mirror of
https://github.com/espressif/esp-idf.git
synced 2025-12-07 17:08:49 +00:00
Merge branch 'feature/sysview_via_apptrace' into 'master'
sysview via apptrace See merge request !708
This commit is contained in:
@@ -104,45 +104,6 @@ config ESP32_CORE_DUMP_LOG_LEVEL
|
||||
help
|
||||
Config core dump module logging level (0-5).
|
||||
|
||||
choice ESP32_APPTRACE_DESTINATION
|
||||
prompt "AppTrace: destination"
|
||||
default ESP32_APPTRACE_DEST_NONE
|
||||
help
|
||||
Select destination for application trace: trace memory, uart or none (to disable).
|
||||
|
||||
config ESP32_APPTRACE_DEST_TRAX
|
||||
bool "Trace memory"
|
||||
select ESP32_APPTRACE_ENABLE
|
||||
config ESP32_APPTRACE_DEST_UART
|
||||
bool "UART"
|
||||
select ESP32_APPTRACE_ENABLE
|
||||
config ESP32_APPTRACE_DEST_NONE
|
||||
bool "None"
|
||||
endchoice
|
||||
|
||||
config ESP32_APPTRACE_ENABLE
|
||||
bool
|
||||
depends on !ESP32_TRAX
|
||||
select MEMMAP_TRACEMEM
|
||||
select MEMMAP_TRACEMEM_TWOBANKS
|
||||
default F
|
||||
help
|
||||
Enables/disable application tracing module.
|
||||
|
||||
config ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO
|
||||
int "AppTrace: Timeout for flushing last trace data to host on panic"
|
||||
depends on ESP32_APPTRACE_ENABLE
|
||||
default 4294967295
|
||||
help
|
||||
Timeout for flushing last trace data to host in case of panic. In us.
|
||||
|
||||
config ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH
|
||||
int "AppTrace: Threshold for flushing last trace data to host on panic"
|
||||
depends on ESP32_APPTRACE_DEST_TRAX
|
||||
default 50
|
||||
help
|
||||
Threshold for flushing last trace data to host on panic. In percents of TRAX memory block length.
|
||||
|
||||
# Not implemented and/or needs new silicon rev to work
|
||||
config MEMMAP_SPISRAM
|
||||
bool "Use external SPI SRAM chip as main memory"
|
||||
|
||||
@@ -1,994 +0,0 @@
|
||||
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Hot It Works
|
||||
// ************
|
||||
|
||||
// 1. Components Overview
|
||||
// ======================
|
||||
|
||||
// Xtensa has useful feature: TRAX debug module. It allows recording program execution flow during run-time without disturbing CPU commands flow.
|
||||
// Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
|
||||
// trace memory via its registers by means of JTAG, APB or ERI transactions.
|
||||
// ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
|
||||
// ESP32 allows muxing access to trace memory blocks in such a way that while one block is accessed by CPUs another can be accessed via JTAG by host
|
||||
// via reading/writing TRAX registers. Block muxing is configurable at run-time and allows switching trace memory blocks between
|
||||
// accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
|
||||
// This moduile implements application tracing feature based on above mechanisms. This feature allows to transfer arbitrary user data to
|
||||
// host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
|
||||
|
||||
// ------>------ ----- (host components) -----
|
||||
// | | | |
|
||||
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
|
||||
// |apptrace user|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data file|
|
||||
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
|
||||
// | | | |
|
||||
// | ------<------ ---------------- |
|
||||
// |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
|
||||
// ----------------
|
||||
|
||||
// In general tracing happens in the following way. User aplication requests tracing module to send some data by calling esp_apptrace_buffer_get(),
|
||||
// moduile allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
|
||||
// When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
|
||||
// While target application fills one memory block host reads another block via JTAG.
|
||||
// To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
|
||||
// can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
|
||||
// So this implementation's target CPU overhead is produced only by calls to allocate/manage buffers and data copying.
|
||||
// On host special OpenOCD command must be used to read trace data.
|
||||
|
||||
// 2.1.1.1 TRAX Registers layout
|
||||
// =============================
|
||||
|
||||
// This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
|
||||
// - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
|
||||
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
|
||||
// 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
|
||||
// Host writes zero to this field when it finishes reading exposed block;
|
||||
// 22..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 1-2 bits;
|
||||
// 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
|
||||
// - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then currentlly CPU is changing TRAX registers and
|
||||
// this register holds address of the instruction which application will execute when it finishes with those registers modifications.
|
||||
// See 'Targets Connection' setion for details.
|
||||
|
||||
// 3. Modes of operation
|
||||
// =====================
|
||||
|
||||
// This module supports two modes of operation:
|
||||
// - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
|
||||
// exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
|
||||
// trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
|
||||
// There is menuconfig option CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH which control the threshold for flushing data on panic.
|
||||
// - Streaming mode. Tracing module enters this mode when host connects to targets and sets respective bit in control register. In this mode tracing
|
||||
// module waits for specified time until host read all the data from exposed block.
|
||||
// On panic tracing module waits (timeout is configured via menuconfig via ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data
|
||||
// from the previously exposed block.
|
||||
|
||||
// 4. Communication Protocol
|
||||
// =========================
|
||||
|
||||
// 4.1 Trace Memory Blocks
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
// Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data avalable.
|
||||
// When current input trace memory block is filled tracing module exposes block to host and updates block_len and block_id fields in control register.
|
||||
// Host reads new register value and according to it starts reading data from exposed block. Meanwhile target starts filling another trace block.
|
||||
// When host finishes reading the block it clears block_len field in control register indicating to target that it is ready to accept the next block.
|
||||
|
||||
// 4.2 User Data Chunks Level
|
||||
// --------------------------
|
||||
|
||||
// Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
|
||||
// multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
|
||||
// that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
|
||||
// module prepends all user data chunks with 4 bytes header which contains allocated buffer size and actual data length within it. OpenOCD command
|
||||
// which reads application traces will report error when it will read incompleted user data block.
|
||||
|
||||
// 4.3 Targets Connection/Disconnection
|
||||
// ------------------------------------
|
||||
|
||||
// When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
|
||||
// on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
|
||||
// register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
|
||||
// non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
|
||||
// the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
|
||||
// After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
|
||||
// are set up they are resumed. Tracing starts without further intrusion into CPUs work.
|
||||
// When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
|
||||
// as for connecting, but 'host connected' bits are cleared on ESP32 cores.
|
||||
|
||||
// 5. Module Access Synchronization
|
||||
// ================================
|
||||
|
||||
// Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
|
||||
// vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
|
||||
// ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
|
||||
// it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
|
||||
// - Support for timeouts.
