_word_t * Y2,
uECC_Curve curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uECC_word_t t5[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
uECC_vli_set(X2, t5, num_words);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
or P => P - Q, Q => P + Q
*/
static void XYcZ_addC(uECC_word_t * X1, uECC_word_t * Y1,
uECC_word_t * X2, uECC_word_t * Y2,
uECC_Curve curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uECC_word_t t5[NUM_ECC_WORDS];
uECC_word_t t6[NUM_ECC_WORDS];
uECC_word_t t7[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
/* t4 = (y2 - y1)*(B - x3) - E = y3: */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
/* t2 = (y2+y1)*(x3' - B) - E = y3': */
uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
uECC_vli_set(X1, t7, num_words);
}
void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
const uECC_word_t * scalar,
const uECC_word_t * initial_Z,
bitcount_t num_bits, uECC_Curve curve)
{
/* R0 and R1 */
uECC_word_t Rx[2][NUM_ECC_WORDS];
uECC_word_t Ry[2][NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS];
bitcount_t i;
uECC_word_t nb;
wordcount_t num_words = curve->num_words;
uECC_vli_set(Rx[1], point, num_words);
uECC_vli_set(Ry[1], point + num_words, num_words);
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
for (i = num_bits - 2; i > 0; --i) {
nb = !uECC_vli_testBit(scalar, i);
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
}
nb = !uECC_vli_testBit(scalar, 0);
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
/* Find final 1/Z value. */
uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
/* yP / (xP * Yb * (X1 - X0)) */
uECC_vli_modMult_fast(z, z, point + num_words, curve);
/* Xb * yP / (xP * Yb * (X1 - X0)) */
uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
/* End 1/Z calculation */
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
apply_z(Rx[0], Ry[0], z, curve);
uECC_vli_set(result, Rx[0], num_words);
uECC_vli_set(result + num_words, Ry[0], num_words);
}
uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
uECC_word_t *k1, uECC_Curve curve)
{
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
bitcount_t num_n_bits = curve->num_n_bits;
uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
(num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
uECC_vli_testBit(k0, num_n_bits));
uECC_vli_add(k1, k0, curve->n, num_n_words);
return carry;
}
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key,
uECC_Curve curve)
{
uECC_word_t tmp1[NUM_ECC_WORDS];
uECC_word_t tmp2[NUM_ECC_WORDS];
uECC_word_t *p2[2] = {tmp1, tmp2};
uECC_word_t carry;
/* Regularize the bitcount for the private key so that attackers cannot
* use a side channel attack to learn the number of leading zeros. */
carry = regularize_k(private_key, tmp1, tmp2, curve);
EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
if (EccPoint_isZero(result, curve)) {
return 0;
}
return 1;
}
/* Converts an integer in uECC native format to big-endian bytes. */
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
const unsigned int *native)
{
wordcount_t i;
for (i = 0; i < num_bytes; ++i) {
unsigned b = num_bytes - 1 - i;
bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
}
}
/* Converts big-endian bytes to an integer in uECC native format. */
void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
int num_bytes)
{
wordcount_t i;
uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
for (i = 0; i < num_bytes; ++i) {
unsigned b = num_bytes - 1 - i;
native[b / uECC_WORD_SIZE] |=
(uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
}
}
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
wordcount_t num_words)
{
uECC_word_t mask = (uECC_word_t)-1;
uECC_word_t tries;
bitcount_t num_bits = uECC_vli_numBits(top, num_words);
if (!g_rng_function) {
return 0;
}
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
return 0;
}
random[num_words - 1] &=
mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
if (!uECC_vli_isZero(random, num_words) &&
uECC_vli_cmp(top, random, num_words) == 1) {
return 1;
}
}
return 0;
}
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
{
uECC_word_t tmp1[NUM_ECC_WORDS];
uECC_word_t tmp2[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
/* The point at infinity is invalid. */
if (EccPoint_isZero(point, curve)) {
return -1;
}
/* x and y must be smaller than p. */
if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
return -2;
}
uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
/* Make sure that y^2 == x^3 + ax + b */
if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
return -3;
return 0;
}
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
{
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
uECC_vli_bytesToNative(
_public + curve->num_words,
public_key + curve->num_bytes,
curve->num_bytes);
if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
return -4;
}
return uECC_valid_point(_public, curve);
}
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
uECC_Curve curve)
{
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_vli_bytesToNative(
_private,
private_key,
BITS_TO_BYTES(curve->num_n_bits));
/* Make sure the private key is in the range [1, n-1]. */
if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
return 0;
}
if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
return 0;
}
/* Compute public key. */
if (!EccPoint_compute_public_key(_public, _private, curve)) {
return 0;
}
uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
uECC_vli_nativeToBytes(
public_key +
curve->num_bytes, curve->num_bytes, _public + curve->num_words);
return 1;
}

