Merge branch 'docs/add_cn_trans_sleep_modes' into 'master'

Docs: add CN trans for sleep-modes.rst

Closes DOC-2850

See merge request espressif/esp-idf!17580
This commit is contained in:
Mo Fei Fei
2022-04-13 19:03:31 +08:00
2 changed files with 310 additions and 65 deletions

View File

@@ -1,16 +1,17 @@
Sleep Modes
===========
:link_to_translation:`zh_CN:[中文]`
{IDF_TARGET_SPI_POWER_DOMAIN:default="VDD_SPI", esp32="VDD_SDIO"}
Overview
--------
{IDF_TARGET_NAME} is capable of light sleep and deep sleep power saving modes.
{IDF_TARGET_NAME} contains the following power saving modes: Light-sleep, and Deep-sleep.
In light sleep mode, digital peripherals, most of the RAM, and CPUs are clock-gated, and supply voltage is reduced. Upon exit from light sleep, peripherals and CPUs resume operation, their internal state is preserved.
In Light-sleep mode, the digital peripherals, most of the RAM, and CPUs are clock-gated and their supply voltage is reduced. Upon exit from Light-sleep, the digital peripherals, RAM, and CPUs resume operation and their internal states are preserved.
In deep sleep mode, CPUs, most of the RAM, and all the digital peripherals which are clocked from APB_CLK are powered off. The only parts of the chip which can still be powered on are:
In Deep-sleep mode, the CPUs, most of the RAM, and all digital peripherals that are clocked from APB_CLK are powered off. The only parts of the chip that remain powered on are:
.. list::
@@ -20,145 +21,144 @@ In deep sleep mode, CPUs, most of the RAM, and all the digital peripherals which
- RTC fast memory
:SOC_RTC_SLOW_MEM_SUPPORTED: - RTC slow memory
Wakeup from deep and light sleep modes can be done using several sources. These sources can be combined, in this case the chip will wake up when any one of the sources is triggered. Wakeup sources can be enabled using ``esp_sleep_enable_X_wakeup`` APIs and can be disabled using :cpp:func:`esp_sleep_disable_wakeup_source` API. Next section describes these APIs in detail. Wakeup sources can be configured at any moment before entering light or deep sleep mode.
There are several wakeup sources in Deep-sleep and Light-sleep modes. These sources can also be combined so that the chip will wake up when any of the sources are triggered. Wakeup sources can be enabled using ``esp_sleep_enable_X_wakeup`` APIs and can be disabled using :cpp:func:`esp_sleep_disable_wakeup_source` API. Next section describes these APIs in detail. Wakeup sources can be configured at any moment before entering Light-sleep or Deep-sleep mode.
Additionally, the application can force specific powerdown modes for the RTC peripherals and RTC memories using :cpp:func:`esp_sleep_pd_config` API.
Additionally, the application can force specific powerdown modes for RTC peripherals and RTC memories using :cpp:func:`esp_sleep_pd_config` API.
Once wakeup sources are configured, application can enter sleep mode using :cpp:func:`esp_light_sleep_start` or :cpp:func:`esp_deep_sleep_start` APIs. At this point the hardware will be configured according to the requested wakeup sources, and RTC controller will either power down or power off the CPUs and digital peripherals.
Once wakeup sources are configured, the application can enter sleep mode using :cpp:func:`esp_light_sleep_start` or :cpp:func:`esp_deep_sleep_start` APIs. At this point, the hardware will be configured according to the requested wakeup sources, and the RTC controller will either power down or power off the CPUs and digital peripherals.
.. only:: SOC_BT_SUPPORTED
WiFi/BT and sleep modes
-----------------------
Wi-Fi/Bluetooth and Sleep Modes
---------------------------------
In deep sleep and light sleep modes, wireless peripherals are powered down. Before entering deep sleep or light sleep modes, applications must disable WiFi and BT using appropriate calls (:cpp:func:`esp_bluedroid_disable`, :cpp:func:`esp_bt_controller_disable`, :cpp:func:`esp_wifi_stop`). WiFi and BT connections will not be maintained in deep sleep or light sleep, even if these functions are not called.