|
||||
// - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
|
||||
// When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
|
||||
// So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
|
||||
// WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
|
||||
// There are some differences how mutex behaves when it is used from task and ISR context when timeout is non-zero:
|
||||
// - In task context when mutex can not be locked portYIELD() is called before check for timeout condition to alow othet tasks work on the same CPU.
|
||||
// - In ISR context when mutex can not be locked nothing is done before expired time check.
|
||||
// WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting on internal locks
|
||||
// and when waiting for host to complete previous block reading, so if wating timeout value exceedes watchdog's one it can lead to system reboot.
|
||||
|
||||
// 6. Timeouts
|
||||
// ------------
|
||||
|
||||
// Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in micorseconds.
|
||||
// There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
|
||||
// - Trace data are locked by another task/ISR. When wating on trace data lock.
|
||||
// - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
|
||||
// When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
|
||||
// time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
|
||||
|
||||
// ALSO SEE example usage of application tracing module in 'components/log/README.rst'
|
||||
|
||||
#include <string.h>
|
||||
#include "soc/soc.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "eri.h"
|
||||
#include "trax.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/portmacro.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/task.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "esp_app_trace.h"
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
#define ESP_APPTRACE_DEBUG_STATS_ENABLE 0
|
||||
#define ESP_APPTRACE_BUF_HISTORY_DEPTH (16*100)
|
||||
|
||||
#define ESP_APPTRACE_MAX_VPRINTF_ARGS 256
|
||||
|
||||
#define ESP_APPTRACE_PRINT_LOCK_NONE 0
|
||||
#define ESP_APPTRACE_PRINT_LOCK_SEM 1
|
||||
#define ESP_APPTRACE_PRINT_LOCK_MUX 2
|
||||
#define ESP_APPTRACE_PRINT_LOCK ESP_APPTRACE_PRINT_LOCK_NONE//ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
|
||||
#define ESP_APPTRACE_USE_LOCK_SEM 0 // 1 - semaphore (now may be broken), 0 - portMUX_TYPE
|
||||
|
||||
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
|
||||
#include "esp_log.h"
|
||||
const static char *TAG = "esp_apptrace";
|
||||
|
||||
#if ESP_APPTRACE_PRINT_LOCK != ESP_APPTRACE_PRINT_LOCK_NONE
|
||||
#define ESP_APPTRACE_LOG( format, ... ) \
|
||||
do { \
|
||||
esp_apptrace_log_lock(); \
|
||||
ets_printf(format, ##__VA_ARGS__); \
|
||||
esp_apptrace_log_unlock(); \
|
||||
} while(0)
|
||||
#else
|
||||
#define ESP_APPTRACE_LOG( format, ... ) \
|
||||
do { \
|
||||
ets_printf(format, ##__VA_ARGS__); \
|
||||
} while(0)
|
||||
#endif
|
||||
|
||||
#define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \
|
||||
do { \
|
||||
if (LOG_LOCAL_LEVEL >= level) { \
|
||||
ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
|
||||
|
||||
#define ESP_APPTRACE_CPUTICKS2US(_t_) ((_t_)/(XT_CLOCK_FREQ/1000000))
|
||||
|
||||
// TODO: move these (and same definitions in trax.c to dport_reg.h)
|
||||
#define TRACEMEM_MUX_PROBLK0_APPBLK1 0
|
||||
#define TRACEMEM_MUX_BLK0_ONLY 1
|
||||
#define TRACEMEM_MUX_BLK1_ONLY 2
|
||||
#define TRACEMEM_MUX_PROBLK1_APPBLK0 3
|
||||
|
||||
// TRAX is disabled, so we use its registers for our own purposes
|
||||
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
|
||||
#define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT
|
||||
#define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC
|
||||
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0xFFUL
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
|
||||
#define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23)
|
||||
|
||||
static volatile uint8_t *s_trax_blocks[] = {
|
||||
(volatile uint8_t *) 0x3FFFC000,
|
||||
(volatile uint8_t *) 0x3FFF8000
|
||||
};
|
||||
|
||||
#define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0]))
|
||||
|
||||
//#define ESP_APPTRACE_TRAX_BUFFER_SIZE (ESP_APPTRACE_TRAX_BLOCK_SIZE/4)
|
||||
|
||||
#define ESP_APPTRACE_TRAX_INBLOCK_START 0//(ESP_APPTRACE_TRAX_BLOCK_ID_MSK - 4)
|
||||
|
||||
|
||||
#define ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET() (&s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
|
||||
#define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
|
||||
|
||||
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
||||
/** keeps info about apptrace API (write/get buffer) caller and internal module's data related to that call
|
||||
* NOTE: used for module debug purposes, currently this functionality is partially broken,
|
||||
* but can be useful in future
|
||||
*/
|
||||
typedef struct {
|
||||
uint32_t hnd; // task/ISR handle
|
||||
uint32_t ts; // timestamp
|
||||
uint32_t stamp; // test (user) trace buffer stamp
|
||||
uint32_t in_block; // TRAX input block ID
|
||||
uint32_t eri_len[2]; // contents of ERI control register upon entry to / exit from API routine
|
||||
uint32_t wr_err; // number of trace write errors
|
||||
} esp_trace_buffer_wr_hitem_t;
|
||||
|
||||
/** apptrace API calls history. History is organized as ring buffer*/
|
||||
typedef struct {
|
||||
uint32_t hist_rd; // the first history entry index
|
||||
uint32_t hist_wr; // the last history entry index
|
||||
esp_trace_buffer_wr_hitem_t hist[ESP_APPTRACE_BUF_HISTORY_DEPTH]; // history data
|
||||
} esp_trace_buffer_wr_stats_t;
|
||||
|
||||
/** trace module stats */
|
||||
typedef struct {
|
||||
esp_trace_buffer_wr_stats_t wr;
|
||||
} esp_trace_buffer_stats_t;
|
||||
#endif
|
||||
|
||||
/** Trace data header. Every user data chunk is prepended with this header.
|
||||
* User allocates block with esp_apptrace_buffer_get and then fills it with data,
|
||||
* in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
|
||||
* so it is possible that user data are incomplete when TRAX memory block is exposed to the host.
|
||||
* In this case host SW will see that wr_sz < block_sz and will report error.
