Merge branch 'docs/update_format_issues_wrongly_added_to_the_ingore_file' into 'master'

docs: update document format issues

Closes DOC-6383

See merge request espressif/esp-idf!26096
This commit is contained in:
Dai Zi Yan
2023-10-14 03:55:42 +08:00
47 changed files with 245 additions and 245 deletions

View File

@@ -82,7 +82,7 @@ You can also see the information on segments in the ESP-IDF logs while your appl
* version word (4 bytes)
* signature data (64 bytes)
6. If the option :ref:`CONFIG_SECURE_SIGNED_APPS_SCHEME` is set to RSA or ECDSA (V2) then the application image will have an additional signature sector of that is 4K bytes in size. For more details on the format of this signature sector, please refer to :ref:`signature-block-format`.
6. If the option :ref:`CONFIG_SECURE_SIGNED_APPS_SCHEME` is set to RSA or ECDSA (V2) then the application image will have an additional signature sector of 4 KB in size. For more details on the format of this signature sector, please refer to :ref:`signature-block-format`.
.. _app-image-format-application-description:

View File

@@ -10,12 +10,12 @@ The event loop library allows components to declare events so that other compone
.. only:: SOC_WIFI_SUPPORTED
One common case is, if a high-level library is using the Wi-Fi library: it may subscribe to :ref:`ESP32 Wi-Fi Programming Model <wifi-programming-model>` directly and act on those events.
One common case is, if a high-level library is using the Wi-Fi library: it may subscribe to :ref:`ESP32 Wi-Fi Programming Model <wifi-programming-model>` directly and act on those events.
.. only:: SOC_BT_SUPPORTED
.. note::
Various modules of the Bluetooth stack deliver events to applications via dedicated callback functions instead of via the Event Loop Library.
Using ``esp_event`` APIs
@@ -134,7 +134,7 @@ The default event loop is a special type of loop used for system events (Wi-Fi e
- :cpp:func:`esp_event_loop_create_default`
* - :cpp:func:`esp_event_loop_delete`
- :cpp:func:`esp_event_loop_delete_default`
* - :cpp:func:`esp_event_handler_register_with`
* - :cpp:func:`esp_event_handler_register_with`
- :cpp:func:`esp_event_handler_register`
* - :cpp:func:`esp_event_handler_unregister_with`
- :cpp:func:`esp_event_handler_unregister`
@@ -182,7 +182,7 @@ If the hypothetical event ``MY_OTHER_EVENT_BASE``, ``MY_OTHER_EVENT_ID`` is post
Handler Un-Registering Itself
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In general, an event handler run by an event loop is **not allowed to do any (un)registering activity on that event loop**. There is one exception, though: un-registering itself is allowed for the handler. E.g., it is possible to do the following:
In general, an event handler run by an event loop is **not allowed to do any registering/unregistering activity on that event loop**. There is one exception, though: un-registering itself is allowed for the handler. E.g., it is possible to do the following:
.. code-block:: c

View File

@@ -48,7 +48,7 @@ To use the partial image download feature, enable ``partial_http_download`` conf
This option is useful while fetching image from a service like AWS S3, where mbedTLS Rx buffer size (:ref:`CONFIG_MBEDTLS_SSL_IN_CONTENT_LEN`) can be set to a lower value which is not possible without enabling this configuration.
Default value of mbedTLS Rx buffer size is set to 16 K. By using ``partial_http_download`` with ``max_http_request_size`` of 4 K, size of mbedTLS Rx buffer can be reduced to 4 K. With this configuration, memory saving of around 12 K is expected.
Default value of mbedTLS Rx buffer size is set to 16 KB. By using ``partial_http_download`` with ``max_http_request_size`` of 4 KB, size of mbedTLS Rx buffer can be reduced to 4 KB. With this configuration, memory saving of around 12 KB is expected.
Signature Verification

View File

@@ -8,7 +8,7 @@ OTA Process Overview
The OTA update mechanism allows a device to update itself based on data received while the normal firmware is running (for example, over Wi-Fi or Bluetooth.)
OTA requires configuring the :doc:`Partition Table <../../api-guides/partition-tables>` of the device with at least two OTA app slot partitions (i.e., ``ota_0`` and ``ota_1``) and an OTA Data Partition.
OTA requires configuring the :doc:`../../api-guides/partition-tables` of the device with at least two OTA app slot partitions (i.e., ``ota_0`` and ``ota_1``) and an OTA Data Partition.
The OTA operation functions write a new app firmware image to whichever OTA app slot that is currently not selected for booting. Once the image is verified, the OTA Data partition is updated to specify that this image should be used for the next boot.
@@ -17,7 +17,7 @@ The OTA operation functions write a new app firmware image to whichever OTA app
OTA Data Partition
------------------
An OTA data partition (type ``data``, subtype ``ota``) must be included in the :doc:`Partition Table <../../api-guides/partition-tables>` of any project which uses the OTA functions.
An OTA data partition (type ``data``, subtype ``ota``) must be included in the :doc:`../../api-guides/partition-tables` of any project which uses the OTA functions.
For factory boot settings, the OTA data partition should contain no data (all bytes erased to 0xFF). In this case, the ESP-IDF software bootloader will boot the factory app if it is present in the partition table. If no factory app is included in the partition table, the first available OTA slot (usually ``ota_0``) is booted.
@@ -201,7 +201,7 @@ The verification of signed OTA updates can be performed even without enabling ha
OTA Tool ``otatool.py``
-----------------------
The component ``app_update`` provides a tool :component_file:`otatool.py <app_update/otatool.py>` for performing OTA partition-related operations on a target device. The following operations can be performed using the tool:
The component ``app_update`` provides a tool :component_file:`app_update/otatool.py` for performing OTA partition-related operations on a target device. The following operations can be performed using the tool:
- read contents of otadata partition (read_otadata)
- erase otadata partition, effectively resetting device to factory app (erase_otadata)
@@ -297,10 +297,10 @@ More information can be obtained by specifying ``--help`` as argument:
See Also
--------
* :doc:`Partition Table documentation <../../api-guides/partition-tables>`
* :doc:`Partition API <../storage/partition>`
* :doc:`Lower-Level SPI Flash API <../peripherals/spi_flash/index>`
* :doc:`ESP HTTPS OTA <esp_https_ota>`
* :doc:`../../api-guides/partition-tables`
* :doc:`../storage/partition`
* :doc:`../peripherals/spi_flash/index`
* :doc:`esp_https_ota`
Application Example
-------------------