In Deep-sleep and Light-sleep modes, the wireless peripherals are powered down. Before entering Deep-sleep or Light-sleep modes, the application must disable Wi-Fi and Bluetooth using the appropriate calls (i.e., :cpp:func:`esp_bluedroid_disable`, :cpp:func:`esp_bt_controller_disable`, :cpp:func:`esp_wifi_stop`). Wi-Fi and Bluetooth connections will not be maintained in Deep-sleep or Light-sleep mode, even if these functions are not called.
.. only:: not SOC_BT_SUPPORTED
WiFi and sleep modes
--------------------
Wi-Fi and Sleep Modes
-----------------------
In deep sleep and light sleep modes, wireless peripherals are powered down. Before entering deep sleep or light sleep modes, applications must disable WiFi using appropriate calls (:cpp:func:`esp_wifi_stop`). WiFi connection will not be maintained in deep sleep or light sleep, even if these functions are not called.
In Deep-sleep and Light-sleep modes, the wireless peripherals are powered down. Before entering Deep-sleep or Light-sleep modes, applications must disable Wi-Fi using the appropriate calls (:cpp:func:`esp_wifi_stop`). Wi-Fi connections will not be maintained in Deep-sleep or Light-sleep mode, even if these functions are not called.
If WiFi connection needs to be maintained, enable WiFi modem sleep, and enable automatic light sleep feature (see :doc:`Power Management APIs <power_management>`). This will allow the system to wake up from sleep automatically when required by WiFi driver, thereby maintaining connection to the AP.
If Wi-Fi connections need to be maintained, enable Wi-Fi Modem-sleep mode and automatic Light-sleep feature (see :doc:`Power Management APIs <power_management>`). This will allow the system to wake up from sleep automatically when required by the Wi-Fi driver, thereby maintaining a connection to the AP.
Wakeup sources
Wakeup Sources
--------------
Timer
^^^^^
RTC controller has a built in timer which can be used to wake up the chip after a predefined amount of time. Time is specified at microsecond precision, but the actual resolution depends on the clock source selected for RTC SLOW_CLK.
The RTC controller has a built-in timer which can be used to wake up the chip after a predefined amount of time. Time is specified at microsecond precision, but the actual resolution depends on the clock source selected for RTC SLOW_CLK.
.. only:: SOC_ULP_SUPPORTED
For details on RTC clock options, see *{IDF_TARGET_NAME} Technical Reference Manual* > *ULP Coprocessor* [`PDF <{IDF_TARGET_TRM_EN_URL}#ulp>`__].
This wakeup mode doesn't require RTC peripherals or RTC memories to be powered on during sleep.
RTC peripherals or RTC memories don't need to be powered on during sleep in this wakeup mode.
:cpp:func:`esp_sleep_enable_timer_wakeup` function can be used to enable deep sleep wakeup using a timer.
:cpp:func:`esp_sleep_enable_timer_wakeup` function can be used to enable sleep wakeup using a timer.
.. only:: SOC_PM_SUPPORT_TOUCH_SENSOR_WAKEUP
Touch pad
Touchpad
^^^^^^^^^
RTC IO module contains logic to trigger wakeup when a touch sensor interrupt occurs. You need to configure the touch pad interrupt before the chip starts deep sleep.
The RTC IO module contains the logic to trigger wakeup when a touch sensor interrupt occurs. To wakeup from a touch sensor interrupt, users need to configure the touch pad interrupt before the chip enters Deep-sleep or Light-sleep modes.
.. only:: esp32
Revisions 0 and 1 of the ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e. ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
Revisions 0 and 1 of ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e., ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
:cpp:func:`esp_sleep_enable_touchpad_wakeup` function can be used to enable this wakeup source.
.. only:: SOC_PM_SUPPORT_EXT_WAKEUP
External wakeup (ext0)
External Wakeup (ext0)
^^^^^^^^^^^^^^^^^^^^^^
RTC IO module contains logic to trigger wakeup when one of RTC GPIOs is set to a predefined logic level. RTC IO is part of RTC peripherals power domain, so RTC peripherals will be kept powered on during deep sleep if this wakeup source is requested.