|
||||
*/
|
||||
typedef struct {
|
||||
uint16_t block_sz; // size of allocated block for user data
|
||||
uint16_t wr_sz; // size of actually written data
|
||||
} esp_tracedata_hdr_t;
|
||||
|
||||
/** TRAX HW transport state */
|
||||
typedef struct {
|
||||
uint32_t in_block; // input block ID
|
||||
uint32_t markers[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // block filling level markers
|
||||
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
||||
esp_trace_buffer_stats_t stats; // stats
|
||||
#endif
|
||||
} esp_apptrace_trax_state_t;
|
||||
|
||||
/** memory block parameters */
|
||||
typedef struct {
|
||||
uint8_t *start; // start address
|
||||
uint32_t sz; // size
|
||||
} esp_apptrace_mem_block_t;
|
||||
|
||||
/** TRAX HW transport data */
|
||||
typedef struct {
|
||||
volatile esp_apptrace_trax_state_t state; // state
|
||||
esp_apptrace_mem_block_t blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // memory blocks
|
||||
} esp_apptrace_trax_data_t;
|
||||
|
||||
/** tracing module synchronization lock */
|
||||
typedef struct {
|
||||
volatile unsigned int irq_stat; // local (on 1 CPU) IRQ state
|
||||
portMUX_TYPE portmux; // mux for synchronization
|
||||
} esp_apptrace_lock_t;
|
||||
|
||||
#define ESP_APPTRACE_MUX_GET(_m_) (&(_m_)->portmux)
|
||||
|
||||
/** tracing module internal data */
|
||||
typedef struct {
|
||||
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
||||
SemaphoreHandle_t lock;
|
||||
#else
|
||||
esp_apptrace_lock_t lock; // sync lock
|
||||
#endif
|
||||
uint8_t inited; // module initialization state flag
|
||||
esp_apptrace_trax_data_t trax; // TRAX HW transport data
|
||||
} esp_apptrace_buffer_t;
|
||||
|
||||
/** waiting timeout data */
|
||||
typedef struct {
|
||||
uint32_t start; // waiting start (in ticks)
|
||||
uint32_t tmo; // timeout (in us)
|
||||
} esp_apptrace_tmo_t;
|
||||
|
||||
static esp_apptrace_buffer_t s_trace_buf;
|
||||
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
static SemaphoreHandle_t s_log_lock;
|
||||
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
||||
static esp_apptrace_lock_t s_log_lock;
|
||||
#endif
|
||||
|
||||
static inline void esp_apptrace_tmo_init(esp_apptrace_tmo_t *tmo, uint32_t user_tmo)
|
||||
{
|
||||
tmo->start = xthal_get_ccount();
|
||||
tmo->tmo = user_tmo;
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
|
||||
{
|
||||
unsigned cur, elapsed;
|
||||
|
||||
if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) {
|
||||
cur = xthal_get_ccount();
|
||||
if (tmo->start <= cur) {
|
||||
elapsed = cur - tmo->start;
|
||||
} else {
|
||||
elapsed = 0xFFFFFFFF - tmo->start + cur;
|
||||
}
|
||||
if (ESP_APPTRACE_CPUTICKS2US(elapsed) >= tmo->tmo) {
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX || ESP_APPTRACE_USE_LOCK_SEM == 0
|
||||
static inline void esp_apptrace_mux_init(esp_apptrace_lock_t *mux)
|
||||
{
|
||||
ESP_APPTRACE_MUX_GET(mux)->mux = portMUX_FREE_VAL;
|
||||
mux->irq_stat = 0;
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *mux, uint32_t tmo)
|
||||
{
|
||||
uint32_t res = ~portMUX_FREE_VAL;
|
||||
esp_apptrace_tmo_t sleeping_tmo;
|
||||
|
||||
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
|
||||
while (1) {
|
||||
res = (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL;
|
||||
// first disable IRQs on this CPU, this will prevent current task from been
|
||||
// preempted by higher prio tasks, otherwise deadlock can happen:
|
||||
// when lower prio task took mux and then preempted by higher prio one which also tries to
|
||||
// get mux with INFINITE timeout
|
||||
unsigned int irq_stat = portENTER_CRITICAL_NESTED();
|
||||
// Now try to lock mux
|
||||
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, portMUX_FREE_VAL, &res);
|
||||
if (res == portMUX_FREE_VAL) {
|
||||
// do not enable IRQs, we will held them disabled until mux is unlocked
|
||||
// we do not need to flush cache region for mux->irq_stat because it is used
|
||||
// to hold and restore IRQ state only for CPU which took mux, other CPUs will not use this value
|
||||
mux->irq_stat = irq_stat;
|
||||
break;
|
||||
}
|
||||
// if mux is locked by other task/ISR enable IRQs and let other guys work
|
||||
portEXIT_CRITICAL_NESTED(irq_stat);
|
||||
|
||||
if (!xPortInIsrContext()) {
|
||||
portYIELD();
|
||||
}
|
||||
|
||||
int err = esp_apptrace_tmo_check(&sleeping_tmo);
|
||||
if (err != ESP_OK) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_mux_give(esp_apptrace_lock_t *mux)
|
||||
{
|
||||
esp_err_t ret = ESP_OK;
|
||||
uint32_t res = 0;
|
||||
unsigned int irq_stat;
|
||||
|
||||
res = portMUX_FREE_VAL;
|
||||
|
||||
// first of all save a copy of IRQ status for this locker because uxPortCompareSet will unlock mux and tasks/ISRs
|
||||
// from other core can overwrite mux->irq_stat
|
||||
irq_stat = mux->irq_stat;
|
||||
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL, &res);
|
||||
// enable local interrupts
|
||||
portEXIT_CRITICAL_NESTED(irq_stat);
|
||||
|
||||
if ( ((res & portMUX_VAL_MASK) >> portMUX_VAL_SHIFT) == xPortGetCoreID() ) {
|
||||
// nothing to do
|
||||
} else if ( res == portMUX_FREE_VAL ) {
|
||||
ret = ESP_FAIL; // should never get here
|
||||
} else {
|
||||
ret = ESP_FAIL; // should never get here
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline esp_err_t esp_apptrace_log_init()
|
||||
{
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
s_log_lock = xSemaphoreCreateBinary();
|
||||
if (!s_log_lock) {
|
||||
ets_printf("%s: Failed to create print lock sem!", TAG);
|
||||
return ESP_FAIL;
|
||||
}
|
||||
xSemaphoreGive(s_log_lock);
|
||||
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
||||
esp_apptrace_mux_init(&s_log_lock);
|
||||
#endif
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static inline void esp_apptrace_log_cleanup()
|
||||
{
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
vSemaphoreDelete(s_log_lock);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int esp_apptrace_log_lock()
|
||||
{
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
BaseType_t ret;
|
||||
if (xPortInIsrContext()) {
|
||||
ret = xSemaphoreTakeFromISR(s_print_lock, NULL);
|
||||
} else {
|
||||
ret = xSemaphoreTake(s_print_lock, portMAX_DELAY);
|
||||
}
|
||||
return ret;
|
||||
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
||||
int ret = esp_apptrace_lock_take(&s_log_lock, ESP_APPTRACE_TMO_INFINITE);
|
||||
return ret;
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void esp_apptrace_log_unlock()
|
||||
{
|
||||
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
||||
if (xPortInIsrContext()) {
|
||||
xSemaphoreGiveFromISR(s_log_lock, NULL);
|
||||
} else {
|
||||
xSemaphoreGive(s_log_lock);
|
||||
}
|
||||
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
||||
esp_apptrace_mux_give(&s_log_lock);
|
||||
#endif