View File

@@ -0,0 +1,200 @@
/* ec_dh.c - TinyCrypt implementation of EC-DH */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dh.h>
#include <string.h>
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
unsigned int *d, uECC_Curve curve)
{
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
/* This function is designed for test purposes-only (such as validating NIST
* test vectors) as it uses a provided value for d instead of generating
* it uniformly at random. */
memcpy (_private, d, NUM_ECC_BYTES);
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits),
_private);
uECC_vli_nativeToBytes(public_key,
curve->num_bytes,
_public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes,
_public + curve->num_words);
/* erasing temporary buffer used to store secret: */
memset(_private, 0, NUM_ECC_BYTES);
return 1;
}
return 0;
}
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
{
uECC_word_t _random[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _private uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function ||
!rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS*uECC_WORD_SIZE)) {
return 0;
}
/* computing modular reduction of _random (see FIPS 186.4 B.4.1): */
uECC_vli_mmod(_private, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits),
_private);
uECC_vli_nativeToBytes(public_key,
curve->num_bytes,
_public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes,
_public + curve->num_words);
/* erasing temporary buffer that stored secret: */
memset(_private, 0, NUM_ECC_BYTES);
return 1;
}
}
return 0;
}
int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
uint8_t *secret, uECC_Curve curve)
{
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t *p2[2] = {_private, tmp};
uECC_word_t *initial_Z = 0;
uECC_word_t carry;
wordcount_t num_words = curve->num_words;
wordcount_t num_bytes = curve->num_bytes;
int r;
/* Converting buffers to correct bit order: */
uECC_vli_bytesToNative(_private,
private_key,
BITS_TO_BYTES(curve->num_n_bits));
uECC_vli_bytesToNative(_public,
public_key,
num_bytes);
uECC_vli_bytesToNative(_public + num_words,
public_key + num_bytes,
num_bytes);
/* Regularize the bitcount for the private key so that attackers cannot use a
* side channel attack to learn the number of leading zeros. */
carry = regularize_k(_private, _private, tmp, curve);
/* If an RNG function was specified, try to get a random initial Z value to
* improve protection against side-channel attacks. */
if (g_rng_function) {
if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
r = 0;
goto clear_and_out;
}
initial_Z = p2[carry];
}
EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1,
curve);
uECC_vli_nativeToBytes(secret, num_bytes, _public);
r = !EccPoint_isZero(_public, curve);
clear_and_out:
/* erasing temporary buffer used to store secret: */
memset(p2, 0, sizeof(p2));
__asm__ __volatile__("" :: "g"(p2) : "memory");
memset(tmp, 0, sizeof(tmp));
__asm__ __volatile__("" :: "g"(tmp) : "memory");
memset(_private, 0, sizeof(_private));
__asm__ __volatile__("" :: "g"(_private) : "memory");
return r;
}