The RTC IO module contains the logic to trigger wakeup when one of RTC GPIOs is set to a predefined logic level. RTC IO is part of the RTC peripherals power domain, so RTC peripherals will be kept powered on during Deep-sleep if this wakeup source is requested.
Because RTC IO module is enabled in this mode, internal pullup or pulldown resistors can also be used. They need to be configured by the application using :cpp:func:`rtc_gpio_pullup_en` and :cpp:func:`rtc_gpio_pulldown_en` functions, before calling :cpp:func:`esp_deep_sleep_start`.
The RTC IO module is enabled in this mode, so internal pullup or pulldown resistors can also be used. They need to be configured by the application using :cpp:func:`rtc_gpio_pullup_en` and :cpp:func:`rtc_gpio_pulldown_en` functions before calling :cpp:func:`esp_deep_sleep_start`.
.. only:: esp32
In revisions 0 and 1 of the ESP32, this wakeup source is incompatible with ULP and touch wakeup sources.
In revisions 0 and 1 of ESP32, this wakeup source is incompatible with ULP and touch wakeup sources.
:cpp:func:`esp_sleep_enable_ext0_wakeup` function can be used to enable this wakeup source.
.. warning:: After wake up from sleep, IO pad used for wakeup will be configured as RTC IO. Before using this pad as digital GPIO, reconfigure it using ``rtc_gpio_deinit(gpio_num)`` function.
.. warning:: After waking up from sleep, the IO pad used for wakeup will be configured as RTC IO. Therefore, before using this pad as digital GPIO, users need to reconfigure it using :cpp:func:`rtc_gpio_deinit` function.
External wakeup (ext1)
External Wakeup (ext1)
^^^^^^^^^^^^^^^^^^^^^^
RTC controller contains logic to trigger wakeup using multiple RTC GPIOs. One of the two logic functions can be used to trigger wakeup:
The RTC controller contains the logic to trigger wakeup using multiple RTC GPIOs. One of the following two logic functions can be used to trigger wakeup:
- wake up if any of the selected pins is high (``ESP_EXT1_WAKEUP_ANY_HIGH``)
- wake up if all the selected pins are low (``ESP_EXT1_WAKEUP_ALL_LOW``)
This wakeup source is implemented by the RTC controller. As such, RTC peripherals and RTC memories can be powered down in this mode. However, if RTC peripherals are powered down, internal pullup and pulldown resistors will be disabled. To use internal pullup or pulldown resistors, request RTC peripherals power domain to be kept on during sleep, and configure pullup/pulldown resistors using ``rtc_gpio_`` functions, before entering sleep::
This wakeup source is implemented by the RTC controller. As such, RTC peripherals and RTC memories can be powered down in this mode. However, if RTC peripherals are powered down, internal pullup and pulldown resistors will be disabled. To use internal pullup or pulldown resistors, request the RTC peripherals power domain to be kept on during sleep, and configure pullup/pulldown resistors using ``rtc_gpio_`` functions before entering sleep::
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
gpio_pullup_dis(gpio_num);
gpio_pulldown_en(gpio_num);
.. warning:: After wake up from sleep, IO pad(s) used for wakeup will be configured as RTC IO. Before using these pads as digital GPIOs, reconfigure them using ``rtc_gpio_deinit(gpio_num)`` function.
.. warning:: After waking up from sleep, IO pad(s) used for wakeup will be configured as RTC IO. Before using these pads as digital GPIOs, reconfigure them using :cpp:func:`rtc_gpio_deinit` function.
:cpp:func:`esp_sleep_enable_ext1_wakeup` function can be used to enable this wakeup source.
.. only:: SOC_ULP_SUPPORTED
ULP coprocessor wakeup
ULP Coprocessor Wakeup
^^^^^^^^^^^^^^^^^^^^^^
ULP coprocessor can run while the chip is in sleep mode, and may be used to poll sensors, monitor ADC or touch sensor values, and wake up the chip when a specific event is detected. ULP coprocessor is part of RTC peripherals power domain, and it runs the program stored in RTC slow memory. RTC slow memory will be powered on during sleep if this wakeup mode is requested. RTC peripherals will be automatically powered on before ULP coprocessor starts running the program; once the program stops running, RTC peripherals are automatically powered down again.