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_lock_init()
|
||||
{
|
||||
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
||||
s_trace_buf.lock = xSemaphoreCreateBinary();
|
||||
if (!s_trace_buf.lock) {
|
||||
ESP_APPTRACE_LOGE("Failed to create lock!");
|
||||
return ESP_FAIL;
|
||||
}
|
||||
xSemaphoreGive(s_trace_buf.lock);
|
||||
#else
|
||||
esp_apptrace_mux_init(&s_trace_buf.lock);
|
||||
#endif
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_lock_cleanup()
|
||||
{
|
||||
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
||||
vSemaphoreDelete(s_trace_buf.lock);
|
||||
#endif
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_lock(uint32_t *tmo)
|
||||
{
|
||||
unsigned cur, elapsed, start = xthal_get_ccount();
|
||||
|
||||
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
||||
BaseType_t ret;
|
||||
if (xPortInIsrContext()) {
|
||||
ret = xSemaphoreTakeFromISR(s_trace_buf.lock, NULL);
|
||||
} else {
|
||||
ret = xSemaphoreTake(s_trace_buf.lock, portTICK_PERIOD_MS * (*tmo) / 1000);
|
||||
}
|
||||
if (ret != pdTRUE) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
#else
|
||||
esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, *tmo);
|
||||
if (ret != ESP_OK) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
#endif
|
||||
// decrease tmo by actual waiting time
|
||||
cur = xthal_get_ccount();
|
||||
if (start <= cur) {
|
||||
elapsed = cur - start;
|
||||
} else {
|
||||
elapsed = ULONG_MAX - start + cur;
|
||||
}
|
||||
if (ESP_APPTRACE_CPUTICKS2US(elapsed) > *tmo) {
|
||||
*tmo = 0;
|
||||
} else {
|
||||
*tmo -= ESP_APPTRACE_CPUTICKS2US(elapsed);
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_unlock()
|
||||
{
|
||||
esp_err_t ret = ESP_OK;
|
||||
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
||||
if (xPortInIsrContext()) {
|
||||
xSemaphoreGiveFromISR(s_trace_buf.lock, NULL);
|
||||
} else {
|
||||
xSemaphoreGive(s_trace_buf.lock);
|
||||
}
|
||||
#else
|
||||
ret = esp_apptrace_mux_give(&s_trace_buf.lock);
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
static void esp_apptrace_trax_init()
|
||||
{
|
||||
// Stop trace, if any (on the current CPU)
|
||||
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP);
|
||||
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN);
|
||||
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START));
|
||||
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0);
|
||||
|
||||
ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID());
|
||||
}
|
||||
|
||||
// assumed to be protected by caller from multi-core/thread access
|
||||
static esp_err_t esp_apptrace_trax_block_switch()
|
||||
{
|
||||
int prev_block_num = s_trace_buf.trax.state.in_block % 2;
|
||||
int new_block_num = prev_block_num ? (0) : (1);
|
||||
int res = ESP_OK;
|
||||
extern uint32_t __esp_apptrace_trax_eri_updated;
|
||||
|
||||
// indicate to host that we are about to update.
|
||||
// this is used only to place CPU into streaming mode at tracing startup
|
||||
// before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
|
||||
// HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
|
||||
// here we set address to set bp at
|
||||
// enter ERI update critical section
|
||||
eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated);
|
||||
|
||||
uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
|
||||
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
||||
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
||||
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr - 1];
|
||||
hi->eri_len[1] = ctrl_reg;
|
||||
}
|
||||
#endif
|
||||
uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg;
|
||||
if (host_connected) {
|
||||
uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg);
|
||||
uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg);
|
||||
if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) {
|
||||
// ESP_APPTRACE_LOGE("HC[%d]: Can not switch %x %d %x %x/%lx", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
|
||||
// s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block);
|
||||
res = ESP_ERR_NO_MEM;
|
||||
goto _on_func_exit;
|
||||
}
|
||||
}
|
||||
s_trace_buf.trax.state.markers[new_block_num] = 0;
|
||||
// switch to new block
|
||||
s_trace_buf.trax.state.in_block++;
|
||||
|
||||
DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, new_block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY);
|
||||
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) |
|
||||
host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num]));
|
||||
|
||||
_on_func_exit:
|
||||
// exit ERI update critical section
|
||||
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0);
|
||||
asm volatile (
|
||||
" .global __esp_apptrace_trax_eri_updated\n"
|
||||
"__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start
|
||||
return res;
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_trax_block_switch_waitus(uint32_t tmo)
|
||||
{
|
||||
int res;
|
||||
esp_apptrace_tmo_t sleeping_tmo;
|
||||
|
||||
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
|
||||
|
||||
while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) {
|
||||
res = esp_apptrace_tmo_check(&sleeping_tmo);
|
||||
if (res != ESP_OK) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
static uint8_t *esp_apptrace_trax_get_buffer(size_t size, uint32_t *tmo)
|
||||
{
|
||||
uint8_t *buf_ptr = NULL;
|
||||
volatile uint32_t *cur_block_marker;
|
||||
esp_apptrace_mem_block_t *cur_block;
|
||||
|
||||
int res = esp_apptrace_lock(tmo);
|
||||
if (res != ESP_OK) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
||||
esp_trace_buffer_wr_hitem_t *hi = NULL;
|
||||
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
||||
hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr++];
|
||||
hi->hnd = *(uint32_t *)(buf + 0);
|
||||
hi->ts = *(uint32_t *)(buf + sizeof(uint32_t));
|
||||
hi->stamp = *(buf + 2 * sizeof(uint32_t));
|
||||
hi->in_block = s_trace_buf.state.in_block;
|
||||
hi->wr_err = 0;
|
||||
hi->eri_len[0] = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
|
||||
if (s_trace_buf.state.stats.wr.hist_wr == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
||||
s_trace_buf.state.stats.wr.hist_wr = 0;
|
||||
}
|
||||
if (s_trace_buf.state.stats.wr.hist_wr == s_trace_buf.state.stats.wr.hist_rd) {
|
||||
s_trace_buf.state.stats.wr.hist_rd++;
|
||||
if (s_trace_buf.state.stats.wr.hist_rd == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
||||
s_trace_buf.state.stats.wr.hist_rd = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
||||
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
|
||||
|
||||
if (*cur_block_marker + size + sizeof(esp_tracedata_hdr_t) >= cur_block->sz) {
|
||||
// flush data, we can not unlock apptrace until we have buffer for all user data
|
||||
// otherwise other tasks/ISRs can get control and write their data between chunks of this data
