sleep: optimize light sleep wakeup latency

This commit is contained in:
Ivan Grokhotkov
2018-04-04 15:05:50 +08:00
parent ac623a9756
commit 94250e42a0
4 changed files with 269 additions and 87 deletions

View File

@@ -17,6 +17,7 @@
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_timer_impl.h"
#include "esp_log.h"
#include "esp_clk.h"
#include "esp_newlib.h"
@@ -42,6 +43,19 @@
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
// Extra time it takes to enter and exit light sleep and deep sleep
// For deep sleep, this is until the wake stub runs (not the app).
#ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
#define LIGHT_SLEEP_TIME_OVERHEAD_US (650 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#else
#define LIGHT_SLEEP_TIME_OVERHEAD_US (250 + 30 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
#endif // CONFIG_ESP32_RTC_CLOCK_SOURCE
// Minimal amount of time we can sleep for
#define LIGHT_SLEEP_MIN_TIME_US 200
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
(source == value))
@@ -56,9 +70,11 @@ typedef struct {
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
} deep_sleep_config_t;
uint32_t sleep_time_adjustment;
uint64_t rtc_ticks_at_sleep_start;
} sleep_config_t;
static deep_sleep_config_t s_config = {
static sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.wakeup_triggers = 0
};
@@ -125,12 +141,31 @@ void esp_deep_sleep(uint64_t time_in_us)
esp_deep_sleep_start();
}
static void IRAM_ATTR suspend_uarts()
{
for (int i = 0; i < 3; ++i) {
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
uart_tx_wait_idle(i);
}
}
static void IRAM_ATTR resume_uarts()
{
for (int i = 0; i < 3; ++i) {
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF);
REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON);
}
}
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Flush UARTs so that output is not lost due to APB frequency change
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
uart_tx_wait_idle(2);
// Stop UART output so that output is not lost due to APB frequency change
suspend_uarts();
// Save current frequency and switch to XTAL
rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
@@ -143,20 +178,32 @@ static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
}
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
uint32_t result = rtc_sleep_start(s_config.wakeup_triggers, 0);
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
return rtc_sleep_start(s_config.wakeup_triggers, 0);
// Restore CPU frequency
rtc_clk_cpu_freq_set(cpu_freq);
// re-enable UART output
resume_uarts();
return result;
}
void IRAM_ATTR esp_deep_sleep_start()
{
// record current RTC time
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
@@ -165,8 +212,11 @@ void IRAM_ATTR esp_deep_sleep_start()
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Correct the sleep time
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
// Enter sleep
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | pd_flags);
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | RTC_SLEEP_PD_XTAL | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
@@ -201,11 +251,11 @@ static void rtc_wdt_disable()
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
rtc_cpu_freq_t cpu_freq, uint32_t flash_enable_time_us,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
rtc_cpu_freq_t cpu_freq, uint32_t flash_enable_time_us,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
@@ -217,9 +267,6 @@ static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
rtc_vddsdio_set_config(vddsdio_config);
}
// Restore CPU frequency
rtc_clk_cpu_freq_set(cpu_freq);
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
@@ -231,53 +278,61 @@ static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
esp_err_t esp_light_sleep_start()
{
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
int other_cpu = xPortGetCoreID() ? 0 : 1;
esp_cpu_stall(other_cpu);
// Other CPU is stalled, need to disable DPORT protection
esp_dport_access_int_pause();
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
uint64_t frc_time_at_start = esp_timer_get_time();
DPORT_STALL_OTHER_CPU_START();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Amount of time to subtract from actual sleep time.
// This is spent on entering and leaving light sleep.
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US;
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US
+ CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY;
// Don't power down VDD_SDIO if pSRAM is used.
#ifndef CONFIG_SPIRAM_SUPPORT
if (s_config.sleep_duration > FLASH_PD_MIN_SLEEP_TIME_US &&
s_config.sleep_duration > flash_enable_time_us) {
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
flash_enable_time_us + LIGHT_SLEEP_TIME_OVERHEAD_US + LIGHT_SLEEP_MIN_TIME_US);
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
s_config.sleep_duration -= flash_enable_time_us;
s_config.sleep_time_adjustment += flash_enable_time_us;
}
#endif //CONFIG_SPIRAM_SUPPORT
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
rtc_wdt_enable(1000);
// Save current CPU frequency, light sleep will switch to XTAL
rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags, cpu_freq,
esp_err_t err = esp_light_sleep_inner(pd_flags,
flash_enable_time_us, vddsdio_config);
// At this point, if FRC1 is used for timekeeping, time will be lagging behind.
// This will update the microsecond count based on RTC timer.
// FRC1 has been clock gated for the duration of the sleep, correct for that.
uint64_t rtc_ticks_at_end = rtc_time_get();
uint64_t frc_time_at_end = esp_timer_get_time();
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start,
esp_clk_slowclk_cal_get());
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
int64_t time_diff = rtc_time_diff - frc_time_diff;
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
* for very small values of sleep_duration. Ignore those to keep esp_timer
* monotonic.
*/
if (time_diff > 0) {
esp_timer_impl_advance(time_diff);
}
esp_set_time_from_rtc();
// However, we do not advance RTOS ticks here; doing so would be rather messy,
// as ticks can only be advanced on CPU0.
// If this is needed by the application, automatic light sleep (tickless idle)
// will handle that better.
esp_cpu_unstall(other_cpu);
esp_dport_access_int_resume();
DPORT_STALL_OTHER_CPU_END();
rtc_wdt_disable();
portEXIT_CRITICAL(&light_sleep_lock);
return err;
@@ -343,9 +398,13 @@ esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
static void timer_wakeup_prepare()
{
uint32_t period = esp_clk_slowclk_cal_get();
uint64_t rtc_count_delta = rtc_time_us_to_slowclk(s_config.sleep_duration, period);
uint64_t cur_rtc_count = rtc_time_get();
rtc_sleep_set_wakeup_time(cur_rtc_count + rtc_count_delta);
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
if (sleep_duration < 0) {
sleep_duration = 0;
}
int64_t rtc_count_delta = rtc_time_us_to_slowclk(sleep_duration, period);
rtc_sleep_set_wakeup_time(s_config.rtc_ticks_at_sleep_start + rtc_count_delta);
}
esp_err_t esp_sleep_enable_touchpad_wakeup()
@@ -561,6 +620,10 @@ static uint32_t get_power_down_flags()
}
}
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
}
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
@@ -578,5 +641,8 @@ static uint32_t get_power_down_flags()
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_XTAL;
}
return pd_flags;
}