soc: move implementations to esp_hw_support

This commit is contained in:
Renz Bagaporo
2020-09-25 15:23:52 +08:00
parent 79887fdc6c
commit 6b0a5af73e
65 changed files with 92 additions and 724 deletions

View File

@@ -0,0 +1,19 @@
target_include_directories(${COMPONENT_LIB} PUBLIC .)
target_include_directories(${COMPONENT_LIB} PRIVATE private_include)
set(srcs
"rtc_clk.c"
"rtc_clk_init.c"
"rtc_init.c"
"rtc_pm.c"
"rtc_sleep.c"
"rtc_time.c"
"rtc_wdt.c")
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
if(NOT CMAKE_BUILD_EARLY_EXPANSION)
set_source_files_properties("${CMAKE_CURRENT_LIST_DIR}/rtc_clk.c" PROPERTIES
COMPILE_FLAGS "-fno-jump-tables -fno-tree-switch-conversion")
endif()

View File

@@ -0,0 +1,136 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_apll.h
* @brief Register definitions for audio PLL (APLL)
*
* This file lists register fields of APLL, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h, by
* rtc_clk_apll_enable function in rtc_clk.c.
*/
#define I2C_APLL 0X6D
#define I2C_APLL_HOSTID 3
#define I2C_APLL_IR_CAL_DELAY 0
#define I2C_APLL_IR_CAL_DELAY_MSB 3
#define I2C_APLL_IR_CAL_DELAY_LSB 0
#define I2C_APLL_IR_CAL_RSTB 0
#define I2C_APLL_IR_CAL_RSTB_MSB 4
#define I2C_APLL_IR_CAL_RSTB_LSB 4
#define I2C_APLL_IR_CAL_START 0
#define I2C_APLL_IR_CAL_START_MSB 5
#define I2C_APLL_IR_CAL_START_LSB 5
#define I2C_APLL_IR_CAL_UNSTOP 0
#define I2C_APLL_IR_CAL_UNSTOP_MSB 6
#define I2C_APLL_IR_CAL_UNSTOP_LSB 6
#define I2C_APLL_OC_ENB_FCAL 0
#define I2C_APLL_OC_ENB_FCAL_MSB 7
#define I2C_APLL_OC_ENB_FCAL_LSB 7
#define I2C_APLL_IR_CAL_EXT_CAP 1
#define I2C_APLL_IR_CAL_EXT_CAP_MSB 4
#define I2C_APLL_IR_CAL_EXT_CAP_LSB 0
#define I2C_APLL_IR_CAL_ENX_CAP 1
#define I2C_APLL_IR_CAL_ENX_CAP_MSB 5
#define I2C_APLL_IR_CAL_ENX_CAP_LSB 5
#define I2C_APLL_OC_LBW 1
#define I2C_APLL_OC_LBW_MSB 6
#define I2C_APLL_OC_LBW_LSB 6
#define I2C_APLL_IR_CAL_CK_DIV 2
#define I2C_APLL_IR_CAL_CK_DIV_MSB 3
#define I2C_APLL_IR_CAL_CK_DIV_LSB 0
#define I2C_APLL_OC_DCHGP 2
#define I2C_APLL_OC_DCHGP_MSB 6
#define I2C_APLL_OC_DCHGP_LSB 4
#define I2C_APLL_OC_ENB_VCON 2
#define I2C_APLL_OC_ENB_VCON_MSB 7
#define I2C_APLL_OC_ENB_VCON_LSB 7
#define I2C_APLL_OR_CAL_CAP 3
#define I2C_APLL_OR_CAL_CAP_MSB 4
#define I2C_APLL_OR_CAL_CAP_LSB 0
#define I2C_APLL_OR_CAL_UDF 3
#define I2C_APLL_OR_CAL_UDF_MSB 5
#define I2C_APLL_OR_CAL_UDF_LSB 5
#define I2C_APLL_OR_CAL_OVF 3
#define I2C_APLL_OR_CAL_OVF_MSB 6
#define I2C_APLL_OR_CAL_OVF_LSB 6
#define I2C_APLL_OR_CAL_END 3
#define I2C_APLL_OR_CAL_END_MSB 7
#define I2C_APLL_OR_CAL_END_LSB 7
#define I2C_APLL_OR_OUTPUT_DIV 4
#define I2C_APLL_OR_OUTPUT_DIV_MSB 4
#define I2C_APLL_OR_OUTPUT_DIV_LSB 0
#define I2C_APLL_OC_TSCHGP 4
#define I2C_APLL_OC_TSCHGP_MSB 6
#define I2C_APLL_OC_TSCHGP_LSB 6
#define I2C_APLL_EN_FAST_CAL 4
#define I2C_APLL_EN_FAST_CAL_MSB 7
#define I2C_APLL_EN_FAST_CAL_LSB 7
#define I2C_APLL_OC_DHREF_SEL 5
#define I2C_APLL_OC_DHREF_SEL_MSB 1
#define I2C_APLL_OC_DHREF_SEL_LSB 0
#define I2C_APLL_OC_DLREF_SEL 5
#define I2C_APLL_OC_DLREF_SEL_MSB 3
#define I2C_APLL_OC_DLREF_SEL_LSB 2
#define I2C_APLL_SDM_DITHER 5
#define I2C_APLL_SDM_DITHER_MSB 4
#define I2C_APLL_SDM_DITHER_LSB 4
#define I2C_APLL_SDM_STOP 5
#define I2C_APLL_SDM_STOP_MSB 5
#define I2C_APLL_SDM_STOP_LSB 5
#define I2C_APLL_SDM_RSTB 5
#define I2C_APLL_SDM_RSTB_MSB 6
#define I2C_APLL_SDM_RSTB_LSB 6
#define I2C_APLL_OC_DVDD 6
#define I2C_APLL_OC_DVDD_MSB 4
#define I2C_APLL_OC_DVDD_LSB 0
#define I2C_APLL_DSDM2 7
#define I2C_APLL_DSDM2_MSB 5
#define I2C_APLL_DSDM2_LSB 0
#define I2C_APLL_DSDM1 8
#define I2C_APLL_DSDM1_MSB 7
#define I2C_APLL_DSDM1_LSB 0
#define I2C_APLL_DSDM0 9
#define I2C_APLL_DSDM0_MSB 7
#define I2C_APLL_DSDM0_LSB 0