|
||||
res = esp_apptrace_trax_block_switch_waitus(/*size + sizeof(esp_tracedata_hdr_t),*/*tmo);
|
||||
if (res != ESP_OK) {
|
||||
if (esp_apptrace_unlock() != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
|
||||
// there is a bug, should never get here
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
// we switched to new block, update TRAX block pointers
|
||||
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
||||
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
|
||||
}
|
||||
|
||||
buf_ptr = cur_block->start + *cur_block_marker;
|
||||
((esp_tracedata_hdr_t *)buf_ptr)->block_sz = size;
|
||||
((esp_tracedata_hdr_t *)buf_ptr)->wr_sz = 0;
|
||||
|
||||
*cur_block_marker += size + sizeof(esp_tracedata_hdr_t);
|
||||
|
||||
// now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
|
||||
if (esp_apptrace_unlock() != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
|
||||
// there is a bug, should never get here
|
||||
}
|
||||
|
||||
return buf_ptr + sizeof(esp_tracedata_hdr_t);
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, uint32_t *tmo)
|
||||
{
|
||||
int res = ESP_OK;
|
||||
esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
|
||||
|
||||
// update written size
|
||||
hdr->wr_sz = hdr->block_sz;
|
||||
|
||||
// TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
|
||||
// TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
|
||||
// higher prio tasks and the latter can not allocate buffers at all
|
||||
// this is abnormal situation can be detected on host which will receive only uncompleted buffers
|
||||
// workaround: use own memcpy which will kick-off dead tracing calls
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, uint32_t tmo)
|
||||
{
|
||||
volatile uint32_t *in_block_marker;
|
||||
int res = ESP_OK;
|
||||
|
||||
in_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
||||
if (*in_block_marker > min_sz) {
|
||||
ESP_APPTRACE_LOGD("Wait until block switch for %u us", tmo);
|
||||
res = esp_apptrace_trax_block_switch_waitus(/*0 query any size,*/tmo);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to switch to another block");
|
||||
return res;
|
||||
}
|
||||
ESP_APPTRACE_LOGD("Flushed last block %u bytes", *in_block_marker);
|
||||
*in_block_marker = 0;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static esp_err_t esp_apptrace_trax_dest_init()
|
||||
{
|
||||
for (int i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) {
|
||||
s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i];
|
||||
s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE;
|
||||
s_trace_buf.trax.state.markers[i] = 0;
|
||||
}
|
||||
s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START;
|
||||
|
||||
DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M);
|
||||
#if CONFIG_FREERTOS_UNICORE == 0
|
||||
DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M);
|
||||
#endif
|
||||
// Expose block 1 to host, block 0 is current trace input buffer
|
||||
DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, TRACEMEM_MUX_BLK1_ONLY);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
#endif
|
||||
|
||||
esp_err_t esp_apptrace_init()
|
||||
{
|
||||
int res;
|
||||
|
||||
if (!s_trace_buf.inited) {
|
||||
res = esp_apptrace_log_init();
|
||||
if (res != ESP_OK) {
|
||||
ets_printf("%s: Failed to init log lock (%d)!", TAG, res);
|
||||
return res;
|
||||
}
|
||||
//memset(&s_trace_buf, 0, sizeof(s_trace_buf));
|
||||
res = esp_apptrace_lock_init(&s_trace_buf.lock);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res);
|
||||
esp_apptrace_log_cleanup();
|
||||
return res;
|
||||
}
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
res = esp_apptrace_trax_dest_init();
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res);
|
||||
esp_apptrace_lock_cleanup();
|
||||
esp_apptrace_log_cleanup();
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
// init TRAX on this CPU
|
||||
esp_apptrace_trax_init();
|
||||
#endif
|
||||
|
||||
s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, void *data, size_t size, uint32_t user_tmo)
|
||||
{
|
||||
uint8_t *ptr = NULL;
|
||||
uint32_t tmo = user_tmo;
|
||||
//TODO: use ptr to HW transport iface struct
|
||||
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
||||
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
||||
|
||||
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
||||
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
||||
#else
|
||||
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
} else {
|
||||
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
ptr = apptrace_get_buffer(size, &tmo);
|
||||
if (ptr == NULL) {
|
||||
//ESP_APPTRACE_LOGE("Failed to get buffer!");
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
|
||||
// actually can be suspended here by higher prio tasks/ISRs
|
||||
//TODO: use own memcpy with dead trace calls kick-off algo, and tmo expiration check
|
||||
memcpy(ptr, data, size);
|
||||
|
||||
// now indicate that this buffer is ready to be sent off to host
|
||||
return apptrace_put_buffer(ptr, &tmo);
|
||||
}
|
||||
|
||||
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap)
|
||||
{
|
||||
uint16_t nargs = 0;
|
||||
uint8_t *pout, *p = (uint8_t *)fmt;
|
||||
uint32_t tmo = user_tmo;
|
||||
//TODO: use ptr to HW transport iface struct
|
||||
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
||||
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
||||
|
||||
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
||||
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
||||
#else
|
||||
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
} else {
|
||||
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
// ESP_APPTRACE_LOGI("fmt %x", fmt);
|
||||
while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) {
|
||||
p++;
|
||||
if (*p != '%' && *p != 0) {
|
||||
nargs++;
|
||||
}
|
||||
}
|
||||
// ESP_APPTRACE_LOGI("nargs = %d", nargs);
|
||||
if (p) {
|
||||
ESP_APPTRACE_LOGE("Failed to store all printf args!");
|
||||
}
|
||||
|
||||
pout = apptrace_get_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo);
|
||||
if (pout == NULL) {
|
||||
ESP_APPTRACE_LOGE("Failed to get buffer!");
|
||||
return -1;
|
||||
}
|
||||
p = pout;
|
||||
*pout = nargs;
|
||||
pout++;
|
||||
*(const char **)pout = fmt;
|
||||
pout += sizeof(char *);
|
||||
while (nargs-- > 0) {
|
||||
uint32_t arg = va_arg(ap, uint32_t);
|
||||
*(uint32_t *)pout = arg;
|
||||
pout += sizeof(uint32_t);
|
||||
// ESP_APPTRACE_LOGI("arg %x", arg);
|
||||
}
|
||||
|
||||
int ret = apptrace_put_buffer(p, &tmo);
|
||||
if (ret != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return (pout - p);
|
||||
}
|
||||
|
||||
int esp_apptrace_vprintf(const char *fmt, va_list ap)
|
||||
{
|
||||
return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap);
|
||||
}
|
