Rename controller_hci_uart_esp32c3 to controller_hci_uart_esp32c3_and_esp32s3

This commit is contained in:
xiongweichao
2021-12-31 14:23:33 +08:00
parent b08c3a022a
commit 8dc3392b3f
8 changed files with 5 additions and 5 deletions

View File

@@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(controller_hci_uart_demo)

View File

@@ -0,0 +1,83 @@
| Supported Targets | ESP32-C3 | ESP32-S3 |
| ----------------- | -------- | -------- |
ESP-IDF UART HCI Controller
=================================
This example demonstrates how to configure the Bluetooth Low Energy Controller's HCI (Host Controller Interface) to communicate over UART.
Using this example, BLE radio capabilities of ESP32-C3/ESP32-S3 chip, can be:
1. tested via standard HCI messages in Direct Test Mode
2. used with external Bluetooth host stack installed on PC, or other MCU.
This example uses UHCI, GDMA together with UART to implement the HCI UART transport.
This example uses LL/register access directly, because the UHCI driver hasn't been implemented yet.
## How to use example
### Hardware Required
This example should be able to run on any commonly available ESP32-C3/ESP32-S3 development board. To connect UART to PC, another board such as ESP_Test Board or FT232 USB UART board is usually needed.
In this example, two UARTs are used:
- UART0 is used as normal output or by IDF monitor
- UART1 is used to convey HCI messages
RTS and CTS lines of UART1 are required. GPIO4, GPIO5, GPIO6, GPIO7 are used as TxD, RxD, RTS, CTS PINs of UART1, respectively.
In a frequently-used scenario, if ESP_Test Board is used, connect the TX0, RX0, RTS0, CTS0 and GND of ESP_Test Board to ESP32-C3/ESP32-S3 UART1 PINs, and Attach ESP_Test board to the host PC.
### Configure the project
```
idf.py menuconfig
```
* Baudrate of UART1 can be configured in `Example Configuration > UART Baudrate for HCI`
### Build and Flash
Build the project and flash it to the board, then run monitor tool to view serial output:
```
idf.py -p PORT flash monitor
```
(Replace PORT with the name of the serial port to use.)
(To exit the serial monitor, type ``Ctrl-]``.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
## Example Output
The example sets up the HCI UART transport and enable Bluetooth Controller, after started. UART1 PIN and baudrate settings is printed at serial output:
```
I (306) gpio: GPIO[4]| InputEn: 0| OutputEn: 1| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (306) gpio: GPIO[6]| InputEn: 0| OutputEn: 1| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (316) gpio: GPIO[5]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (326) gpio: GPIO[7]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (336) BTDM_INIT: BT controller compile version [33175c8]
I (346) phy_init: phy_version 907,3369105-dirty,Dec 3 2021,14:55:12
I (406) system_api: Base MAC address is not set
I (406) system_api: read default base MAC address from EFUSE
I (406) BTDM_INIT: Bluetooth MAC: 7c:df:a1:61:e5:36
I (406) UHCI: HCI messages can be communicated over UART1:
--PINs: TxD 4, RxD 5, RTS 6, CTS 7
--Baudrate: 115200
```
After these output occurs, HCI messages can be commnunicated over UART1.
## Troubleshooting
## Example Breakdown

View File

@@ -0,0 +1,2 @@
idf_component_register(SRCS "main.c"
INCLUDE_DIRS "")

View File

@@ -0,0 +1,10 @@
menu "Example Configuration"
config EXAMPLE_HCI_UART_BAUDRATE
int "UART Baudrate for HCI"
range 115200 921600
default 115200
help
UART Baudrate for HCI. Please use standard baudrate.
endmenu