View File

@@ -0,0 +1,208 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_apll.h
* @brief Register definitions for digital PLL (BBPLL)
*
* This file lists register fields of BBPLL, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h, by
* rtc_clk_cpu_freq_set function in rtc_clk.c.
*/
#define I2C_BBPLL 0x66
#define I2C_BBPLL_HOSTID 4
#define I2C_BBPLL_IR_CAL_DELAY 0
#define I2C_BBPLL_IR_CAL_DELAY_MSB 3
#define I2C_BBPLL_IR_CAL_DELAY_LSB 0
#define I2C_BBPLL_IR_CAL_CK_DIV 0
#define I2C_BBPLL_IR_CAL_CK_DIV_MSB 7
#define I2C_BBPLL_IR_CAL_CK_DIV_LSB 4
#define I2C_BBPLL_IR_CAL_EXT_CAP 1
#define I2C_BBPLL_IR_CAL_EXT_CAP_MSB 3
#define I2C_BBPLL_IR_CAL_EXT_CAP_LSB 0
#define I2C_BBPLL_IR_CAL_ENX_CAP 1
#define I2C_BBPLL_IR_CAL_ENX_CAP_MSB 4
#define I2C_BBPLL_IR_CAL_ENX_CAP_LSB 4
#define I2C_BBPLL_IR_CAL_RSTB 1
#define I2C_BBPLL_IR_CAL_RSTB_MSB 5
#define I2C_BBPLL_IR_CAL_RSTB_LSB 5
#define I2C_BBPLL_IR_CAL_START 1
#define I2C_BBPLL_IR_CAL_START_MSB 6
#define I2C_BBPLL_IR_CAL_START_LSB 6
#define I2C_BBPLL_IR_CAL_UNSTOP 1
#define I2C_BBPLL_IR_CAL_UNSTOP_MSB 7
#define I2C_BBPLL_IR_CAL_UNSTOP_LSB 7
#define I2C_BBPLL_OC_REF_DIV 2
#define I2C_BBPLL_OC_REF_DIV_MSB 3
#define I2C_BBPLL_OC_REF_DIV_LSB 0
#define I2C_BBPLL_OC_DIV_10_8 2
#define I2C_BBPLL_OC_DIV_10_8_MSB 6
#define I2C_BBPLL_OC_DIV_10_8_LSB 4
#define I2C_BBPLL_OC_LREF 2
#define I2C_BBPLL_OC_LREF_MSB 7
#define I2C_BBPLL_OC_LREF_LSB 7
#define I2C_BBPLL_OC_DIV_7_0 3
#define I2C_BBPLL_OC_DIV_7_0_MSB 7
#define I2C_BBPLL_OC_DIV_7_0_LSB 0
#define I2C_BBPLL_OC_ENB_FCAL 4
#define I2C_BBPLL_OC_ENB_FCAL_MSB 0
#define I2C_BBPLL_OC_ENB_FCAL_LSB 0
#define I2C_BBPLL_OC_DCHGP 4
#define I2C_BBPLL_OC_DCHGP_MSB 3
#define I2C_BBPLL_OC_DCHGP_LSB 1
#define I2C_BBPLL_OC_DHREF_SEL 4
#define I2C_BBPLL_OC_DHREF_SEL_MSB 5
#define I2C_BBPLL_OC_DHREF_SEL_LSB 4
#define I2C_BBPLL_OC_DLREF_SEL 4
#define I2C_BBPLL_OC_DLREF_SEL_MSB 7
#define I2C_BBPLL_OC_DLREF_SEL_LSB 6
#define I2C_BBPLL_OC_DCUR 5
#define I2C_BBPLL_OC_DCUR_MSB 2
#define I2C_BBPLL_OC_DCUR_LSB 0
#define I2C_BBPLL_OC_BST_DIV 5
#define I2C_BBPLL_OC_BST_DIV_MSB 3
#define I2C_BBPLL_OC_BST_DIV_LSB 3
#define I2C_BBPLL_OC_BST_E2C 5
#define I2C_BBPLL_OC_BST_E2C_MSB 4
#define I2C_BBPLL_OC_BST_E2C_LSB 4
#define I2C_BBPLL_OC_TSCHGP 5
#define I2C_BBPLL_OC_TSCHGP_MSB 5
#define I2C_BBPLL_OC_TSCHGP_LSB 5
#define I2C_BBPLL_OC_BW 5
#define I2C_BBPLL_OC_BW_MSB 7
#define I2C_BBPLL_OC_BW_LSB 6
#define I2C_BBPLL_OR_LOCK1 6
#define I2C_BBPLL_OR_LOCK1_MSB 0
#define I2C_BBPLL_OR_LOCK1_LSB 0
#define I2C_BBPLL_OR_LOCK2 6
#define I2C_BBPLL_OR_LOCK2_MSB 1
#define I2C_BBPLL_OR_LOCK2_LSB 1
#define I2C_BBPLL_OR_CAL_CAP 7
#define I2C_BBPLL_OR_CAL_CAP_MSB 3
#define I2C_BBPLL_OR_CAL_CAP_LSB 0
#define I2C_BBPLL_OR_CAL_UDF 7
#define I2C_BBPLL_OR_CAL_UDF_MSB 4
#define I2C_BBPLL_OR_CAL_UDF_LSB 4
#define I2C_BBPLL_OR_CAL_OVF 7
#define I2C_BBPLL_OR_CAL_OVF_MSB 5
#define I2C_BBPLL_OR_CAL_OVF_LSB 5
#define I2C_BBPLL_OR_CAL_END 7
#define I2C_BBPLL_OR_CAL_END_MSB 6
#define I2C_BBPLL_OR_CAL_END_LSB 6
#define I2C_BBPLL_BBADC_DELAY1 8
#define I2C_BBPLL_BBADC_DELAY1_MSB 1
#define I2C_BBPLL_BBADC_DELAY1_LSB 0
#define I2C_BBPLL_BBADC_DELAY2 8
#define I2C_BBPLL_BBADC_DELAY2_MSB 3
#define I2C_BBPLL_BBADC_DELAY2_LSB 2
#define I2C_BBPLL_BBADC_DELAY3 8
#define I2C_BBPLL_BBADC_DELAY3_MSB 5
#define I2C_BBPLL_BBADC_DELAY3_LSB 4
#define I2C_BBPLL_BBADC_DELAY4 8
#define I2C_BBPLL_BBADC_DELAY4_MSB 7
#define I2C_BBPLL_BBADC_DELAY4_LSB 6
#define I2C_BBPLL_BBADC_DELAY5 9
#define I2C_BBPLL_BBADC_DELAY5_MSB 1
#define I2C_BBPLL_BBADC_DELAY5_LSB 0
#define I2C_BBPLL_BBADC_DELAY6 9
#define I2C_BBPLL_BBADC_DELAY6_MSB 3
#define I2C_BBPLL_BBADC_DELAY6_LSB 2
#define I2C_BBPLL_BBADC_DSMP 9
#define I2C_BBPLL_BBADC_DSMP_MSB 7
#define I2C_BBPLL_BBADC_DSMP_LSB 4
#define I2C_BBPLL_DTEST 10
#define I2C_BBPLL_DTEST_MSB 1
#define I2C_BBPLL_DTEST_LSB 0
#define I2C_BBPLL_ENT_ADC 10
#define I2C_BBPLL_ENT_ADC_MSB 3
#define I2C_BBPLL_ENT_ADC_LSB 2
#define I2C_BBPLL_BBADC_DIV 10
#define I2C_BBPLL_BBADC_DIV_MSB 5
#define I2C_BBPLL_BBADC_DIV_LSB 4
#define I2C_BBPLL_ENT_PLL 10
#define I2C_BBPLL_ENT_PLL_MSB 6
#define I2C_BBPLL_ENT_PLL_LSB 6
#define I2C_BBPLL_OC_ENB_VCON 10
#define I2C_BBPLL_OC_ENB_VCON_MSB 7
#define I2C_BBPLL_OC_ENB_VCON_LSB 7
#define I2C_BBPLL_DIV_DAC 11
#define I2C_BBPLL_DIV_DAC_MSB 0
#define I2C_BBPLL_DIV_DAC_LSB 0
#define I2C_BBPLL_DIV_CPU 11
#define I2C_BBPLL_DIV_CPU_MSB 1
#define I2C_BBPLL_DIV_CPU_LSB 1
#define I2C_BBPLL_BBADC_INPUT_SHORT 11
#define I2C_BBPLL_BBADC_INPUT_SHORT_MSB 2
#define I2C_BBPLL_BBADC_INPUT_SHORT_LSB 2
#define I2C_BBPLL_BBADC_CAL_9_8 11
#define I2C_BBPLL_BBADC_CAL_9_8_MSB 4
#define I2C_BBPLL_BBADC_CAL_9_8_LSB 3
#define I2C_BBPLL_BBADC_DCM 11
#define I2C_BBPLL_BBADC_DCM_MSB 6
#define I2C_BBPLL_BBADC_DCM_LSB 5
#define I2C_BBPLL_ENDIV5 11
#define I2C_BBPLL_ENDIV5_MSB 7
#define I2C_BBPLL_ENDIV5_LSB 7
#define I2C_BBPLL_BBADC_CAL_7_0 12
#define I2C_BBPLL_BBADC_CAL_7_0_MSB 7
#define I2C_BBPLL_BBADC_CAL_7_0_LSB 0

