feat(mmu): support mmu and flash mmap driver on p4

This commit is contained in:
Armando
2023-08-14 13:58:35 +08:00
parent d97b3fec67
commit 8c8affc812
17 changed files with 327 additions and 226 deletions

View File

@@ -20,6 +20,12 @@
extern "C" {
#endif
///< MMU is per target
#define MMU_LL_MMU_PER_TARGET 1
#define MMU_LL_FLASH_MMU_ID 0
#define MMU_LL_PSRAM_MMU_ID 1
/**
* Convert MMU virtual address to linear address
*
@@ -29,7 +35,7 @@ extern "C" {
*/
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
{
return vaddr & SOC_MMU_LINEAR_FLASH_ADDR_MASK;
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
}
/**
@@ -37,20 +43,44 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
uint32_t raw_laddr = (laddr & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP);
(void)vaddr_type;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_FLASH) {
if (target == MMU_TARGET_FLASH0) {
vaddr_base = SOC_MMU_FLASH_VADDR_BASE;
} else {
vaddr_base = SOC_MMU_PSRAM_VADDR_BASE;
}
return vaddr_base | raw_laddr;
return vaddr_base | laddr;
}
/**
* Convert MMU virtual address to its target
*
* @param vaddr virtual address
*
* @return target paddr memory target
*/
__attribute__((always_inline))
static inline mmu_target_t mmu_ll_vaddr_to_target(uint32_t vaddr)
{
mmu_target_t target = MMU_TARGET_FLASH0;
if (ADDRESS_IN_DRAM_FLASH(vaddr)) {
target = MMU_TARGET_FLASH0;
} else if (ADDRESS_IN_DRAM_PSRAM(vaddr)) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
__attribute__((always_inline)) static inline bool mmu_ll_cache_encryption_enabled(void)
@@ -83,9 +113,7 @@ static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
__attribute__((always_inline))
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
{
(void)mmu_id;
(void)size;
return;
HAL_ASSERT(size == MMU_PAGE_64KB);
}
/**
@@ -105,7 +133,7 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
(void)mmu_id;
(void)type;
uint32_t vaddr_end = vaddr_start + len - 1;
return (ADDRESS_IN_IRAM0_CACHE(vaddr_start) && ADDRESS_IN_IRAM0_CACHE(vaddr_end)) || (ADDRESS_IN_DRAM0_CACHE(vaddr_start) && ADDRESS_IN_DRAM0_CACHE(vaddr_end));
return (ADDRESS_IN_DRAM_FLASH(vaddr_start) && ADDRESS_IN_DRAM_FLASH(vaddr_end)) || (ADDRESS_IN_DRAM_PSRAM(vaddr_start) && ADDRESS_IN_DRAM_PSRAM(vaddr_end));
}
/**
@@ -120,10 +148,18 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
*/
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
{
(void)mmu_id;
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
(len < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM));
int max_paddr_page_num = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
max_paddr_page_num = MMU_FLASH_MAX_PADDR_PAGE_NUM;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
max_paddr_page_num = MMU_PSRAM_MAX_PADDR_PAGE_NUM;
} else {
HAL_ASSERT(false);
}
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
(len < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num));
}
/**
@@ -138,7 +174,6 @@ static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t pad
__attribute__((always_inline))
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
{
(void)mmu_id;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
@@ -173,7 +208,6 @@ static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
__attribute__((always_inline))
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
{
(void)mmu_id;
(void)target;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
@@ -206,30 +240,32 @@ static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_
*/
__attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
{
(void)mmu_id;
(void)target;
uint32_t index_reg, content_reg, sensitive, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t sensitive = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
sensitive = MMU_SENSITIVE;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
sensitive = MMU_FLASH_SENSITIVE;
mmu_val |= MMU_FLASH_VALID;
mmu_val |= MMU_ACCESS_FLASH;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
sensitive = DMMU_SENSITIVE;
invalid_mask = DMMU_INVALID_MASK;
mmu_val |= MMU_PSRAM_ACCESS_SPIRAM;
sensitive = MMU_PSRAM_SENSITIVE;
mmu_val |= MMU_PSRAM_VALID;
mmu_val |= MMU_ACCESS_PSRAM;
} else {
HAL_ASSERT(false);
}
uint32_t mmu_raw_value;
if (mmu_ll_cache_encryption_enabled()) {
mmu_val |= sensitive;
}
/* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
mmu_raw_value = mmu_val ^ invalid_mask;
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, mmu_raw_value);
REG_WRITE(content_reg, mmu_val);
}
/**
@@ -241,29 +277,24 @@ __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mm