||||
|
||||
uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, size_t size, uint32_t user_tmo)
|
||||
{
|
||||
uint32_t tmo = user_tmo;
|
||||
//TODO: use ptr to HW transport iface struct
|
||||
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
||||
|
||||
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
||||
#else
|
||||
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
||||
return NULL;
|
||||
#endif
|
||||
} else {
|
||||
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return apptrace_get_buffer(size, &tmo);
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
|
||||
{
|
||||
uint32_t tmo = user_tmo;
|
||||
//TODO: use ptr to HW transport iface struct
|
||||
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
||||
|
||||
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
||||
#else
|
||||
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
} else {
|
||||
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
return apptrace_put_buffer(ptr, &tmo);
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo)
|
||||
{
|
||||
//TODO: use ptr to HW transport iface struct
|
||||
esp_err_t (*apptrace_flush)(uint32_t, uint32_t);
|
||||
|
||||
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
||||
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
||||
apptrace_flush = esp_apptrace_trax_flush;
|
||||
#else
|
||||
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
} else {
|
||||
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
return apptrace_flush(min_sz, tmo);
|
||||
}
|
||||
|
||||
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo)
|
||||
{
|
||||
int res;
|
||||
|
||||
res = esp_apptrace_lock(&tmo);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res);
|
||||
return res;
|
||||
}
|
||||
|
||||
res = esp_apptrace_flush_nolock(dest, 0, tmo);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to fluch apptrace data (%d)!", res);
|
||||
}
|
||||
|
||||
if (esp_apptrace_unlock() != ESP_OK) {
|
||||
ESP_APPTRACE_LOGE("Failed to unlock apptrace data (%d)!", res);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
||||
void esp_apptrace_print_stats()
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t tmo = ESP_APPTRACE_TMO_INFINITE;
|
||||
|
||||
esp_apptrace_lock(&tmo);
|
||||
|
||||
for (i = s_trace_buf.state.stats.wr.hist_rd; (i < s_trace_buf.state.stats.wr.hist_wr) && (i < ESP_APPTRACE_BUF_HISTORY_DEPTH); i++) {
|
||||
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
|
||||
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
|
||||
}
|
||||
if (i == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
||||
for (i = 0; i < s_trace_buf.state.stats.wr.hist_wr; i++) {
|
||||
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
|
||||
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
|
||||
}
|
||||
}
|
||||
|
||||
esp_apptrace_unlock();
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
@@ -188,7 +188,7 @@ void IRAM_ATTR call_start_cpu1()
|
||||
"wsr %0, vecbase\n" \
|
||||
::"r"(&_init_start));
|
||||
|
||||
ets_set_appcpu_boot_addr(0);
|
||||
ets_set_appcpu_boot_addr(0);
|
||||
cpu_configure_region_protection();
|
||||
|
||||
#if CONFIG_CONSOLE_UART_NONE
|
||||
@@ -257,6 +257,9 @@ void start_cpu0_default(void)
|
||||
if (err != ESP_OK) {
|
||||
ESP_EARLY_LOGE(TAG, "Failed to init apptrace module on CPU0 (%d)!", err);
|
||||
}
|
||||
#endif
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_SYSVIEW_Conf();
|
||||
#endif
|
||||
do_global_ctors();
|
||||
#if CONFIG_INT_WDT
|
||||
|
||||
@@ -188,9 +188,9 @@ static void dport_access_init_core1(void *arg)
|
||||
void esp_dport_access_int_init(void)
|
||||
{
|
||||
if (xPortGetCoreID() == 0) {
|
||||
xTaskCreatePinnedToCore(&dport_access_init_core0, "dport0", 512, NULL, 5, NULL, 0);
|
||||
xTaskCreatePinnedToCore(&dport_access_init_core0, "dport0", 2048, NULL, 5, NULL, 0);
|
||||
} else {
|
||||
xTaskCreatePinnedToCore(&dport_access_init_core1, "dport1", 512, NULL, 5, NULL, 1);
|
||||
xTaskCreatePinnedToCore(&dport_access_init_core1, "dport1", 2048, NULL, 5, NULL, 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef ESP_APP_TRACE_H_
|
||||
#define ESP_APP_TRACE_H_
|
||||
|
||||
#include <stdarg.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
// infinite waiting timeout
|
||||
#define ESP_APPTRACE_TMO_INFINITE ((uint32_t)-1)
|
||||
|
||||
// Trace memory block size
|
||||
#define ESP_APPTRACE_TRAX_BLOCK_SIZE 0x4000UL
|
||||
|
||||
/**
|
||||
* Application trace data destinations bits.
|
||||
*/
|
||||
typedef enum {
|
||||
ESP_APPTRACE_DEST_TRAX = 0x1,
|
||||
ESP_APPTRACE_DEST_UART0 = 0x2,
|
||||
//ESP_APPTRACE_DEST_UART1 = 0x4,
|
||||
} esp_apptrace_dest_t;
|
||||
|
||||
/**
|
||||
* @brief Initializes application tracing module.
|
||||
*
|
||||
* @note Should be called before any esp_apptrace_xxx call.
|
||||
*
|
||||
* @return ESP_OK on success, otherwise \see esp_err_t
|
||||
*/
|
||||
esp_err_t esp_apptrace_init();
|
||||
|
||||
/**
|
||||
* @brief Allocates buffer for trace data.
|
||||
* After data in buffer are ready to be sent off esp_apptrace_buffer_put must be called to indicate it.
|
||||
*
|
||||
* @param dest Indicates HW interface to send data.
|
||||
* @param size Size of data to write to trace buffer.
|
||||
* @param tmo Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait indefinetly.
|
||||
*
|
||||
* @return non-NULL on success, otherwise NULL.
|
||||
*/
|
||||
uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, size_t size, uint32_t tmo);
|
||||
|
||||
/**
|
||||
* @brief Indicates that the data in buffer are ready to be sent off.
|
||||
* This function is a counterpart of must be preceeded by esp_apptrace_buffer_get.
|
||||
*
|
||||
* @param dest Indicates HW interface to send data. Should be identical to the same parameter in call to esp_apptrace_buffer_get.
|
||||
* @param ptr Address of trace buffer to release. Should be the value returned by call to esp_apptrace_buffer_get.
|
||||
* @param tmo Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait indefinetly.
|
||||
*
|
||||
* @return ESP_OK on success, otherwise \see esp_err_t
|
||||
*/
|
||||
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t tmo);
|
||||
|
||||
/**
|
||||
* @brief Writes data to trace buffer.
|
||||
*
|
||||
* @param dest Indicates HW interface to send data.
|
||||
* @param data Address of data to write to trace buffer.
|
||||
* @param size Size of data to write to trace buffer.
|
||||
* @param tmo Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait indefinetly.
|
||||
*
|
||||
* @return ESP_OK on success, otherwise \see esp_err_t
|
||||
*/
|
||||
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, void *data, size_t size, uint32_t tmo);
|
||||
|
||||
/**
|
||||
* @brief vprintf-like function to sent log messages to host via specified HW interface.
|
||||
*
|
||||
* @param dest Indicates HW interface to send data.