View File

@@ -0,0 +1,58 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "regi2c_apll.h"
#include "regi2c_bbpll.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Analog function control register */
#define ANA_CONFIG_REG 0x6000E044
#define ANA_CONFIG_S (8)
#define ANA_CONFIG_M (0x3FF)
/* Clear to enable APLL */
#define I2C_APLL_M (BIT(14))
/* Clear to enable BBPLL */
#define I2C_BBPLL_M (BIT(17))
/* ROM functions which read/write internal control bus */
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t rom_i2c_readReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void rom_i2c_writeReg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void rom_i2c_writeReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
/* Convenience macros for the above functions, these use register definitions
* from regi2c_apll.h/regi2c_bbpll.h header files.
*/
#define REGI2C_WRITE_MASK(block, reg_add, indata) \
rom_i2c_writeReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB, indata)
#define REGI2C_READ_MASK(block, reg_add) \
rom_i2c_readReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB)
#define REGI2C_WRITE(block, reg_add, indata) \
rom_i2c_writeReg(block, block##_HOSTID, reg_add, indata)
#define REGI2C_READ(block, reg_add) \
rom_i2c_readReg(block, block##_HOSTID, reg_add)
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,744 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "esp32/rom/ets_sys.h" // for ets_update_cpu_frequency
#include "esp32/rom/rtc.h"
#include "esp_rom_gpio.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/sens_periph.h"
#include "soc/dport_reg.h"
#include "soc/efuse_periph.h"
#include "soc/apb_ctrl_reg.h"
#include "soc/gpio_struct.h"
#include "hal/gpio_ll.h"
#include "regi2c_ctrl.h"
#include "soc_log.h"
#include "sdkconfig.h"
#include "xtensa/core-macros.h"
#include "rtc_clk_common.h"
/* Frequency of the 8M oscillator is 8.5MHz +/- 5%, at the default DCAP setting */
#define RTC_FAST_CLK_FREQ_8M 8500000
#define RTC_SLOW_CLK_FREQ_150K 150000
#define RTC_SLOW_CLK_FREQ_8MD256 (RTC_FAST_CLK_FREQ_8M / 256)
#define RTC_SLOW_CLK_FREQ_32K 32768
/* BBPLL configuration values */
#define BBPLL_ENDIV5_VAL_320M 0x43
#define BBPLL_BBADC_DSMP_VAL_320M 0x84
#define BBPLL_ENDIV5_VAL_480M 0xc3
#define BBPLL_BBADC_DSMP_VAL_480M 0x74
#define BBPLL_IR_CAL_DELAY_VAL 0x18
#define BBPLL_IR_CAL_EXT_CAP_VAL 0x20
#define BBPLL_OC_ENB_FCAL_VAL 0x9a
#define BBPLL_OC_ENB_VCON_VAL 0x00
#define BBPLL_BBADC_CAL_7_0_VAL 0x00
#define APLL_SDM_STOP_VAL_1 0x09
#define APLL_SDM_STOP_VAL_2_REV0 0x69
#define APLL_SDM_STOP_VAL_2_REV1 0x49
#define APLL_CAL_DELAY_1 0x0f
#define APLL_CAL_DELAY_2 0x3f
#define APLL_CAL_DELAY_3 0x1f
#define XTAL_32K_DAC_VAL 3
#define XTAL_32K_DRES_VAL 3
#define XTAL_32K_DBIAS_VAL 0
#define XTAL_32K_BOOTSTRAP_DAC_VAL 3
#define XTAL_32K_BOOTSTRAP_DRES_VAL 3
#define XTAL_32K_BOOTSTRAP_DBIAS_VAL 0
#define XTAL_32K_BOOTSTRAP_TIME_US 7
#define XTAL_32K_EXT_DAC_VAL 2
#define XTAL_32K_EXT_DRES_VAL 3
#define XTAL_32K_EXT_DBIAS_VAL 1
/* Delays for various clock sources to be enabled/switched.
* All values are in microseconds.
* TODO: some of these are excessive, and should be reduced.
*/
#define DELAY_PLL_DBIAS_RAISE 3
#define DELAY_PLL_ENABLE_WITH_150K 80
#define DELAY_PLL_ENABLE_WITH_32K 160
#define DELAY_FAST_CLK_SWITCH 3
#define DELAY_SLOW_CLK_SWITCH 300
#define DELAY_8M_ENABLE 50
/* Core voltage needs to be increased in two cases:
* 1. running at 240 MHz
* 2. running with 80MHz Flash frequency
*
* There is a record in efuse which indicates the proper voltage for these two cases.
*/
#define RTC_CNTL_DBIAS_HP_VOLT (RTC_CNTL_DBIAS_1V25 - (REG_GET_FIELD(EFUSE_BLK0_RDATA5_REG, EFUSE_RD_VOL_LEVEL_HP_INV)))
#ifdef CONFIG_ESPTOOLPY_FLASHFREQ_80M
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_HP_VOLT
#else
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_1V10
#endif
#define DIG_DBIAS_240M RTC_CNTL_DBIAS_HP_VOLT
#define DIG_DBIAS_XTAL RTC_CNTL_DBIAS_1V10
#define DIG_DBIAS_2M RTC_CNTL_DBIAS_1V00
#define RTC_PLL_FREQ_320M 320
#define RTC_PLL_FREQ_480M 480
static void rtc_clk_cpu_freq_to_8m(void);
static void rtc_clk_bbpll_disable(void);
static void rtc_clk_bbpll_enable(void);
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz);
// Current PLL frequency, in MHZ (320 or 480). Zero if PLL is not enabled.
static int s_cur_pll_freq;
static const char* TAG = "rtc_clk";
static void rtc_clk_32k_enable_common(int dac, int dres, int dbias)
{
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG,
RTC_IO_X32P_RDE | RTC_IO_X32P_RUE | RTC_IO_X32N_RUE |
RTC_IO_X32N_RDE | RTC_IO_X32N_FUN_IE | RTC_IO_X32P_FUN_IE);
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
/* Set the parameters of xtal
dac --> current
dres --> resistance
dbias --> bais voltage
*/
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DAC_XTAL_32K, dac);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DRES_XTAL_32K, dres);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DBIAS_XTAL_32K, dbias);
#ifdef CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
/* TOUCH sensor can provide additional current to external XTAL.
In some case, X32N and X32P PAD don't have enough drive capability to start XTAL */
SET_PERI_REG_MASK(RTC_IO_TOUCH_CFG_REG, RTC_IO_TOUCH_XPD_BIAS_M);
/* Tie PAD Touch8 to VDD
NOTE: TOUCH8 and TOUCH9 register settings are reversed except for DAC, so we set RTC_IO_TOUCH_PAD9_REG here instead
*/
SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_TIE_OPT_M);
/* Set the current used to compensate TOUCH PAD8 */
SET_PERI_REG_BITS(RTC_IO_TOUCH_PAD8_REG, RTC_IO_TOUCH_PAD8_DAC, 4, RTC_IO_TOUCH_PAD8_DAC_S);
/* Power up TOUCH8
So the Touch DAC start to drive some current from VDD to TOUCH8(which is also XTAL-N)
*/
SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_XPD_M);
#endif // CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
/* Power up external xtal */
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K_M);
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
rtc_clk_32k_enable_common(XTAL_32K_DAC_VAL, XTAL_32K_DRES_VAL, XTAL_32K_DBIAS_VAL);
} else {
/* Disable X32N and X32P pad drive external xtal */
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K_M);
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
#ifdef CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
/* Power down TOUCH */
CLEAR_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_XPD_M);
#endif // CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT
}
}
void rtc_clk_32k_enable_external(void)
{
rtc_clk_32k_enable_common(XTAL_32K_EXT_DAC_VAL, XTAL_32K_EXT_DRES_VAL, XTAL_32K_EXT_DBIAS_VAL);
}
/* Helping external 32kHz crystal to start up.
* External crystal connected to outputs GPIO32 GPIO33.
* Forms N pulses with a frequency of about 32KHz on the outputs of the crystal.
*/
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
if (cycle){
const uint32_t pin_32 = 32;
const uint32_t pin_33 = 33;
esp_rom_gpio_pad_select_gpio(pin_32);
esp_rom_gpio_pad_select_gpio(pin_33);
gpio_ll_output_enable(&GPIO, pin_32);
gpio_ll_output_enable(&GPIO, pin_33);
gpio_ll_set_level(&GPIO, pin_32, 1);
gpio_ll_set_level(&GPIO, pin_33, 0);
const uint32_t delay_us = (1000000 / RTC_SLOW_CLK_FREQ_32K / 2);
while(cycle){
gpio_ll_set_level(&GPIO, pin_32, 1);
gpio_ll_set_level(&GPIO, pin_33, 0);
esp_rom_delay_us(delay_us);
gpio_ll_set_level(&GPIO, pin_33, 1);
gpio_ll_set_level(&GPIO, pin_32, 0);
esp_rom_delay_us(delay_us);
cycle--;
}
// disable pins
gpio_ll_output_disable(&GPIO, pin_32);
gpio_ll_output_disable(&GPIO, pin_33);
}
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_RUE | RTC_IO_X32N_RDE);
esp_rom_delay_us(XTAL_32K_BOOTSTRAP_TIME_US);
rtc_clk_32k_enable_common(XTAL_32K_BOOTSTRAP_DAC_VAL,
XTAL_32K_BOOTSTRAP_DRES_VAL, XTAL_32K_BOOTSTRAP_DBIAS_VAL);
}
bool rtc_clk_32k_enabled(void)
{
return GET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K) != 0;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, 1);
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
esp_rom_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
}
bool rtc_clk_8m_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
{
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
if (!enable &&
REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) != RTC_CNTL_SOC_CLK_SEL_PLL) {
REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
} else {
REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
if (enable) {
uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
if (is_rev0) {
sdm0 = 0;
sdm1 = 0;
sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
}
REGI2C_WRITE_MASK(I2C_APLL, I2C_APLL_DSDM2, sdm2);
REGI2C_WRITE_MASK(I2C_APLL, I2C_APLL_DSDM0, sdm0);