View File

@@ -0,0 +1,294 @@
/* ec_dsa.c - TinyCrypt implementation of EC-DSA */
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dsa.h>
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
static void bits2int(uECC_word_t *native, const uint8_t *bits,
unsigned bits_size, uECC_Curve curve)
{
unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
int shift;
uECC_word_t carry;
uECC_word_t *ptr;
if (bits_size > num_n_bytes) {
bits_size = num_n_bytes;
}
uECC_vli_clear(native, num_n_words);
uECC_vli_bytesToNative(native, bits, bits_size);
if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
return;
}
shift = bits_size * 8 - curve->num_n_bits;
carry = 0;
ptr = native + num_n_words;
while (ptr-- > native) {
uECC_word_t temp = *ptr;
*ptr = (temp >> shift) | carry;
carry = temp << (uECC_WORD_BITS - shift);
}
/* Reduce mod curve_n */
if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
uECC_vli_sub(native, native, curve->n, num_n_words);
}
}
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t s[NUM_ECC_WORDS];
uECC_word_t *k2[2] = {tmp, s};
uECC_word_t p[NUM_ECC_WORDS * 2];
uECC_word_t carry;
wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
bitcount_t num_n_bits = curve->num_n_bits;
/* Make sure 0 < k < curve_n */
if (uECC_vli_isZero(k, num_words) ||
uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
return 0;
}
carry = regularize_k(k, tmp, s, curve);
EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
if (uECC_vli_isZero(p, num_words)) {
return 0;
}
/* If an RNG function was specified, get a random number
to prevent side channel analysis of k. */
if (!g_rng_function) {
uECC_vli_clear(tmp, num_n_words);
tmp[0] = 1;
}
else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
return 0;
}
/* Prevent side channel analysis of uECC_vli_modInv() to determine
bits of k / the private key by premultiplying by a random number */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
/* tmp = d: */
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
s[num_n_words - 1] = 0;
uECC_vli_set(s, p, num_words);
uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
bits2int(tmp, message_hash, hash_size, curve);
uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
return 0;
}
uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
return 1;
}
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uint8_t *signature, uECC_Curve curve)
{
uECC_word_t _random[2*NUM_ECC_WORDS];
uECC_word_t k[NUM_ECC_WORDS];
uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _random uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function ||
!rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) {
return 0;
}
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
curve)) {
return 1;
}
}
return 0;
}
static bitcount_t smax(bitcount_t a, bitcount_t b)
{
return (a > b ? a : b);
}
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
unsigned hash_size, const uint8_t *signature,
uECC_Curve curve)
{
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS];
uECC_word_t sum[NUM_ECC_WORDS * 2];
uECC_word_t rx[NUM_ECC_WORDS];
uECC_word_t ry[NUM_ECC_WORDS];
uECC_word_t tx[NUM_ECC_WORDS];
uECC_word_t ty[NUM_ECC_WORDS];
uECC_word_t tz[NUM_ECC_WORDS];
const uECC_word_t *points[4];
const uECC_word_t *point;
bitcount_t num_bits;
bitcount_t i;
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
rx[num_n_words - 1] = 0;
r[num_n_words - 1] = 0;
s[num_n_words - 1] = 0;
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
curve->num_bytes);
uECC_vli_bytesToNative(r, signature, curve->num_bytes);
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
/* r, s must not be 0. */
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
return 0;
}
/* r, s must be < n. */
if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
return 0;
}
/* Calculate u1 and u2. */
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size, curve);
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
/* Calculate sum = G + Q. */
uECC_vli_set(sum, _public, num_words);
uECC_vli_set(sum + num_words, _public + num_words, num_words);
uECC_vli_set(tx, curve->G, num_words);
uECC_vli_set(ty, curve->G + num_words, num_words);
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
XYcZ_add(tx, ty, sum, sum + num_words, curve);
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
apply_z(sum, sum + num_words, z, curve);
/* Use Shamir's trick to calculate u1*G + u2*Q */
points[0] = 0;
points[1] = curve->G;
points[2] = _public;
points[3] = sum;
num_bits = smax(uECC_vli_numBits(u1, num_n_words),
uECC_vli_numBits(u2, num_n_words));
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
uECC_vli_set(rx, point, num_words);
uECC_vli_set(ry, point + num_words, num_words);
uECC_vli_clear(z, num_words);
z[0] = 1;
for (i = num_bits - 2; i >= 0; --i) {
uECC_word_t index;
curve->double_jacobian(rx, ry, z, curve);
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
point = points[index];
if (point) {
uECC_vli_set(tx, point, num_words);
uECC_vli_set(ty, point + num_words, num_words);
apply_z(tx, ty, z, curve);
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
XYcZ_add(tx, ty, rx, ry, curve);
uECC_vli_modMult_fast(z, z, tz, curve);
}
}
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
apply_z(rx, ry, z, curve);
/* v = x1 (mod n) */
if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
uECC_vli_sub(rx, rx, curve->n, num_n_words);
}
/* Accept only if v == r. */
return (int)(uECC_vli_equal(rx, r, num_words) == 0);
}