ULP coprocessor can run while the chip is in sleep mode, and may be used to poll sensors, monitor ADC or touch sensor values, and wake up the chip when a specific event is detected. ULP coprocessor is part of the RTC peripherals power domain, and it runs the program stored in RTC slow memory. RTC slow memory will be powered on during sleep if this wakeup mode is requested. RTC peripherals will be automatically powered on before ULP coprocessor starts running the program; once the program stops running, RTC peripherals are automatically powered down again.
.. only:: esp32
Revisions 0 and 1 of the ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e. ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
Revisions 0 and 1 of ESP32 only support this wakeup mode when RTC peripherals are not forced to be powered on (i.e., ESP_PD_DOMAIN_RTC_PERIPH should be set to ESP_PD_OPTION_AUTO).
:cpp:func:`esp_sleep_enable_ulp_wakeup` function can be used to enable this wakeup source.
.. only:: SOC_RTCIO_WAKE_SUPPORTED
GPIO wakeup (light sleep only)
GPIO Wakeup (Light-sleep Only)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. only:: SOC_PM_SUPPORT_EXT_WAKEUP
In addition to EXT0 and EXT1 wakeup sources described above, one more method of wakeup from external inputs is available in light sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. Unlike EXT0 and EXT1 wakeup sources, which can only be used with RTC IOs, this wakeup source can be used with any IO (RTC or digital).
In addition to EXT0 and EXT1 wakeup sources described above, one more method of wakeup from external inputs is available in Light-sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. Unlike EXT0 and EXT1 wakeup sources, which can only be used with RTC IOs, this wakeup source can be used with any IO (RTC or digital).
.. only:: not SOC_PM_SUPPORT_EXT_WAKEUP
One more method of wakeup from external inputs is available in light sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. This wakeup source can be used with any IO (RTC or digital).
One more method of wakeup from external inputs is available in Light-sleep mode. With this wakeup source, each pin can be individually configured to trigger wakeup on high or low level using :cpp:func:`gpio_wakeup_enable` function. This wakeup source can be used with any IO (RTC or digital).
:cpp:func:`esp_sleep_enable_gpio_wakeup` function can be used to enable this wakeup source.
.. warning::
Before entering light sleep mode, check if any GPIO pin to be driven is part of the {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If so, this power domain must be configured to remain ON during sleep.
Before entering Light-sleep mode, check if any GPIO pin to be driven is part of the {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If so, this power domain must be configured to remain ON during sleep.
For example, on ESP32-WROOM-32 board, GPIO16 and GPIO17 are linked to {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If they are configured to remain high during
light sleep, the power domain should be configured to remain powered ON. This can be done with :cpp:func:`esp_sleep_pd_config()`::
For example, on ESP32-WROOM-32 board, GPIO16 and GPIO17 are linked to {IDF_TARGET_SPI_POWER_DOMAIN} power domain. If they are configured to remain high during Light-sleep, the power domain should be configured to remain powered ON. This can be done with :cpp:func:`esp_sleep_pd_config()`::
esp_sleep_pd_config(ESP_PD_DOMAIN_VDDSDIO, ESP_PD_OPTION_ON);
UART wakeup (light sleep only)
UART Wakeup (Light-sleep Only)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When {IDF_TARGET_NAME} receives UART input from external devices, it is often required to wake up the chip when input data is available. UART peripheral contains a feature which allows waking up the chip from light sleep when a certain number of positive edges on RX pin are seen. This number of positive edges can be set using :cpp:func:`uart_set_wakeup_threshold` function. Note that the character which triggers wakeup (and any characters before it) will not be received by the UART after wakeup. This means that the external device typically needs to send an extra character to the {IDF_TARGET_NAME} to trigger wakeup, before sending the data.
When {IDF_TARGET_NAME} receives UART input from external devices, it is often necessary to wake up the chip when input data is available. The UART peripheral contains a feature which allows waking up the chip from Light-sleep when a certain number of positive edges on RX pin are seen. This number of positive edges can be set using :cpp:func:`uart_set_wakeup_threshold` function. Note that the character which triggers wakeup (and any characters before it) will not be received by the UART after wakeup. This means that the external device typically needs to send an extra character to the {IDF_TARGET_NAME} to trigger wakeup before sending the data.