REGI2C_WRITE_MASK(I2C_APLL, I2C_APLL_DSDM1, sdm1);
REGI2C_WRITE(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
REGI2C_WRITE(I2C_APLL, I2C_APLL_SDM_STOP, sdm_stop_val_2);
REGI2C_WRITE_MASK(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
/* calibration */
REGI2C_WRITE(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
REGI2C_WRITE(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
REGI2C_WRITE(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
/* wait for calibration end */
while (!(REGI2C_READ_MASK(I2C_APLL, I2C_APLL_OR_CAL_END))) {
/* use esp_rom_delay_us so the RTC bus doesn't get flooded */
esp_rom_delay_us(1);
}
}
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
esp_rom_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch(rtc_clk_slow_freq_get()) {
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_150K;
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
}
return 0;
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
esp_rom_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t div10_8;
uint8_t lref;
uint8_t dcur;
uint8_t bw;
if (pll_freq == RTC_PLL_FREQ_320M) {
/* Raise the voltage, if needed */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
/* Configure 320M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 32;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
} else {
/* Raise the voltage */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
esp_rom_delay_us(DELAY_PLL_DBIAS_RAISE);
/* Configure 480M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 28;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
}
uint8_t i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (bw << 6) | dcur;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
uint32_t delay_pll_en = (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_RTC) ?
DELAY_PLL_ENABLE_WITH_150K : DELAY_PLL_ENABLE_WITH_32K;
esp_rom_delay_us(delay_pll_en);
s_cur_pll_freq = pll_freq;
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
void rtc_clk_cpu_freq_to_xtal(int freq, int div)
{
ets_update_cpu_frequency(freq);
/* set divider from XTAL to APB clock */
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, div - 1);
/* adjust ref_tick */
REG_WRITE(APB_CTRL_XTAL_TICK_CONF_REG, freq * MHZ / REF_CLK_FREQ - 1);
/* switch clock source */
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
rtc_clk_apb_freq_update(freq * MHZ);
/* lower the voltage */
if (freq <= 2) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_2M);
} else {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
}
}
static void rtc_clk_cpu_freq_to_8m(void)
{
ets_update_cpu_frequency(8);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_8M);
rtc_clk_apb_freq_update(RTC_FAST_CLK_FREQ_8M);
}
static void rtc_clk_bbpll_disable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
RTC_CNTL_BBPLL_I2C_FORCE_PD);
s_cur_pll_freq = 0;
/* is APLL under force power down? */
uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
if (apll_fpd) {
/* then also power down the internal I2C bus */
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
}
static void rtc_clk_bbpll_enable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BIAS_I2C_FORCE_PD | RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
/* reset BBPLL configuration */
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_IR_CAL_DELAY, BBPLL_IR_CAL_DELAY_VAL);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_IR_CAL_EXT_CAP, BBPLL_IR_CAL_EXT_CAP_VAL);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_ENB_FCAL, BBPLL_OC_ENB_FCAL_VAL);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_ENB_VCON, BBPLL_OC_ENB_VCON_VAL);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_BBADC_CAL_7_0, BBPLL_BBADC_CAL_7_0_VAL);
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
int dbias = DIG_DBIAS_80M_160M;
int per_conf = DPORT_CPUPERIOD_SEL_80;
if (cpu_freq_mhz == 80) {
/* nothing to do */
} else if (cpu_freq_mhz == 160) {
per_conf = DPORT_CPUPERIOD_SEL_160;
} else if (cpu_freq_mhz == 240) {
dbias = DIG_DBIAS_240M;
per_conf = DPORT_CPUPERIOD_SEL_240;
} else {
SOC_LOGE(TAG, "invalid frequency");
abort();
}
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, per_conf);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, dbias);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(cpu_freq_mhz);
rtc_clk_wait_for_slow_cycle();
}
void rtc_clk_cpu_freq_set_xtal(void)
{
int freq_mhz = (int) rtc_clk_xtal_freq_get();
rtc_clk_cpu_freq_to_xtal(freq_mhz, 1);
rtc_clk_wait_for_slow_cycle();
rtc_clk_bbpll_disable();
}
void rtc_clk_cpu_freq_to_config(rtc_cpu_freq_t cpu_freq, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t freq_mhz;
uint32_t divider;
switch (cpu_freq) {
case RTC_CPU_FREQ_XTAL:
case RTC_CPU_FREQ_2M:
source_freq_mhz = rtc_clk_xtal_freq_get();
source = RTC_CPU_FREQ_SRC_XTAL;
if (cpu_freq == RTC_CPU_FREQ_2M) {
freq_mhz = 2;
divider = source_freq_mhz / 2;
} else {
freq_mhz = source_freq_mhz;
divider = 1;
}
break;
case RTC_CPU_FREQ_80M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 4;
freq_mhz = 80;
break;
case RTC_CPU_FREQ_160M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 2;
freq_mhz = 160;
break;
case RTC_CPU_FREQ_240M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 2;
freq_mhz = 240;
break;
default:
SOC_LOGE(TAG, "invalid rtc_cpu_freq_t value");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = divider,
.freq_mhz = freq_mhz
};
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t divider;
uint32_t real_freq_mhz;
uint32_t xtal_freq = (uint32_t) rtc_clk_xtal_freq_get();
if (freq_mhz <= xtal_freq) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = RTC_CPU_FREQ_SRC_XTAL;
} else if (freq_mhz == 80) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 4;
} else if (freq_mhz == 160) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 2;
} else if (freq_mhz == 240) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 2;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t* config)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
if (soc_clk_sel != RTC_CNTL_SOC_CLK_SEL_XTL) {
rtc_clk_cpu_freq_to_xtal(xtal_freq, 1);
rtc_clk_wait_for_slow_cycle();
}
if (soc_clk_sel == RTC_CNTL_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_disable();
}
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
if (config->div > 1) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
}
} else if (config->source == RTC_CPU_FREQ_SRC_PLL) {
rtc_clk_bbpll_enable();
rtc_clk_wait_for_slow_cycle();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), config->source_freq_mhz);
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == RTC_CPU_FREQ_SRC_8M) {
rtc_clk_cpu_freq_to_8m();
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t* out_config)
{
rtc_cpu_freq_src_t source;
uint32_t source_freq_mhz;
uint32_t div;
uint32_t freq_mhz;
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
switch (soc_clk_sel) {
case RTC_CNTL_SOC_CLK_SEL_XTL: {
source = RTC_CPU_FREQ_SRC_XTAL;
div = REG_GET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT) + 1;
source_freq_mhz = (uint32_t) rtc_clk_xtal_freq_get();
freq_mhz = source_freq_mhz / div;
}
break;
case RTC_CNTL_SOC_CLK_SEL_PLL: {
source = RTC_CPU_FREQ_SRC_PLL;
uint32_t cpuperiod_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_80) {
source_freq_mhz = RTC_PLL_FREQ_320M;
div = 4;
freq_mhz = 80;
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_160) {
source_freq_mhz = RTC_PLL_FREQ_320M;
div = 2;
freq_mhz = 160;
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_240) {
source_freq_mhz = RTC_PLL_FREQ_480M;
div = 2;
freq_mhz = 240;
} else {
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
break;
}
case RTC_CNTL_SOC_CLK_SEL_8M:
source = RTC_CPU_FREQ_SRC_8M;
source_freq_mhz = 8;
div = 1;
freq_mhz = source_freq_mhz;
break;
case RTC_CNTL_SOC_CLK_SEL_APLL:
default:
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t* config)
{
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == RTC_CPU_FREQ_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
/* We may have already written XTAL value into RTC_XTAL_FREQ_REG */
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
return RTC_XTAL_FREQ_AUTO;
}
return reg_val_to_clk_val(xtal_freq_reg & ~RTC_DISABLE_ROM_LOG);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
uint32_t reg = READ_PERI_REG(RTC_XTAL_FREQ_REG) & RTC_DISABLE_ROM_LOG;
if (reg == RTC_DISABLE_ROM_LOG) {
xtal_freq |= 1;
}
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get(void)
{
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
// round to the nearest MHz
freq_hz += MHZ / 2;
uint32_t remainder = freq_hz % MHZ;
return freq_hz - remainder;
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));