|
||||
* @param fmt Address of format string.
|
||||
* @param ap List of arguments.
|
||||
*
|
||||
* @return Number of bytes written.
|
||||
*/
|
||||
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap);
|
||||
|
||||
/**
|
||||
* @brief vprintf-like function to sent log messages to host.
|
||||
*
|
||||
* @param fmt Address of format string.
|
||||
* @param ap List of arguments.
|
||||
*
|
||||
* @return Number of bytes written.
|
||||
*/
|
||||
int esp_apptrace_vprintf(const char *fmt, va_list ap);
|
||||
|
||||
/**
|
||||
* @brief Flushes remaining data in trace buffer to host.
|
||||
*
|
||||
* @param dest Indicates HW interface to flush data on.
|
||||
* @param tmo Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait indefinetly.
|
||||
*
|
||||
* @return ESP_OK on success, otherwise \see esp_err_t
|
||||
*/
|
||||
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo);
|
||||
|
||||
/**
|
||||
* @brief Flushes remaining data in trace buffer to host without locking internal data.
|
||||
This is special version of esp_apptrace_flush which should be called from panic handler.
|
||||
*
|
||||
* @param dest Indicates HW interface to flush data on.
|
||||
* @param min_sz Threshold for flushing data. If current filling level is above this value, data will be flushed. TRAX destinations only.
|
||||
* @param tmo Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait indefinetly.
|
||||
*
|
||||
* @return ESP_OK on success, otherwise \see esp_err_t
|
||||
*/
|
||||
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo);
|
||||
|
||||
#endif
|
||||
@@ -77,6 +77,9 @@ extern "C" {
|
||||
|
||||
/**@}*/
|
||||
|
||||
// This is used to provide SystemView with positive IRQ IDs, otherwise sheduler events are not shown properly
|
||||
#define ETS_INTERNAL_INTR_SOURCE_OFF (-ETS_INTERNAL_PROFILING_INTR_SOURCE)
|
||||
|
||||
typedef void (*intr_handler_t)(void *arg);
|
||||
|
||||
|
||||
@@ -221,7 +224,6 @@ int esp_intr_get_cpu(intr_handle_t handle);
|
||||
*/
|
||||
int esp_intr_get_intno(intr_handle_t handle);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Disable the interrupt associated with the handle
|
||||
*
|
||||
|
||||
@@ -24,6 +24,7 @@
|
||||
#include "freertos/task.h"
|
||||
#include <esp_types.h>
|
||||
#include "esp_err.h"
|
||||
//#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
|
||||
#include "esp_log.h"
|
||||
#include "esp_intr.h"
|
||||
#include "esp_attr.h"
|
||||
@@ -33,7 +34,6 @@
|
||||
|
||||
static const char* TAG = "intr_alloc";
|
||||
|
||||
|
||||
#define ETS_INTERNAL_TIMER0_INTR_NO 6
|
||||
#define ETS_INTERNAL_TIMER1_INTR_NO 15
|
||||
#define ETS_INTERNAL_TIMER2_INTR_NO 16
|
||||
@@ -74,7 +74,7 @@ typedef struct {
|
||||
} int_desc_t;
|
||||
|
||||
|
||||
//We should mark the interrupt for the timer used by FreeRTOS as reserved. The specific timer
|
||||
//We should mark the interrupt for the timer used by FreeRTOS as reserved. The specific timer
|
||||
//is selectable using menuconfig; we use these cpp bits to convert that into something we can use in
|
||||
//the table below.
|
||||
#if CONFIG_FREERTOS_CORETIMER_0
|
||||
@@ -159,6 +159,13 @@ struct intr_handle_data_t {
|
||||
shared_vector_desc_t *shared_vector_desc;
|
||||
};
|
||||
|
||||
typedef struct non_shared_isr_arg_t non_shared_isr_arg_t;
|
||||
|
||||
struct non_shared_isr_arg_t {
|
||||
intr_handler_t isr;
|
||||
void *isr_arg;
|
||||
int source;
|
||||
};
|
||||
|
||||
//Linked list of vector descriptions, sorted by cpu.intno value
|
||||
static vector_desc_t *vector_desc_head;
|
||||
@@ -169,12 +176,15 @@ static uint32_t non_iram_int_mask[portNUM_PROCESSORS];
|
||||
static uint32_t non_iram_int_disabled[portNUM_PROCESSORS];
|
||||
static bool non_iram_int_disabled_flag[portNUM_PROCESSORS];
|
||||
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
extern uint32_t port_switch_flag[];
|
||||
#endif
|
||||
|
||||
static portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
//Inserts an item into vector_desc list so that the list is sorted
|
||||
//with an incrementing cpu.intno value.
|
||||
static void insert_vector_desc(vector_desc_t *to_insert)
|
||||
static void insert_vector_desc(vector_desc_t *to_insert)
|
||||
{
|
||||
vector_desc_t *vd=vector_desc_head;
|
||||
vector_desc_t *prev=NULL;
|
||||
@@ -195,7 +205,7 @@ static void insert_vector_desc(vector_desc_t *to_insert)
|
||||
}
|
||||
|
||||
//Returns a vector_desc entry for an intno/cpu, or NULL if none exists.
|
||||
static vector_desc_t *find_desc_for_int(int intno, int cpu)
|
||||
static vector_desc_t *find_desc_for_int(int intno, int cpu)
|
||||
{
|
||||
vector_desc_t *vd=vector_desc_head;
|
||||
while(vd!=NULL) {
|
||||
@@ -208,7 +218,7 @@ static vector_desc_t *find_desc_for_int(int intno, int cpu)
|
||||
//Returns a vector_desc entry for an intno/cpu.
|
||||
//Either returns a preexisting one or allocates a new one and inserts
|
||||
//it into the list. Returns NULL on malloc fail.
|
||||
static vector_desc_t *get_desc_for_int(int intno, int cpu)
|
||||
static vector_desc_t *get_desc_for_int(int intno, int cpu)
|
||||
{
|
||||
vector_desc_t *vd=find_desc_for_int(intno, cpu);
|
||||
if (vd==NULL) {
|
||||
@@ -234,7 +244,7 @@ esp_err_t esp_intr_mark_shared(int intno, int cpu, bool is_int_ram)
|
||||
if (vd==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
}
|
||||
vd->flags=VECDESC_FL_SHARED;
|
||||
if (is_int_ram) vd->flags|=VECDESC_FL_INIRAM;
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
@@ -252,16 +262,16 @@ esp_err_t esp_intr_reserve(int intno, int cpu)
|
||||
if (vd==NULL) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
}
|
||||
vd->flags=VECDESC_FL_RESERVED;
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
//Interrupt handler table and unhandled uinterrupt routine. Duplicated
|
||||
//from xtensa_intr.c... it's supposed to be private, but we need to look
|
||||
//into it in order to see if someone allocated an int using
|
||||
//Interrupt handler table and unhandled uinterrupt routine. Duplicated
|
||||
//from xtensa_intr.c... it's supposed to be private, but we need to look
|
||||
//into it in order to see if someone allocated an int using
|
||||
//xt_set_interrupt_handler.