:cpp:func:`esp_sleep_enable_uart_wakeup` function can be used to enable this wakeup source.
Power-down of RTC peripherals and memories
Power-down of RTC Peripherals and Memories
------------------------------------------
By default, :cpp:func:`esp_deep_sleep_start` and :cpp:func:`esp_light_sleep_start` functions will power down all RTC power domains which are not needed by the enabled wakeup sources. To override this behaviour, :cpp:func:`esp_sleep_pd_config` function is provided.
.. only:: esp32
Note: in revision 0 of the ESP32, RTC fast memory will always be kept enabled in deep sleep, so that the deep sleep stub can run after reset. This can be overridden, if the application doesn't need clean reset behaviour after deep sleep.
Note: in revision 0 of ESP32, RTC fast memory will always be kept enabled in Deep-sleep, so that the Deep-sleep stub can run after reset. This can be overridden, if the application doesn't need clean reset behaviour after Deep-sleep.
.. only:: SOC_RTC_SLOW_MEM_SUPPORTED
@@ -166,83 +166,82 @@ By default, :cpp:func:`esp_deep_sleep_start` and :cpp:func:`esp_light_sleep_star
.. only:: not SOC_RTC_SLOW_MEM_SUPPORTED
In {IDF_TARGET_NAME} there is only RTC fast memory, so if some variables in the program are marked by ``RTC_DATA_ATTR``, ``RTC_SLOW_ATTR`` or ``RTC_FAST_ATTR`` attributes, all of them go to RTC fast memory. It will be kept powered on by default. This can be overridden using :cpp:func:`esp_sleep_pd_config` function, if desired.
In {IDF_TARGET_NAME}, there is only RTC fast memory, so if some variables in the program are marked by ``RTC_DATA_ATTR``, ``RTC_SLOW_ATTR`` or ``RTC_FAST_ATTR`` attributes, all of them go to RTC fast memory. It will be kept powered on by default. This can be overridden using :cpp:func:`esp_sleep_pd_config` function, if desired.
Entering light sleep
Entering Light-sleep
--------------------
:cpp:func:`esp_light_sleep_start` function can be used to enter light sleep once wakeup sources are configured. It is also possible to go into light sleep with no wakeup sources configured, in this case the chip will be in light sleep mode indefinitely, until external reset is applied.
:cpp:func:`esp_light_sleep_start` function can be used to enter Light-sleep once wakeup sources are configured. It is also possible to enter Light-sleep with no wakeup sources configured. In this case, the chip will be in Light-sleep mode indefinitely until external reset is applied.
Entering deep sleep
Entering Deep-sleep
-------------------
:cpp:func:`esp_deep_sleep_start` function can be used to enter deep sleep once wakeup sources are configured. It is also possible to go into deep sleep with no wakeup sources configured, in this case the chip will be in deep sleep mode indefinitely, until external reset is applied.
:cpp:func:`esp_deep_sleep_start` function can be used to enter Deep-sleep once wakeup sources are configured. It is also possible to enter Deep-sleep with no wakeup sources configured. In this case, the chip will be in Deep-sleep mode indefinitely until external reset is applied.
Configuring IOs
---------------
Some {IDF_TARGET_NAME} IOs have internal pullups or pulldowns, which are enabled by default. If an external circuit drives this pin in deep sleep mode, current consumption may increase due to current flowing through these pullups and pulldowns.
Some {IDF_TARGET_NAME} IOs have internal pullups or pulldowns, which are enabled by default. If an external circuit drives this pin in Deep-sleep mode, current consumption may increase due to current flowing through these pullups and pulldowns.
.. only:: not esp32c3
To isolate a pin, preventing extra current draw, call :cpp:func:`rtc_gpio_isolate` function.
To isolate a pin to prevent extra current draw, call :cpp:func:`rtc_gpio_isolate` function.
For example, on ESP32-WROVER module, GPIO12 is pulled up externally. GPIO12 also has an internal pulldown in the ESP32 chip. This means that in deep sleep, some current will flow through these external and internal resistors, increasing deep sleep current above the minimal possible value.