View File

@@ -0,0 +1,48 @@
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#define MHZ (1000000)
#ifdef __cplusplus
extern "C" {
#endif
void rtc_clk_cpu_freq_to_xtal(int freq, int div);
/* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
* lower and upper 16-bit halves. These are the routines to work with such a
* representation.
*/
static inline bool clk_val_is_valid(uint32_t val) {
return (val & 0xffff) == ((val >> 16) & 0xffff) &&
val != 0 &&
val != UINT32_MAX;
}
static inline uint32_t reg_val_to_clk_val(uint32_t val) {
return val & UINT16_MAX;
}
static inline uint32_t clk_val_to_reg_val(uint32_t val) {
return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,175 @@
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "esp32/rom/rtc.h"
#include "esp_rom_uart.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/sens_periph.h"
#include "soc/efuse_periph.h"
#include "soc/apb_ctrl_reg.h"
#include "regi2c_ctrl.h"
#include "soc_log.h"
#include "sdkconfig.h"
#include "xtensa/core-macros.h"
#include "rtc_clk_common.h"
/* Number of 8M/256 clock cycles to use for XTAL frequency estimation.
* 10 cycles will take approximately 300 microseconds.
*/
#define XTAL_FREQ_EST_CYCLES 10
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate(void);
static const char* TAG = "rtc_clk_init";
void rtc_clk_init(rtc_clk_config_t cfg)
{
rtc_cpu_freq_config_t old_config, new_config;
/* If we get a TG WDT system reset while running at 240MHz,
* DPORT_CPUPERIOD_SEL register will be reset to 0 resulting in 120MHz
* APB and CPU frequencies after reset. This will cause issues with XTAL
* frequency estimation, so we switch to XTAL frequency first.
*
* Ideally we would only do this if RTC_CNTL_SOC_CLK_SEL == PLL and
* PLL is configured for 480M, but it takes less time to switch to 40M and
* run the following code than querying the PLL does.
*/
if (REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) == RTC_CNTL_SOC_CLK_SEL_PLL) {
/* We don't know actual XTAL frequency yet, assume 40MHz.
* REF_TICK divider will be corrected below, once XTAL frequency is
* determined.
*/
rtc_clk_cpu_freq_to_xtal(40, 1);
}
/* Set tuning parameters for 8M and 150k clocks.
* Note: this doesn't attempt to set the clocks to precise frequencies.
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
* - SCK_DCAP value controls tuning of 150k clock.
* The higher the value of DCAP is, the lower is the frequency.
* - CK8M_DFREQ value controls tuning of 8M clock.
* CLK_8M_DFREQ constant gives the best temperature characteristics.
*/
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
/* Configure 8M clock division */
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, cfg.clk_8m_div);
/* Enable the internal bus used to configure PLLs */
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
/* Estimate XTAL frequency */
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
if (clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
/* XTAL frequency has already been set, use existing value */
xtal_freq = rtc_clk_xtal_freq_get();
} else {
/* Not set yet, estimate XTAL frequency based on RTC_FAST_CLK */
xtal_freq = rtc_clk_xtal_freq_estimate();
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
SOC_LOGW(TAG, "Can't estimate XTAL frequency, assuming 26MHz");
xtal_freq = RTC_XTAL_FREQ_26M;
}
}
} else if (!clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
/* Exact frequency was set in sdkconfig, but still warn if autodetected
* frequency is different. If autodetection failed, worst case we get a
* bit of garbage output.
*/
rtc_xtal_freq_t est_xtal_freq = rtc_clk_xtal_freq_estimate();
if (est_xtal_freq != xtal_freq) {
SOC_LOGW(TAG, "Possibly invalid CONFIG_ESP32_XTAL_FREQ setting (%dMHz). Detected %d MHz.",
xtal_freq, est_xtal_freq);
}
}
esp_rom_uart_tx_wait_idle(0);
rtc_clk_xtal_freq_update(xtal_freq);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* Set CPU frequency */
rtc_clk_cpu_freq_get_config(&old_config);
uint32_t freq_before = old_config.freq_mhz;
bool res = rtc_clk_cpu_freq_mhz_to_config(cfg.cpu_freq_mhz, &new_config);
if (!res) {
SOC_LOGE(TAG, "invalid CPU frequency value");
abort();
}
rtc_clk_cpu_freq_set_config(&new_config);
/* Configure REF_TICK */
REG_WRITE(APB_CTRL_XTAL_TICK_CONF_REG, xtal_freq - 1);
REG_WRITE(APB_CTRL_PLL_TICK_CONF_REG, APB_CLK_FREQ / MHZ - 1); /* Under PLL, APB frequency is always 80MHz */
/* Re-calculate the ccount to make time calculation correct. */
XTHAL_SET_CCOUNT( (uint64_t)XTHAL_GET_CCOUNT() * cfg.cpu_freq_mhz / freq_before );
/* Slow & fast clocks setup */
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
rtc_clk_32k_enable(true);
}
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
rtc_clk_8m_enable(true, need_8md256);
}
rtc_clk_fast_freq_set(cfg.fast_freq);
rtc_clk_slow_freq_set(cfg.slow_freq);
}
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate(void)
{
/* Enable 8M/256 clock if needed */
const bool clk_8m_enabled = rtc_clk_8m_enabled();
const bool clk_8md256_enabled = rtc_clk_8md256_enabled();
if (!clk_8md256_enabled) {
rtc_clk_8m_enable(true, true);
}
uint64_t cal_val = rtc_clk_cal_ratio(RTC_CAL_8MD256, XTAL_FREQ_EST_CYCLES);
/* cal_val contains period of 8M/256 clock in XTAL clock cycles
* (shifted by RTC_CLK_CAL_FRACT bits).
* Xtal frequency will be (cal_val * 8M / 256) / 2^19
*/
uint32_t freq_mhz = (cal_val * RTC_FAST_CLK_FREQ_APPROX / MHZ / 256 ) >> RTC_CLK_CAL_FRACT;
/* Guess the XTAL type. For now, only 40 and 26MHz are supported.
*/
switch (freq_mhz) {
case 21 ... 31:
return RTC_XTAL_FREQ_26M;
case 32 ... 33:
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 26 MHz", freq_mhz);
return RTC_XTAL_FREQ_26M;
case 34 ... 35:
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 40 MHz", freq_mhz);
return RTC_XTAL_FREQ_40M;
case 36 ... 45:
return RTC_XTAL_FREQ_40M;
default:
SOC_LOGW(TAG, "Bogus XTAL frequency: %d MHz", freq_mhz);
return RTC_XTAL_FREQ_AUTO;
}
/* Restore 8M and 8md256 clocks to original state */
rtc_clk_8m_enable(clk_8m_enabled, clk_8md256_enabled);
}

