mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-09 12:35:28 +00:00
secure_boot: Checks secure boot efuses
ESP32 V1 and V2 - protection bits. ESP32xx V2: revoke bits, protection bits - refactor efuse component - adds some APIs for esp32 chips as well as for esp32xx chips
This commit is contained in:
139
components/efuse/esp32s2/esp_efuse_utility.c
Normal file
139
components/efuse/esp32s2/esp_efuse_utility.c
Normal file
@@ -0,0 +1,139 @@
|
||||
// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "esp_efuse_utility.h"
|
||||
#include "soc/efuse_periph.h"
|
||||
#include "esp32s2/clk.h"
|
||||
#include "esp_log.h"
|
||||
#include "assert.h"
|
||||
#include "sdkconfig.h"
|
||||
#include <sys/param.h>
|
||||
#include "esp32s2/rom/efuse.h"
|
||||
|
||||
static const char *TAG = "efuse";
|
||||
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
/*Range addresses to read blocks*/
|
||||
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
|
||||
{EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
|
||||
{EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
|
||||
{EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
|
||||
{EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
|
||||
{EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
|
||||
{EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
|
||||
{EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
|
||||
{EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
|
||||
{EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
|
||||
{EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
|
||||
{EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6
|
||||
};
|
||||
|
||||
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
||||
|
||||
/*Range addresses to write blocks (it is not real regs, it is buffer) */
|
||||
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
|
||||
};
|
||||
|
||||
#ifndef CONFIG_EFUSE_VIRTUAL
|
||||
// Update Efuse timing configuration
|
||||
static esp_err_t esp_efuse_set_timing(void)
|
||||
{
|
||||
uint32_t clock_hz = esp_clk_apb_freq();
|
||||
return ets_efuse_set_timing(clock_hz) ? ESP_FAIL : ESP_OK;
|
||||
}
|
||||
#endif // ifndef CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
// Efuse read operation: copies data from physical efuses to efuse read registers.
|
||||
void esp_efuse_utility_clear_program_registers(void)
|
||||
{
|
||||
ets_efuse_read();
|
||||
ets_efuse_clear_program_registers();
|
||||
}
|
||||
|
||||
// Burn values written to the efuse write registers
|
||||
void esp_efuse_utility_burn_efuses(void)
|
||||
{
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
int subblock = 0;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (esp_efuse_set_timing() != ESP_OK) {
|
||||
ESP_LOGE(TAG, "Efuse fields are not burnt");
|
||||
} else {
|
||||
// Permanently update values written to the efuse write registers
|
||||
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
if (REG_READ(addr_wr_block) != 0) {
|
||||
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
|
||||
uint8_t block_rs[12];
|
||||
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
|
||||
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
|
||||
}
|
||||
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
|
||||
ets_efuse_program(num_block);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
esp_efuse_utility_reset();
|
||||
}
|
||||
|
||||
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
|
||||
// This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
|
||||
// The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
|
||||
// They will be filled during the burn operation.
|
||||
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
||||
{
|
||||
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
|
||||
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
|
||||
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
if (REG_READ(addr_wr_block)) {
|
||||
int num_reg = 0;
|
||||
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
|
||||
if (esp_efuse_utility_read_reg(num_block, num_reg)) {
|
||||
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
|
||||
return ESP_ERR_CODING;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
Reference in New Issue
Block a user