View File

@@ -0,0 +1,104 @@
/* uECC_platform_specific.c - Implementation of platform specific functions*/
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* uECC_platform_specific.c -- Implementation of platform specific functions
*/
#if defined(unix) || defined(__linux__) || defined(__unix__) || \
defined(__unix) | (defined(__APPLE__) && defined(__MACH__)) || \
defined(uECC_POSIX)
/* Some POSIX-like system with /dev/urandom or /dev/random. */
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
int default_CSPRNG(uint8_t *dest, unsigned int size) {
/* input sanity check: */
if (dest == (uint8_t *) 0 || (size <= 0))
return 0;
int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
return 0;
}
}
char *ptr = (char *)dest;
size_t left = (size_t) size;
while (left > 0) {
ssize_t bytes_read = read(fd, ptr, left);
if (bytes_read <= 0) { // read failed
close(fd);
return 0;
}
left -= bytes_read;
ptr += bytes_read;
}
close(fd);
return 1;
}
#endif /* platform */

View File

@@ -0,0 +1,148 @@
/* hmac.c - TinyCrypt implementation of the HMAC algorithm */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/hmac.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size)
{
const uint8_t inner_pad = (uint8_t) 0x36;
const uint8_t outer_pad = (uint8_t) 0x5c;
unsigned int i;
for (i = 0; i < key_size; ++i) {
key[i] = inner_pad ^ new_key[i];
key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i];
}
for (; i < TC_SHA256_BLOCK_SIZE; ++i) {
key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad;
}
}
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
unsigned int key_size)
{
/* input sanity check: */
if (ctx == (TCHmacState_t) 0 ||
key == (const uint8_t *) 0 ||
key_size == 0) {
return TC_CRYPTO_FAIL;
}
const uint8_t dummy_key[key_size];
struct tc_hmac_state_struct dummy_state;
if (key_size <= TC_SHA256_BLOCK_SIZE) {
/*
* The next three lines consist of dummy calls just to avoid
* certain timing attacks. Without these dummy calls,
* adversaries would be able to learn whether the key_size is
* greater than TC_SHA256_BLOCK_SIZE by measuring the time
* consumed in this process.
*/
(void)tc_sha256_init(&dummy_state.hash_state);
(void)tc_sha256_update(&dummy_state.hash_state,
dummy_key,
key_size);
(void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE],
&dummy_state.hash_state);
/* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */
rekey(ctx->key, key, key_size);
} else {
(void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state, key, key_size);
(void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE],
&ctx->hash_state);
rekey(ctx->key,
&ctx->key[TC_SHA256_DIGEST_SIZE],
TC_SHA256_DIGEST_SIZE);
}
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_init(TCHmacState_t ctx)
{
/* input sanity check: */
if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void) tc_sha256_init(&ctx->hash_state);
(void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE);
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_update(TCHmacState_t ctx,
const void *data,
unsigned int data_length)
{
/* input sanity check: */
if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)tc_sha256_update(&ctx->hash_state, data, data_length);
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx)
{
/* input sanity check: */
if (tag == (uint8_t *) 0 ||
taglen != TC_SHA256_DIGEST_SIZE ||
ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void) tc_sha256_final(tag, &ctx->hash_state);
(void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state,
&ctx->key[TC_SHA256_BLOCK_SIZE],
TC_SHA256_BLOCK_SIZE);
(void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE);
(void)tc_sha256_final(tag, &ctx->hash_state);
/* destroy the current state */
_set(ctx, 0, sizeof(*ctx));
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,212 @@
/* hmac_prng.c - TinyCrypt implementation of HMAC-PRNG */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/hmac_prng.h>