View File

@@ -0,0 +1,152 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/dport_reg.h"
#include "soc/efuse_periph.h"
#include "soc/gpio_periph.h"
void rtc_init(rtc_config_t cfg)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PVTMON_PU | RTC_CNTL_TXRF_I2C_PU |
RTC_CNTL_RFRX_PBUS_PU | RTC_CNTL_CKGEN_I2C_PU | RTC_CNTL_PLL_I2C_PU);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, cfg.pll_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, cfg.xtal_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, cfg.ck8m_wait);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN, RTC_CNTL_DBG_ATTEN_DEFAULT);
SET_PERI_REG_MASK(RTC_CNTL_BIAS_CONF_REG,
RTC_CNTL_DEC_HEARTBEAT_WIDTH | RTC_CNTL_INC_HEARTBEAT_PERIOD);
/* Reset RTC bias to default value (needed if waking up from deep sleep) */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_1V10);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, RTC_CNTL_DBIAS_1V10);
if (cfg.clkctl_init) {
//clear CMMU clock force on
DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_FORCE_ON);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_FORCE_ON);
//clear rom clock force on
DPORT_SET_PERI_REG_BITS(DPORT_ROM_FO_CTRL_REG, DPORT_SHARE_ROM_FO, 0, DPORT_SHARE_ROM_FO_S);
DPORT_CLEAR_PERI_REG_MASK(DPORT_ROM_FO_CTRL_REG, DPORT_APP_ROM_FO);
DPORT_CLEAR_PERI_REG_MASK(DPORT_ROM_FO_CTRL_REG, DPORT_PRO_ROM_FO);
//clear sram clock force on
DPORT_CLEAR_PERI_REG_MASK(DPORT_SRAM_FO_CTRL_0_REG, DPORT_SRAM_FO_0);
DPORT_CLEAR_PERI_REG_MASK(DPORT_SRAM_FO_CTRL_1_REG, DPORT_SRAM_FO_1);
//clear tag clock force on
DPORT_CLEAR_PERI_REG_MASK(DPORT_TAG_FO_CTRL_REG, DPORT_APP_CACHE_TAG_FORCE_ON);
DPORT_CLEAR_PERI_REG_MASK(DPORT_TAG_FO_CTRL_REG, DPORT_PRO_CACHE_TAG_FORCE_ON);
}
if (cfg.pwrctl_init) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
//cancel xtal force pu
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
//cancel BIAS force pu
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_CORE_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_FORCE_NOSLEEP);
// bias follow 8M
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_CORE_FOLW_8M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FOLW_8M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_SLEEP_FOLW_8M);
// CLEAR APLL close
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
//cancel RTC REG force PU
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PU);
if (cfg.rtc_dboost_fpd) {
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
}
//cancel digital pu force
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PWC_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_WRAP_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FORCE_NOISO);
//cancel digital PADS force no iso
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
}
}
rtc_vddsdio_config_t rtc_vddsdio_get_config(void)
{
rtc_vddsdio_config_t result;
uint32_t sdio_conf_reg = REG_READ(RTC_CNTL_SDIO_CONF_REG);
result.drefh = (sdio_conf_reg & RTC_CNTL_DREFH_SDIO_M) >> RTC_CNTL_DREFH_SDIO_S;
result.drefm = (sdio_conf_reg & RTC_CNTL_DREFM_SDIO_M) >> RTC_CNTL_DREFM_SDIO_S;
result.drefl = (sdio_conf_reg & RTC_CNTL_DREFL_SDIO_M) >> RTC_CNTL_DREFL_SDIO_S;
if (sdio_conf_reg & RTC_CNTL_SDIO_FORCE) {
// Get configuration from RTC
result.force = 1;
result.enable = (sdio_conf_reg & RTC_CNTL_XPD_SDIO_REG_M) >> RTC_CNTL_XPD_SDIO_REG_S;
result.tieh = (sdio_conf_reg & RTC_CNTL_SDIO_TIEH_M) >> RTC_CNTL_SDIO_TIEH_S;
return result;
}
uint32_t efuse_reg = REG_READ(EFUSE_BLK0_RDATA4_REG);
if (efuse_reg & EFUSE_RD_SDIO_FORCE) {
// Get configuration from EFUSE
result.force = 0;
result.enable = (efuse_reg & EFUSE_RD_XPD_SDIO_REG_M) >> EFUSE_RD_XPD_SDIO_REG_S;
result.tieh = (efuse_reg & EFUSE_RD_SDIO_TIEH_M) >> EFUSE_RD_SDIO_TIEH_S;
//DREFH/M/L eFuse are used for EFUSE_ADC_VREF instead. Therefore tuning
//will only be available on older chips that don't have EFUSE_ADC_VREF
if(REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG ,EFUSE_RD_BLK3_PART_RESERVE) == 0){
//BLK3_PART_RESERVE indicates the presence of EFUSE_ADC_VREF
// in this case, DREFH/M/L are also set from EFUSE
result.drefh = (efuse_reg & EFUSE_RD_SDIO_DREFH_M) >> EFUSE_RD_SDIO_DREFH_S;
result.drefm = (efuse_reg & EFUSE_RD_SDIO_DREFM_M) >> EFUSE_RD_SDIO_DREFM_S;
result.drefl = (efuse_reg & EFUSE_RD_SDIO_DREFL_M) >> EFUSE_RD_SDIO_DREFL_S;
}
return result;
}
// Otherwise, VDD_SDIO is controlled by bootstrapping pin
uint32_t strap_reg = REG_READ(GPIO_STRAP_REG);
result.force = 0;
result.tieh = (strap_reg & BIT(5)) ? RTC_VDDSDIO_TIEH_1_8V : RTC_VDDSDIO_TIEH_3_3V;
result.enable = 1;
return result;
}
void rtc_vddsdio_set_config(rtc_vddsdio_config_t config)
{
uint32_t val = 0;
val |= (config.force << RTC_CNTL_SDIO_FORCE_S);
val |= (config.enable << RTC_CNTL_XPD_SDIO_REG_S);
val |= (config.drefh << RTC_CNTL_DREFH_SDIO_S);
val |= (config.drefm << RTC_CNTL_DREFM_SDIO_S);
val |= (config.drefl << RTC_CNTL_DREFL_SDIO_S);
val |= (config.tieh << RTC_CNTL_SDIO_TIEH_S);
val |= RTC_CNTL_SDIO_PD_EN;
REG_WRITE(RTC_CNTL_SDIO_CONF_REG, val);
}

View File

@@ -0,0 +1,66 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <assert.h>
#include "soc/rtc.h"
typedef enum {
PM_LIGHT_SLEEP = BIT(2), /*!< WiFi PD, memory in light sleep */
} pm_sleep_mode_t;
typedef enum{
PM_SW_NOREJECT = 0,
PM_SW_REJECT = 1
} pm_sw_reject_t;
/* These MAC-related functions are defined in the closed source part of
* RTC library
*/
extern void pm_mac_init(void);
extern int pm_check_mac_idle(void);
extern void pm_mac_deinit(void);
/* This sleep-related function is called from the closed source part of RTC
* library.
*/
pm_sw_reject_t pm_set_sleep_mode(pm_sleep_mode_t sleep_mode, void(*pmac_save_params)(void))
{
(void) pmac_save_params; /* unused */
pm_mac_deinit();
if (pm_check_mac_idle()) {
pm_mac_init();
return PM_SW_REJECT;
}
rtc_sleep_config_t cfg = { 0 };
switch (sleep_mode) {
case PM_LIGHT_SLEEP:
cfg.wifi_pd_en = 1;
cfg.dig_dbias_wak = 4;
cfg.dig_dbias_slp = 0;
cfg.rtc_dbias_wak = 0;
cfg.rtc_dbias_slp = 0;
cfg.lslp_meminf_pd = 1;
rtc_sleep_init(cfg);
break;
default:
assert(0 && "unsupported sleep mode");
}
return PM_SW_NOREJECT;
}