View File

@@ -92,7 +92,7 @@ Dynamic Frequency Scaling and Peripheral Drivers
When DFS is enabled, the APB frequency can be changed multiple times within a single RTOS tick. The APB frequency change does not affect the operation of some peripherals, while other peripherals may have issues. For example, Timer Group peripheral timers keeps counting, however, the speed at which they count changes proportionally to the APB frequency.
Peripheral clock sources such as ``REF_TICK``, ``XTAL``, ``RC_FAST`` (i.e. ``RTC_8M``), their frequencies will not be inflenced by APB frequency. And therefore, to ensure the peripheral behaves consistently during DFS, it is recommanded to select one of these clocks as the peripheral clock source. For more specific guidelines, please refer to the "Power Management" section of each peripheral's "API Reference > Peripherals API" page.
Peripheral clock sources such as ``REF_TICK``, ``XTAL``, ``RC_FAST`` (i.e., ``RTC_8M``), their frequencies will not be inflenced by APB frequency. And therefore, to ensure the peripheral behaves consistently during DFS, it is recommanded to select one of these clocks as the peripheral clock source. For more specific guidelines, please refer to the "Power Management" section of each peripheral's "API Reference > Peripherals API" page.
Currently, the following peripheral drivers are aware of DFS and use the ``ESP_PM_APB_FREQ_MAX`` lock for the duration of the transaction:

View File

@@ -5,7 +5,7 @@ System Time
{IDF_TARGET_RTC_CLK_FRE:default="Not updated", esp32="150 kHz", esp32s2="90 kHz", esp32s3="136 kHz", esp32c3="136 kHz", esp32c2="136 kHz", esp32c6="150 kHz", esp32h2="150 kHz"}
{IDF_TARGET_INT_OSC_FRE:default="Not updated", esp32="8.5 MHz", esp32s2="8.5 MHz", esp32s3="17.5 MHz", esp32c3="17.5 MHz", esp32c2="17.5 MHz", esp32c6="20 MHz"}
{IDF_TARGET_INT_OSC_FRE_DIVIDED:default="Not updated", esp32="~33 kHz", esp32s2="~33 kHz", esp32s3="~68 kHz", esp32c3="~68 kHz", esp32c2="~68 kHz"}
{IDF_TARGET_INT_OSC_FRE_DIVIDED:default="Not updated", esp32="about 33 kHz", esp32s2="about 33 kHz", esp32s3="about 68 kHz", esp32c3="about 68 kHz", esp32c2="about 68 kHz"}
{IDF_TARGET_EXT_CRYSTAL_PIN:default="Not updated", esp32="32K_XP and 32K_XN", esp32s2="XTAL_32K_P and XTAL_32K_N", esp32s3="XTAL_32K_P and XTAL_32K_N", esp32c3="XTAL_32K_P and XTAL_32K_N", esp32c6="XTAL_32K_P and XTAL_32K_N", esp32h2="XTAL_32K_P and XTAL_32K_N"}
{IDF_TARGET_EXT_OSC_PIN:default="Not updated", esp32="32K_XN", esp32s2="XTAL_32K_P", esp32s3="XTAL_32K_P", esp32c3="XTAL_32K_P", esp32c2="GPIO0", esp32c6="XTAL_32K_P"}
{IDF_TARGET_HARDWARE_DESIGN_URL:default="Not updated",esp32="`ESP32 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32_hardware_design_guidelines_en.pdf#page=11>`_", esp32s2="`ESP32-S2 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32-s2_hardware_design_guidelines_en.pdf#page=10>`_", esp32s3="`ESP32-S3 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32-s3_hardware_design_guidelines_en.pdf#page=11>`_", esp32c3="`ESP32-C3 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32-c3_hardware_design_guidelines_en.pdf#page=9>`_", esp32c6="`ESP32-C6 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32-c6_hardware_design_guidelines_en.pdf#page=12>`_", esp32c2="`ESP8684 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp8684_hardware_design_guidelines_en.pdf#page=10>`_", esp32h2="`ESP32-H2 Hardware Design Guidelines <https://www.espressif.com/sites/default/files/documentation/esp32-h2_hardware_design_guidelines_en.pdf#page=11>`_"}