#include <tinycrypt/hmac.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
/*
* min bytes in the seed string.
* MIN_SLEN*8 must be at least the expected security level.
*/
static const unsigned int MIN_SLEN = 32;
/*
* max bytes in the seed string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_SLEN = UINT32_MAX;
/*
* max bytes in the personalization string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_PLEN = UINT32_MAX;
/*
* max bytes in the additional_info string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_ALEN = UINT32_MAX;
/*
* max number of generates between re-seeds;
* TinyCrypt accepts up to (2^32 - 1) which is the maximal value of
* a 32-bit unsigned int variable, while SP800-90A specifies a maximum of 2^48.
*/
static const unsigned int MAX_GENS = UINT32_MAX;
/*
* maximum bytes per generate call;
* SP800-90A specifies a maximum up to 2^19.
*/
static const unsigned int MAX_OUT = (1 << 19);
/*
* Assumes: prng != NULL, e != NULL, len >= 0.
*/
static void update(TCHmacPrng_t prng, const uint8_t *e, unsigned int len)
{
const uint8_t separator0 = 0x00;
const uint8_t separator1 = 0x01;
/* use current state, e and separator 0 to compute a new prng key: */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator0, sizeof(separator0));
(void)tc_hmac_update(&prng->h, e, len);
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
/* use current state, e and separator 1 to compute a new prng key: */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator1, sizeof(separator1));
(void)tc_hmac_update(&prng->h, e, len);
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
}
int tc_hmac_prng_init(TCHmacPrng_t prng,
const uint8_t *personalization,
unsigned int plen)
{
/* input sanity check: */
if (prng == (TCHmacPrng_t) 0 ||
personalization == (uint8_t *) 0 ||
plen > MAX_PLEN) {
return TC_CRYPTO_FAIL;
}
/* put the generator into a known state: */
_set(prng->key, 0x00, sizeof(prng->key));
_set(prng->v, 0x01, sizeof(prng->v));
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* update assumes SOME key has been configured into HMAC */
update(prng, personalization, plen);
/* force a reseed before allowing tc_hmac_prng_generate to succeed: */
prng->countdown = 0;
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_prng_reseed(TCHmacPrng_t prng,
const uint8_t *seed,
unsigned int seedlen,
const uint8_t *additional_input,
unsigned int additionallen)
{
/* input sanity check: */
if (prng == (TCHmacPrng_t) 0 ||
seed == (const uint8_t *) 0 ||
seedlen < MIN_SLEN ||
seedlen > MAX_SLEN) {
return TC_CRYPTO_FAIL;
}
if (additional_input != (const uint8_t *) 0) {
/*
* Abort if additional_input is provided but has inappropriate
* length
*/
if (additionallen == 0 ||
additionallen > MAX_ALEN) {
return TC_CRYPTO_FAIL;
} else {
/* call update for the seed and additional_input */
update(prng, seed, seedlen);
update(prng, additional_input, additionallen);
}
} else {
/* call update only for the seed */
update(prng, seed, seedlen);
}
/* ... and enable hmac_prng_generate */
prng->countdown = MAX_GENS;
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_prng_generate(uint8_t *out, unsigned int outlen, TCHmacPrng_t prng)
{
unsigned int bufferlen;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
prng == (TCHmacPrng_t) 0 ||
outlen == 0 ||
outlen > MAX_OUT) {
return TC_CRYPTO_FAIL;
} else if (prng->countdown == 0) {
return TC_HMAC_PRNG_RESEED_REQ;
}
prng->countdown--;
while (outlen != 0) {
/* operate HMAC in OFB mode to create "random" outputs */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
bufferlen = (TC_SHA256_DIGEST_SIZE > outlen) ?
outlen : TC_SHA256_DIGEST_SIZE;
(void)_copy(out, bufferlen, prng->v, bufferlen);
out += bufferlen;
outlen = (outlen > TC_SHA256_DIGEST_SIZE) ?
(outlen - TC_SHA256_DIGEST_SIZE) : 0;
}
/* block future PRNG compromises from revealing past state */
update(prng, prng->v, TC_SHA256_DIGEST_SIZE);
return TC_CRYPTO_SUCCESS;
}