View File

@@ -0,0 +1,334 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "soc/rtc.h"
#include "soc/i2s_periph.h"
#include "soc/timer_periph.h"
#include "soc/bb_reg.h"
#include "soc/nrx_reg.h"
#include "soc/fe_reg.h"
#include "soc/rtc.h"
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/rtc.h"
#include "hal/rtc_cntl_ll.h"
#include "esp_rom_sys.h"
#define MHZ (1000000)
/* Various delays to be programmed into power control state machines */
#define RTC_CNTL_XTL_BUF_WAIT_SLP 2
#define RTC_CNTL_PLL_BUF_WAIT_SLP 2
#define RTC_CNTL_CK8M_WAIT_SLP 4
#define OTHER_BLOCKS_POWERUP 1
#define OTHER_BLOCKS_WAIT 1
#define ROM_RAM_POWERUP_CYCLES OTHER_BLOCKS_POWERUP
#define ROM_RAM_WAIT_CYCLES OTHER_BLOCKS_WAIT
#define WIFI_POWERUP_CYCLES OTHER_BLOCKS_POWERUP
#define WIFI_WAIT_CYCLES OTHER_BLOCKS_WAIT
#define RTC_POWERUP_CYCLES OTHER_BLOCKS_POWERUP
#define RTC_WAIT_CYCLES OTHER_BLOCKS_WAIT
#define DG_WRAP_POWERUP_CYCLES OTHER_BLOCKS_POWERUP
#define DG_WRAP_WAIT_CYCLES OTHER_BLOCKS_WAIT
#define RTC_MEM_POWERUP_CYCLES OTHER_BLOCKS_POWERUP
#define RTC_MEM_WAIT_CYCLES OTHER_BLOCKS_WAIT
/**
* @brief Power down flags for rtc_sleep_pd function
*/
typedef struct {
uint32_t dig_pd : 1; //!< Set to 1 to power down digital part in sleep
uint32_t rtc_pd : 1; //!< Set to 1 to power down RTC memories in sleep
uint32_t cpu_pd : 1; //!< Set to 1 to power down digital memories and CPU in sleep
uint32_t i2s_pd : 1; //!< Set to 1 to power down I2S in sleep
uint32_t bb_pd : 1; //!< Set to 1 to power down WiFi in sleep
uint32_t nrx_pd : 1; //!< Set to 1 to power down WiFi in sleep
uint32_t fe_pd : 1; //!< Set to 1 to power down WiFi in sleep
} rtc_sleep_pd_config_t;
/**
* Initializer for rtc_sleep_pd_config_t which sets all flags to the same value
*/
#define RTC_SLEEP_PD_CONFIG_ALL(val) {\
.dig_pd = (val), \
.rtc_pd = (val), \
.cpu_pd = (val), \
.i2s_pd = (val), \
.bb_pd = (val), \
.nrx_pd = (val), \
.fe_pd = (val), \
}
/**
* Configure whether certain peripherals are powered down in deep sleep
* @param cfg power down flags as rtc_sleep_pd_config_t structure
*/
static void rtc_sleep_pd(rtc_sleep_pd_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU, ~cfg.dig_pd);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_LPU, ~cfg.rtc_pd);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_LPU, ~cfg.rtc_pd);
DPORT_REG_SET_FIELD(DPORT_MEM_PD_MASK_REG, DPORT_LSLP_MEM_PD_MASK, ~cfg.cpu_pd);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_PLC_MEM_FORCE_PU, ~cfg.i2s_pd);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_FIFO_FORCE_PU, ~cfg.i2s_pd);
REG_SET_FIELD(BBPD_CTRL, BB_FFT_FORCE_PU, ~cfg.bb_pd);
REG_SET_FIELD(BBPD_CTRL, BB_DC_EST_FORCE_PU, ~cfg.bb_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_RX_ROT_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_VIT_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_DEMAP_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(FE_GEN_CTRL, FE_IQ_EST_FORCE_PU, ~cfg.fe_pd);
REG_SET_FIELD(FE2_TX_INTERP_CTRL, FE2_TX_INF_FORCE_PU, ~cfg.fe_pd);
}
void rtc_sleep_init(rtc_sleep_config_t cfg)
{
// set 5 PWC state machine times to fit in main state machine time
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, RTC_CNTL_PLL_BUF_WAIT_SLP);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, RTC_CNTL_XTL_BUF_WAIT_SLP);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_SLP);
// set shortest possible sleep time limit
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_MIN_SLP_VAL, RTC_CNTL_MIN_SLP_VAL_MIN);
// set rom&ram timer
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_POWERUP_TIMER, ROM_RAM_POWERUP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_WAIT_TIMER, ROM_RAM_WAIT_CYCLES);
// set wifi timer
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_POWERUP_TIMER, WIFI_POWERUP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_WAIT_TIMER, WIFI_WAIT_CYCLES);
// set rtc peri timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_POWERUP_TIMER, RTC_POWERUP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_WAIT_TIMER, RTC_WAIT_CYCLES);
// set digital wrap timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_POWERUP_TIMER, DG_WRAP_POWERUP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_WAIT_TIMER, DG_WRAP_WAIT_CYCLES);
// set rtc memory timer
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_POWERUP_TIMER, RTC_MEM_POWERUP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_WAIT_TIMER, RTC_MEM_WAIT_CYCLES);
REG_SET_FIELD(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU, cfg.lslp_mem_inf_fpu);
rtc_sleep_pd_config_t pd_cfg = RTC_SLEEP_PD_CONFIG_ALL(cfg.lslp_meminf_pd);
rtc_sleep_pd(pd_cfg);
if (cfg.rtc_mem_inf_fpu) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
}
if (cfg.rtc_mem_inf_follow_cpu) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
}
if (cfg.rtc_fastmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
}
if (cfg.rtc_slowmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
}
if (cfg.rtc_peri_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
}
if (cfg.wifi_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
}
if (cfg.rom_mem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_PD_EN);
}
if (cfg.deep_slp) {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG,
RTC_CNTL_DG_PAD_FORCE_ISO | RTC_CNTL_DG_PAD_FORCE_NOISO);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG,
RTC_CNTL_DG_WRAP_FORCE_PU | RTC_CNTL_DG_WRAP_FORCE_PD);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_FORCE_NOSLEEP);
// Shut down parts of RTC which may have been left enabled by the wireless drivers
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,
RTC_CNTL_CKGEN_I2C_PU | RTC_CNTL_PLL_I2C_PU |
RTC_CNTL_RFRX_PBUS_PU | RTC_CNTL_TXRF_I2C_PU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN, 0);
}
REG_SET_FIELD(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU, cfg.xtal_fpu);
if (REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL) == RTC_SLOW_FREQ_8MD256) {
REG_SET_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
} else {
REG_CLR_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
}
//Keep the RTC8M_CLK on in light_sleep mode if the ledc low-speed channel is clocked by RTC8M_CLK.
if (!cfg.deep_slp && GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M)) {
REG_CLR_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PD);
REG_SET_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
}
/* enable VDDSDIO control by state machine */
REG_CLR_BIT(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_FORCE);
REG_SET_FIELD(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_PD_EN, cfg.vddsdio_pd_en);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, cfg.rtc_dbias_slp);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, cfg.rtc_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, cfg.dig_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_SLP, cfg.dig_dbias_slp);
}
void rtc_sleep_set_wakeup_time(uint64_t t)
{
rtc_cntl_ll_set_wakeup_timer(t);
}
/* Read back 'reject' status when waking from light or deep sleep */
static uint32_t rtc_sleep_finish(void);
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
WRITE_PERI_REG(RTC_CNTL_SLP_REJECT_CONF_REG, reject_opt);
/* Start entry into sleep mode */
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
while (GET_PERI_REG_MASK(RTC_CNTL_INT_RAW_REG,
RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) == 0) {
;
}
return rtc_sleep_finish();
}
#define STR2(X) #X
#define STR(X) STR2(X)
uint32_t rtc_deep_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
WRITE_PERI_REG(RTC_CNTL_SLP_REJECT_CONF_REG, reject_opt);
/* Calculate RTC Fast Memory CRC (for wake stub) & go to deep sleep
Because we may be running from RTC memory as stack, we can't easily call any
functions to do this (as registers may spill to stack, corrupting the CRC).
Instead, load all the values we need into registers (triggering any stack spills)
then use register ops only to calculate the CRC value, write it to the RTC CRC value
register, and immediately go into deep sleep.
*/
/* Values used to set the RTC_MEM_CONFG value */
const unsigned CRC_START_ADDR = 0;
const unsigned CRC_LEN = 0x7ff;
const unsigned RTC_MEM_PID = 1;
asm volatile(
"movi a2, 0\n" // trigger a stack spill on working register if needed
/* Start CRC calculation */
"s32i %1, %0, 0\n" // set RTC_MEM_CRC_ADDR & RTC_MEM_CRC_LEN
"or a2, %1, %2\n"
"s32i a2, %0, 0\n" // set RTC_MEM_CRC_START
/* Wait for the CRC calculation to finish */
".Lwaitcrc:\n"
"memw\n"
"l32i a2, %0, 0\n"
"bbci a2, "STR(RTC_MEM_CRC_FINISH_S)", .Lwaitcrc\n"
"and a2, a2, %3\n" // clear RTC_MEM_CRC_START
"s32i a2, %0, 0\n"
"memw\n"
/* Store the calculated value in RTC_MEM_CRC_REG */
"l32i a2, %4, 0\n"
"s32i a2, %5, 0\n"
"memw\n"
/* Set register bit to go into deep sleep */
"l32i a2, %6, 0\n"
"or a2, a2, %7\n"
"s32i a2, %6, 0\n"
"memw\n"
/* Set wait cycle for touch or COCPU after deep sleep. */
".Lwaitsleep:"
"memw\n"
"l32i a2, %8, 0\n"
"and a2, a2, %9\n"
"beqz a2, .Lwaitsleep\n"
:
: "r" (RTC_MEM_CONF), // %0
"r" ( (CRC_START_ADDR << RTC_MEM_CRC_ADDR_S)
| (CRC_LEN << RTC_MEM_CRC_LEN_S)
| (RTC_MEM_PID << RTC_MEM_PID_CONF_S) ), // %1
"r" (RTC_MEM_CRC_START), // %2
"r" (~RTC_MEM_CRC_START), // %3
"r" (RTC_MEM_CRC_RES), // %4
"r" (RTC_MEMORY_CRC_REG), // %5
"r" (RTC_CNTL_STATE0_REG), // %6
"r" (RTC_CNTL_SLEEP_EN), // %7
"r" (RTC_CNTL_INT_RAW_REG), // %8
"r" (RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) // %9
: "a2" // working register
);
return rtc_sleep_finish();
}
static uint32_t rtc_sleep_finish(void)
{
/* In deep sleep mode, we never get here */
uint32_t reject = REG_GET_FIELD(RTC_CNTL_INT_RAW_REG, RTC_CNTL_SLP_REJECT_INT_RAW);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG,
RTC_CNTL_SLP_REJECT_INT_CLR | RTC_CNTL_SLP_WAKEUP_INT_CLR);
/* restore DBG_ATTEN to the default value */
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN, RTC_CNTL_DBG_ATTEN_DEFAULT);
return reject;
}