View File

@@ -0,0 +1,287 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <string.h>
#include "esp_private/periph_ctrl.h" // for enabling UHCI module, remove it after UHCI driver is released
#include "driver/gpio.h"
#include "driver/uart.h"
#include "soc/lldesc.h"
#include "esp_private/gdma.h"
#include "hal/uhci_ll.h"
#include "nvs_flash.h"
#include "esp_bt.h"
#include "esp_log.h"
static const char *tag = "UHCI";
#define UART_HCI_NUM (1)
#define UART_RX_THRS (120)
#define GPIO_UART_TXD_OUT (4)
#define GPIO_UART_RXD_IN (5)
#define GPIO_UART_RTS_OUT (6)
#define GPIO_UART_CTS_IN (7)
#define GPIO_OUTPUT_PIN_SEL ((1ULL<<GPIO_UART_TXD_OUT) | (1ULL<<GPIO_UART_RTS_OUT))
#define GPIO_INPUT_PIN_SEL ((1ULL<<GPIO_UART_RXD_IN) | (1ULL<<GPIO_UART_CTS_IN))
// Operation functions for HCI UART Transport Layer
static bool hci_uart_tl_init(void);
static void hci_uart_tl_deinit(void);
static void hci_uart_tl_recv_async(uint8_t *buf, uint32_t size, esp_bt_hci_tl_callback_t callback, void *arg);
static void hci_uart_tl_send_async(uint8_t *buf, uint32_t size, esp_bt_hci_tl_callback_t callback, void *arg);
static void hci_uart_tl_flow_on(void);
static bool hci_uart_tl_flow_off(void);
static void hci_uart_tl_finish_transfers(void);
struct uart_txrxchannel {
esp_bt_hci_tl_callback_t callback;
void *arg;
lldesc_t link;
};
struct uart_env_tag {
struct uart_txrxchannel tx;
struct uart_txrxchannel rx;
};
struct uart_env_tag uart_env;
static volatile uhci_dev_t *s_uhci_hw = &UHCI0;
static gdma_channel_handle_t s_rx_channel;
static gdma_channel_handle_t s_tx_channel;
static esp_bt_hci_tl_t s_hci_uart_tl_funcs = {
._magic = ESP_BT_HCI_TL_MAGIC_VALUE,
._version = ESP_BT_HCI_TL_VERSION,
._reserved = 0,
._open = (void *)hci_uart_tl_init,
._close = (void *)hci_uart_tl_deinit,
._finish_transfers = (void *)hci_uart_tl_finish_transfers,
._recv = (void *)hci_uart_tl_recv_async,
._send = (void *)hci_uart_tl_send_async,
._flow_on = (void *)hci_uart_tl_flow_on,
._flow_off = (void *)hci_uart_tl_flow_off,
};
static bool hci_uart_tl_init(void)
{
return true;
}
static void hci_uart_tl_deinit(void)
{
}
static IRAM_ATTR void hci_uart_tl_recv_async(uint8_t *buf, uint32_t size, esp_bt_hci_tl_callback_t callback, void *arg)
{
assert(buf != NULL);
assert(size != 0);
assert(callback != NULL);
uart_env.rx.callback = callback;
uart_env.rx.arg = arg;
memset(&uart_env.rx.link, 0, sizeof(lldesc_t));
uart_env.rx.link.buf = buf;
uart_env.rx.link.size = size;
s_uhci_hw->pkt_thres.thrs = size;
gdma_start(s_rx_channel, (intptr_t)(&uart_env.rx.link));
}
static IRAM_ATTR void hci_uart_tl_send_async(uint8_t *buf, uint32_t size, esp_bt_hci_tl_callback_t callback, void *arg)
{
assert(buf != NULL);
assert(size != 0);
assert(callback != NULL);
uart_env.tx.callback = callback;
uart_env.tx.arg = arg;
memset(&uart_env.tx.link, 0, sizeof(lldesc_t));
uart_env.tx.link.length = size;
uart_env.tx.link.buf = buf;
uart_env.tx.link.eof = 1;
gdma_start(s_tx_channel, (intptr_t)(&uart_env.tx.link));
}
static void hci_uart_tl_flow_on(void)
{
}
static bool hci_uart_tl_flow_off(void)
{
return true;
}
static void hci_uart_tl_finish_transfers(void)
{
}
static IRAM_ATTR bool hci_uart_tl_rx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(dma_chan == s_rx_channel);
assert(uart_env.rx.callback != NULL);
esp_bt_hci_tl_callback_t callback = uart_env.rx.callback;
void *arg = uart_env.rx.arg;
// clear callback pointer
uart_env.rx.callback = NULL;
uart_env.rx.arg = NULL;
// call handler
callback(arg, ESP_BT_HCI_TL_STATUS_OK);
// send notification to Bluetooth Controller task
esp_bt_h4tl_eif_io_event_notify(1);
return true;
}
static IRAM_ATTR bool hci_uart_tl_tx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(dma_chan == s_tx_channel);
assert(uart_env.tx.callback != NULL);
esp_bt_hci_tl_callback_t callback = uart_env.tx.callback;
void *arg = uart_env.tx.arg;
// clear callback pointer
uart_env.tx.callback = NULL;