View File

@@ -0,0 +1,217 @@
/* sha256.c - TinyCrypt SHA-256 crypto hash algorithm implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/sha256.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static void compress(unsigned int *iv, const uint8_t *data);
int tc_sha256_init(TCSha256State_t s)
{
/* input sanity check: */
if (s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL;
}
/*
* Setting the initial state values.
* These values correspond to the first 32 bits of the fractional parts
* of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17
* and 19.
*/
_set((uint8_t *) s, 0x00, sizeof(*s));
s->iv[0] = 0x6a09e667;
s->iv[1] = 0xbb67ae85;
s->iv[2] = 0x3c6ef372;
s->iv[3] = 0xa54ff53a;
s->iv[4] = 0x510e527f;
s->iv[5] = 0x9b05688c;
s->iv[6] = 0x1f83d9ab;
s->iv[7] = 0x5be0cd19;
return TC_CRYPTO_SUCCESS;
}
int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen)
{
/* input sanity check: */
if (s == (TCSha256State_t) 0 ||
data == (void *) 0) {
return TC_CRYPTO_FAIL;
} else if (datalen == 0) {
return TC_CRYPTO_SUCCESS;
}
while (datalen-- > 0) {
s->leftover[s->leftover_offset++] = *(data++);
if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) {
compress(s->iv, s->leftover);
s->leftover_offset = 0;
s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3);
}
}
return TC_CRYPTO_SUCCESS;
}
int tc_sha256_final(uint8_t *digest, TCSha256State_t s)
{
unsigned int i;
/* input sanity check: */
if (digest == (uint8_t *) 0 ||
s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL;
}
s->bits_hashed += (s->leftover_offset << 3);
s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */
if (s->leftover_offset > (sizeof(s->leftover) - 8)) {
/* there is not room for all the padding in this block */
_set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - s->leftover_offset);
compress(s->iv, s->leftover);
s->leftover_offset = 0;
}
/* add the padding and the length in big-Endian format */
_set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - 8 - s->leftover_offset);
s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed);
s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8);
s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16);
s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24);
s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32);
s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40);
s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48);
s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56);
/* hash the padding and length */
compress(s->iv, s->leftover);
/* copy the iv out to digest */
for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) {
unsigned int t = *((unsigned int *) &s->iv[i]);
*digest++ = (uint8_t)(t >> 24);
*digest++ = (uint8_t)(t >> 16);
*digest++ = (uint8_t)(t >> 8);
*digest++ = (uint8_t)(t);
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}
/*
* Initializing SHA-256 Hash constant words K.
* These values correspond to the first 32 bits of the fractional parts of the
* cube roots of the first 64 primes between 2 and 311.
*/
static const unsigned int k256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static inline unsigned int ROTR(unsigned int a, unsigned int n)
{
return (((a) >> n) | ((a) << (32 - n)));
}
#define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22))
#define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25))
#define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3))
#define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10))
#define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c)))
#define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)))
static inline unsigned int BigEndian(const uint8_t **c)
{
unsigned int n = 0;
n = (((unsigned int)(*((*c)++))) << 24);
n |= ((unsigned int)(*((*c)++)) << 16);
n |= ((unsigned int)(*((*c)++)) << 8);
n |= ((unsigned int)(*((*c)++)));
return n;
}
static void compress(unsigned int *iv, const uint8_t *data)
{
unsigned int a, b, c, d, e, f, g, h;
unsigned int s0, s1;
unsigned int t1, t2;
unsigned int work_space[16];
unsigned int n;
unsigned int i;
a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3];
e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7];
for (i = 0; i < 16; ++i) {
n = BigEndian(&data);
t1 = work_space[i] = n;
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
for ( ; i < 64; ++i) {
s0 = work_space[(i+1)&0x0f];
s0 = sigma0(s0);
s1 = work_space[(i+14)&0x0f];
s1 = sigma1(s1);
t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf];
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d;
iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h;
}

View File

@@ -0,0 +1,74 @@
/* utils.c - TinyCrypt platform-dependent run-time operations */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
#include <string.h>
#define MASK_TWENTY_SEVEN 0x1b
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len)
{
if (from_len <= to_len) {
(void)memcpy(to, from, from_len);
return from_len;
} else {
return TC_CRYPTO_FAIL;
}
}
void _set(void *to, uint8_t val, unsigned int len)
{
(void)memset(to, val, len);
}
/*
* Doubles the value of a byte for values up to 127.
*/
uint8_t _double_byte(uint8_t a)
{
return ((a<<1) ^ ((a>>7) * MASK_TWENTY_SEVEN));
}
int _compare(const uint8_t *a, const uint8_t *b, size_t size)
{
const uint8_t *tempa = a;
const uint8_t *tempb = b;
uint8_t result = 0;
for (unsigned int i = 0; i < size; i++) {
result |= tempa[i] ^ tempb[i];
}
return result;
}