View File

@@ -0,0 +1,170 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "esp_rom_sys.h"
#include "soc/rtc.h"
#include "soc/timer_periph.h"
#include "soc_log.h"
#define MHZ (1000000)
static const char* TAG = "rtc_time";
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*/
/**
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
* @param cal_clk which clock to calibrate
* @param slowclk_cycles number of slow clock cycles to count. Max value is 32766.
* @return number of XTAL clock cycles within the given number of slow clock cycles
*/
static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
assert(slowclk_cycles < 32767);
/* Enable requested clock (150k clock is always on) */
int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
}
if (cal_clk == RTC_CAL_8MD256) {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
/* Prepare calibration */
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
/* Figure out how long to wait for calibration to finish */
uint32_t expected_freq;
rtc_slow_freq_t slow_freq = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
if (cal_clk == RTC_CAL_32K_XTAL ||
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_32K_XTAL)) {
expected_freq = 32768; /* standard 32k XTAL */
} else if (cal_clk == RTC_CAL_8MD256 ||
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_8MD256)) {
expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
} else {
expected_freq = 150000; /* 150k internal oscillator */
}
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
/* Check if the required number of slowclk_cycles may result in an overflow of TIMG_RTC_CALI_VALUE */
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
/* XTAL frequency is not known yet; assume worst case (40 MHz) */
xtal_freq = RTC_XTAL_FREQ_40M;
}
const uint32_t us_timer_max = TIMG_RTC_CALI_VALUE / (uint32_t) xtal_freq;
if (us_time_estimate >= us_timer_max) {
SOC_LOGE(TAG, "slowclk_cycles value too large, possible overflow");
return 0;
}
/* Start calibration */
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* Wait the expected time calibration should take.
* TODO: if running under RTOS, and us_time_estimate > RTOS tick, use the
* RTOS delay function.
*/
esp_rom_delay_us(us_time_estimate);
/* Wait for calibration to finish up to another us_time_estimate */
int timeout_us = us_time_estimate;
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) &&
timeout_us > 0) {
timeout_us--;
esp_rom_delay_us(1);
}
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
if (cal_clk == RTC_CAL_8MD256) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
if (timeout_us == 0) {
/* timed out waiting for calibration */
return 0;
}
return REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
}
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
return ratio;
}
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
return period;
}
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
{
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
* TODO: fix overflow.
*/
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
}
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
{
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
}
uint64_t rtc_time_get(void)
{
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
esp_rom_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
}
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
return t;
}
void rtc_clk_wait_for_slow_cycle(void)
{
REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING | TIMG_RTC_CALI_START);
REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, RTC_CAL_RTC_MUX);
/* Request to run calibration for 0 slow clock cycles.
* RDY bit will be set on the nearest slow clock cycle.
*/
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, 0);
REG_SET_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
esp_rom_delay_us(1); /* RDY needs some time to go low */
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
esp_rom_delay_us(1);
}
}

View File

@@ -0,0 +1,151 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/rtc_wdt.h"
#include "soc/rtc.h"
bool rtc_wdt_get_protect_status(void)
{
return READ_PERI_REG(RTC_CNTL_WDTWPROTECT_REG) != RTC_CNTL_WDT_WKEY_VALUE;
}
void rtc_wdt_protect_off(void)
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
}
void rtc_wdt_protect_on(void)
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
}
void rtc_wdt_enable(void)
{
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
SET_PERI_REG_MASK(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN | RTC_CNTL_WDT_PAUSE_IN_SLP);
}
void rtc_wdt_flashboot_mode_enable(void)
{
REG_SET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
}
void rtc_wdt_disable(void)
{
bool protect = rtc_wdt_get_protect_status();
if (protect) {
rtc_wdt_protect_off();
}
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE2, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE3, RTC_WDT_STAGE_ACTION_OFF);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
if (protect) {
rtc_wdt_protect_on();
}
}
void rtc_wdt_feed(void)
{
bool protect = rtc_wdt_get_protect_status();
if (protect) {
rtc_wdt_protect_off();
}
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
if (protect) {
rtc_wdt_protect_on();
}
}
esp_err_t rtc_wdt_set_time(rtc_wdt_stage_t stage, unsigned int timeout_ms)
{
if (stage > 3) {
return ESP_ERR_INVALID_ARG;
}
uint32_t timeout = (uint32_t) ((uint64_t) rtc_clk_slow_freq_get_hz() * timeout_ms / 1000);
if (stage == RTC_WDT_STAGE0) {
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG1_REG, timeout);
} else if (stage == RTC_WDT_STAGE1) {
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG2_REG, timeout);
} else if (stage == RTC_WDT_STAGE2) {
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG3_REG, timeout);
} else {
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG4_REG, timeout);
}
return ESP_OK;
}
esp_err_t rtc_wdt_get_timeout(rtc_wdt_stage_t stage, unsigned int* timeout_ms)
{
if (stage > 3) {
return ESP_ERR_INVALID_ARG;
}
uint32_t time_tick;
if (stage == RTC_WDT_STAGE0) {
time_tick = READ_PERI_REG(RTC_CNTL_WDTCONFIG1_REG);
} else if (stage == RTC_WDT_STAGE1) {
time_tick = READ_PERI_REG(RTC_CNTL_WDTCONFIG2_REG);
} else if (stage == RTC_WDT_STAGE2) {
time_tick = READ_PERI_REG(RTC_CNTL_WDTCONFIG3_REG);
} else {
time_tick = READ_PERI_REG(RTC_CNTL_WDTCONFIG4_REG);
}
*timeout_ms = time_tick * 1000 / rtc_clk_slow_freq_get_hz();
return ESP_OK;
}
esp_err_t rtc_wdt_set_stage(rtc_wdt_stage_t stage, rtc_wdt_stage_action_t stage_sel)
{
if (stage > 3 || stage_sel > 4) {
return ESP_ERR_INVALID_ARG;
}
if (stage == RTC_WDT_STAGE0) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, stage_sel);
} else if (stage == RTC_WDT_STAGE1) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG1, stage_sel);
} else if (stage == RTC_WDT_STAGE2) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG2, stage_sel);
} else {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG3, stage_sel);
}
return ESP_OK;
}
esp_err_t rtc_wdt_set_length_of_reset_signal(rtc_wdt_reset_sig_t reset_src, rtc_wdt_length_sig_t reset_signal_length)
{
if (reset_src > 1 || reset_signal_length > 7) {
return ESP_ERR_INVALID_ARG;
}
if (reset_src == 0) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, reset_signal_length);
} else {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, reset_signal_length);
}
return ESP_OK;
}
bool rtc_wdt_is_on(void)
{
return (REG_GET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN) != 0) || (REG_GET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN) != 0);
}