Add the following code before :cpp:func:`esp_deep_sleep_start` to remove this extra current::
For example, on ESP32-WROVER module, GPIO12 is pulled up externally, and it also has an internal pulldown in the ESP32 chip. This means that in Deep-sleep, some current will flow through these external and internal resistors, increasing Deep-sleep current above the minimal possible value.
Add the following code before :cpp:func:`esp_deep_sleep_start` to remove such extra current::
rtc_gpio_isolate(GPIO_NUM_12);
.. only:: esp32c3
In deep sleep mode:
In Deep-sleep mode:
- digital GPIOs (GPIO6 ~ 21) are in a high impedance state.
- RTC GPIOs (GPIO0 ~ 5) can be in the following states, depending on their hold function enabled or not:
- if the hold function is not enabled, RTC GPIOs will be in a high impedance state.
- if the hold function is enabled, RTC GPIOs will retain the pin state latched at that hold moment.
UART output handling
UART Output Handling
--------------------
Before entering sleep mode, :cpp:func:`esp_deep_sleep_start` will flush the contents of UART FIFOs.
When entering light sleep mode using :cpp:func:`esp_light_sleep_start`, UART FIFOs will not be flushed. Instead, UART output will be suspended, and remaining characters in the FIFO will be sent out after wakeup from light sleep.
When entering Light-sleep mode using :cpp:func:`esp_light_sleep_start`, UART FIFOs will not be flushed. Instead, UART output will be suspended, and remaining characters in the FIFO will be sent out after wakeup from Light-sleep.
Checking sleep wakeup cause
Checking Sleep Wakeup Cause
---------------------------
:cpp:func:`esp_sleep_get_wakeup_cause` function can be used to check which wakeup source has triggered wakeup from sleep mode.
.. only:: SOC_TOUCH_SENSOR_NUM
For touch pad, it is possible to identify touch pad which has caused wakeup using :cpp:func:`esp_sleep_get_touchpad_wakeup_status` functions.
For touchpad, it is possible to identify which touch pin has caused wakeup using :cpp:func:`esp_sleep_get_touchpad_wakeup_status` functions.
.. only:: SOC_PM_SUPPORT_EXT_WAKEUP
For ext1 wakeup sources, it is possible to identify pin which has caused wakeup using :cpp:func:`esp_sleep_get_ext1_wakeup_status` functions.
For ext1 wakeup sources, it is possible to identify which touch pin has caused wakeup using :cpp:func:`esp_sleep_get_ext1_wakeup_status` functions.
Disable sleep wakeup source
Disable Sleep Wakeup Source
---------------------------
Previously configured wakeup source can be disabled later using :cpp:func:`esp_sleep_disable_wakeup_source` API. This function deactivates trigger for the given wakeup source. Additionally it can disable all triggers if the argument is ``ESP_SLEEP_WAKEUP_ALL``.
Previously configured wakeup sources can be disabled later using :cpp:func:`esp_sleep_disable_wakeup_source` API. This function deactivates trigger for the given wakeup source. Additionally, it can disable all triggers if the argument is ``ESP_SLEEP_WAKEUP_ALL``.
Application Example
-------------------
- :example:`protocols/sntp`: the implementation of basic functionality of deep sleep, where ESP module is periodically waken up to retrieve time from NTP server.
- :example:`protocols/sntp`: the implementation of basic functionality of Deep-sleep, where ESP module is periodically waken up to retrieve time from NTP server.
- :example:`wifi/power_save`: the implementation of modem sleep example.
.. only:: SOC_ULP_SUPPORTED
- :example:`system/deep_sleep`: the usage of various deep sleep wakeup triggers and ULP coprocessor programming.
- :example:`system/deep_sleep`: the usage of various Deep-sleep wakeup triggers and ULP coprocessor programming.
.. only:: esp32c3
- :example:`system/deep_sleep`: the usage of deep sleep wakeup triggered by timer.
- :example:`system/deep_sleep`: the usage of Deep-sleep wakeup triggered by timer.
API Reference
-------------
.. include-build-file:: inc/esp_sleep.inc