uart_env.tx.arg = NULL;
// call handler
callback(arg, ESP_BT_HCI_TL_STATUS_OK);
// send notification to Bluetooth Controller task
esp_bt_h4tl_eif_io_event_notify(1);
return true;
}
static void uart_gpio_set(void)
{
gpio_config_t io_output_conf = {
.intr_type = GPIO_INTR_DISABLE, //disable interrupt
.mode = GPIO_MODE_OUTPUT, // output mode
.pin_bit_mask = GPIO_OUTPUT_PIN_SEL, // bit mask of the output pins
.pull_down_en = 0, // disable pull-down mode
.pull_up_en = 0, // disable pull-up mode
};
gpio_config(&io_output_conf);
gpio_config_t io_input_conf = {
.intr_type = GPIO_INTR_DISABLE, //disable interrupt
.mode = GPIO_MODE_INPUT, // input mode
.pin_bit_mask = GPIO_INPUT_PIN_SEL, // bit mask of the input pins
.pull_down_en = 0, // disable pull-down mode
.pull_up_en = 0, // disable pull-down mode
};
gpio_config(&io_input_conf);
uart_set_pin(UART_HCI_NUM, GPIO_UART_TXD_OUT, GPIO_UART_RXD_IN, GPIO_UART_RTS_OUT, GPIO_UART_CTS_IN);
}
void uhci_uart_install(void)
{
periph_module_enable(PERIPH_UHCI0_MODULE);
periph_module_reset(PERIPH_UHCI0_MODULE);
periph_module_enable(PERIPH_UART1_MODULE);
periph_module_reset(PERIPH_UART1_MODULE);
uart_gpio_set();
// configure UART1
uart_config_t uart_config = {
.baud_rate = CONFIG_EXAMPLE_HCI_UART_BAUDRATE,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
.rx_flow_ctrl_thresh = UART_RX_THRS,
.source_clk = UART_SCLK_APB,
};
ESP_ERROR_CHECK(uart_param_config(UART_HCI_NUM, &uart_config));
// install DMA driver
gdma_channel_alloc_config_t tx_channel_config = {
.flags.reserve_sibling = 1,
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ESP_ERROR_CHECK(gdma_new_channel(&tx_channel_config, &s_tx_channel));
gdma_channel_alloc_config_t rx_channel_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
.sibling_chan = s_tx_channel,
};
ESP_ERROR_CHECK(gdma_new_channel(&rx_channel_config, &s_rx_channel));
gdma_connect(s_tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_UART, 0));
gdma_connect(s_rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_UART, 0));
gdma_strategy_config_t strategy_config = {
.auto_update_desc = false,
.owner_check = false
};
gdma_apply_strategy(s_tx_channel, &strategy_config);
gdma_apply_strategy(s_rx_channel, &strategy_config);
gdma_rx_event_callbacks_t rx_cbs = {
.on_recv_eof = hci_uart_tl_rx_eof_callback
};
gdma_register_rx_event_callbacks(s_rx_channel, &rx_cbs, NULL);
gdma_tx_event_callbacks_t tx_cbs = {
.on_trans_eof = hci_uart_tl_tx_eof_callback
};
gdma_register_tx_event_callbacks(s_tx_channel, &tx_cbs, NULL);
// configure UHCI
uhci_ll_init(s_uhci_hw);
uhci_ll_set_eof_mode(s_uhci_hw, UHCI_RX_LEN_EOF);
// disable software flow control
s_uhci_hw->escape_conf.val = 0;
uhci_ll_attach_uart_port(s_uhci_hw, 1);
}
void app_main(void)
{
esp_err_t ret;
/* Initialize NVS — it is used to store PHY calibration data */
ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK( ret );
uhci_uart_install();
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
bt_cfg.hci_tl_funcs = &s_hci_uart_tl_funcs;
ret = esp_bt_controller_init(&bt_cfg);
if (ret != ESP_OK) {
ESP_LOGE(tag, "Bluetooth Controller initialize failed: %s", esp_err_to_name(ret));
return;
}
ret = esp_bt_controller_enable(ESP_BT_MODE_BLE);
if (ret != ESP_OK) {
ESP_LOGE(tag, "Bluetooth Controller initialize failed: %s", esp_err_to_name(ret));
return;
}
ESP_LOGI(tag, "HCI messages can be communicated over UART%d: \n"
"--PINs: TxD %d, RxD %d, RTS %d, CTS %d\n"
"--Baudrate: %d", UART_HCI_NUM,
GPIO_UART_TXD_OUT, GPIO_UART_RXD_IN, GPIO_UART_RTS_OUT, GPIO_UART_CTS_IN,
CONFIG_EXAMPLE_HCI_UART_BAUDRATE);
}

View File

@@ -0,0 +1,11 @@
#
# Automatically generated file. DO NOT EDIT.
# Espressif IoT Development Framework (ESP-IDF) Project Configuration
#
CONFIG_BT_ENABLED=y
CONFIG_BT_CTRL_HCI_MODE_UART_H4=y
CONFIG_BT_CTRL_HCI_TL=0
CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP=n
CONFIG_BT_CTRL_BLE_SCAN_DUPL=n
# End of deprecated options