*/
__attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
uint32_t mmu_raw_value;
uint32_t ret;
uint32_t index_reg, content_reg, sensitive, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t mmu_val = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
sensitive = MMU_SENSITIVE;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
sensitive = DMMU_SENSITIVE;
invalid_mask = DMMU_INVALID_MASK;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_raw_value = REG_READ(content_reg);
if (mmu_ll_cache_encryption_enabled()) {
mmu_raw_value &= ~sensitive;
}
/* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
ret = mmu_raw_value ^ invalid_mask;
return ret;
mmu_val = REG_READ(content_reg);
return mmu_val;
}
/**
@@ -274,16 +305,24 @@ __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t
*/
__attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t index_reg, content_reg;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t invalid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
} else { // psram mmu
invalid_mask = MMU_FLASH_INVALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
invalid_mask = MMU_PSRAM_INVALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, MMU_INVALID);
REG_WRITE(content_reg, invalid_mask);
}
/**
@@ -309,21 +348,32 @@ static inline void mmu_ll_unmap_all(uint32_t mmu_id)
*/
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t mmu_raw_value;
uint32_t index_reg, content_reg, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t mmu_raw_value = 0;
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
valid_mask = MMU_FLASH_VALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
invalid_mask = DMMU_INVALID_MASK;
valid_mask = MMU_PSRAM_VALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_raw_value = REG_READ(content_reg);
/* Note: for ESP32-P4, the invalid-bit of MMU: 0 for invalid, 1 for valid */
return (mmu_raw_value & invalid_mask) ? true : false;
bool is_valid = false;
if (mmu_raw_value & valid_mask) {
is_valid = true;
}
return is_valid;
}
/**
@@ -336,10 +386,18 @@ static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
*/
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
{
if (mmu_id == 0)
return MMU_TARGET_FLASH0;
else
return MMU_TARGET_PSRAM0;
(void)entry_id;
mmu_target_t target = MMU_TARGET_FLASH0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
target = MMU_TARGET_FLASH0;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
/**
@@ -352,7 +410,6 @@ static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t ent
*/
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < MMU_ENTRY_NUM);
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
@@ -373,13 +430,14 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
default:
HAL_ASSERT(shift_code);
}
if (mmu_id == 0) {
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, entry_id);
return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
} else {
return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_FLASH_VALID_VAL_MASK) << shift_code;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
REG_WRITE(SPI_MEM_S_MMU_ITEM_INDEX_REG, entry_id);
return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_PSRAM_VALID_VAL_MASK) << shift_code;
} else {
HAL_ASSERT(false);
}
}
@@ -396,13 +454,27 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
*/
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
{
//TODO, should check PSRAM as well?
(void)mmu_id;
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_val_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
valid_val_mask = MMU_FLASH_VALID_VAL_MASK;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
valid_val_mask = MMU_PSRAM_VALID_VAL_MASK;
} else {
HAL_ASSERT(false);
}
for (int i = 0; i < MMU_ENTRY_NUM; i++) {
if (mmu_ll_check_entry_valid(mmu_id, i)) {
if (mmu_ll_get_entry_target(mmu_id, i) == target) {
REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, i);
if ((REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) == mmu_val) {
REG_WRITE(index_reg, i);
if ((REG_READ(content_reg) & valid_val_mask) == mmu_val) {
return i;
}
}
@@ -421,7 +493,6 @@ static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint3
*/
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
{
(void)mmu_id;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
@@ -442,7 +513,7 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type);
return mmu_ll_laddr_to_vaddr(laddr, type, (mmu_id == MMU_LL_FLASH_MMU_ID) ? MMU_TARGET_FLASH0 : MMU_TARGET_PSRAM0);
}
#ifdef __cplusplus