|
||||
typedef struct xt_handler_table_entry {
|
||||
void * handler;
|
||||
@@ -271,7 +281,7 @@ extern xt_handler_table_entry _xt_interrupt_table[XCHAL_NUM_INTERRUPTS*portNUM_P
|
||||
extern void xt_unhandled_interrupt(void * arg);
|
||||
|
||||
//Returns true if handler for interrupt is not the default unhandled interrupt handler
|
||||
static bool int_has_handler(int intr, int cpu)
|
||||
static bool int_has_handler(int intr, int cpu)
|
||||
{
|
||||
return (_xt_interrupt_table[intr*portNUM_PROCESSORS+cpu].handler != xt_unhandled_interrupt);
|
||||
}
|
||||
@@ -303,8 +313,8 @@ static int get_free_int(int flags, int cpu, int force)
|
||||
ALCHLOG(TAG, "Ignoring int %d: forced to %d", x, force);
|
||||
continue;
|
||||
}
|
||||
ALCHLOG(TAG, "Int %d reserved %d level %d %s hasIsr %d",
|
||||
x, int_desc[x].cpuflags[cpu]==INTDESC_RESVD, int_desc[x].level,
|
||||
ALCHLOG(TAG, "Int %d reserved %d level %d %s hasIsr %d",
|
||||
x, int_desc[x].cpuflags[cpu]==INTDESC_RESVD, int_desc[x].level,
|
||||
int_desc[x].type==INTTP_LEVEL?"LEVEL":"EDGE", int_has_handler(x, cpu));
|
||||
//Check if interrupt is not reserved by design
|
||||
if (int_desc[x].cpuflags[cpu]==INTDESC_RESVD) {
|
||||
@@ -321,7 +331,7 @@ static int get_free_int(int flags, int cpu, int force)
|
||||
continue;
|
||||
}
|
||||
//check if edge/level type matches what we want
|
||||
if (((flags&ESP_INTR_FLAG_EDGE) && (int_desc[x].type==INTTP_LEVEL)) ||
|
||||
if (((flags&ESP_INTR_FLAG_EDGE) && (int_desc[x].type==INTTP_LEVEL)) ||
|
||||
(((!(flags&ESP_INTR_FLAG_EDGE)) && (int_desc[x].type==INTTP_EDGE)))) {
|
||||
ALCHLOG(TAG, "....Unusable: incompatible trigger type");
|
||||
continue;
|
||||
@@ -373,7 +383,7 @@ static int get_free_int(int flags, int cpu, int force)
|
||||
}
|
||||
} else {
|
||||
if (best==-1) {
|
||||
//We haven't found a feasible shared interrupt yet. This one is still free and usable, even if
|
||||
//We haven't found a feasible shared interrupt yet. This one is still free and usable, even if
|
||||
//not marked as shared.
|
||||
//Remember it in case we don't find any other shared interrupt that qualifies.
|
||||
if (bestLevel>int_desc[x].level) {
|
||||
@@ -406,9 +416,8 @@ static int get_free_int(int flags, int cpu, int force)
|
||||
return best;
|
||||
}
|
||||
|
||||
|
||||
//Common shared isr handler. Chain-call all ISRs.
|
||||
static void IRAM_ATTR shared_intr_isr(void *arg)
|
||||
static void IRAM_ATTR shared_intr_isr(void *arg)
|
||||
{
|
||||
vector_desc_t *vd=(vector_desc_t*)arg;
|
||||
shared_vector_desc_t *sh_vec=vd->shared_vec_info;
|
||||
@@ -416,7 +425,16 @@ static void IRAM_ATTR shared_intr_isr(void *arg)
|
||||
while(sh_vec) {
|
||||
if (!sh_vec->disabled) {
|
||||
if ((sh_vec->statusreg == NULL) || (*sh_vec->statusreg & sh_vec->statusmask)) {
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
traceISR_ENTER(sh_vec->source+ETS_INTERNAL_INTR_SOURCE_OFF);
|
||||
#endif
|
||||
sh_vec->isr(sh_vec->arg);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
// check if we will return to scheduler or to interrupted task after ISR
|
||||
if (!port_switch_flag[xPortGetCoreID()]) {
|
||||
traceISR_EXIT();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
sh_vec=sh_vec->next;
|
||||
@@ -424,10 +442,27 @@ static void IRAM_ATTR shared_intr_isr(void *arg)
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
}
|
||||
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
//Common non-shared isr handler wrapper.
|
||||
static void IRAM_ATTR non_shared_intr_isr(void *arg)
|
||||
{
|
||||
non_shared_isr_arg_t *ns_isr_arg=(non_shared_isr_arg_t*)arg;
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
traceISR_ENTER(ns_isr_arg->source+ETS_INTERNAL_INTR_SOURCE_OFF);
|
||||
// FIXME: can we call ISR and check port_switch_flag after releasing spinlock?
|
||||
// when CONFIG_SYSVIEW_ENABLE = 0 ISRs for non-shared IRQs are called without spinlock
|
||||
ns_isr_arg->isr(ns_isr_arg->isr_arg);
|
||||
// check if we will return to scheduler or to interrupted task after ISR
|
||||
if (!port_switch_flag[xPortGetCoreID()]) {
|
||||
traceISR_EXIT();
|
||||
}
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
}
|
||||
#endif
|
||||
|
||||
//We use ESP_EARLY_LOG* here because this can be called before the scheduler is running.
|
||||
esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusreg, uint32_t intrstatusmask, intr_handler_t handler,
|
||||
void *arg, intr_handle_t *ret_handle)
|
||||
esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusreg, uint32_t intrstatusmask, intr_handler_t handler,
|
||||
void *arg, intr_handle_t *ret_handle)
|
||||
{
|
||||
intr_handle_data_t *ret=NULL;
|
||||
int force=-1;
|
||||
@@ -456,7 +491,7 @@ esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusre
|
||||
}
|
||||
}
|
||||
ESP_EARLY_LOGV(TAG, "esp_intr_alloc_intrstatus (cpu %d): Args okay. Resulting flags 0x%X", xPortGetCoreID(), flags);
|
||||
|
||||
|
||||
//Check 'special' interrupt sources. These are tied to one specific interrupt, so we
|
||||
//have to force get_free_int to only look at that.
|
||||
if (source==ETS_INTERNAL_TIMER0_INTR_SOURCE) force=ETS_INTERNAL_TIMER0_INTR_NO;
|
||||
@@ -513,7 +548,20 @@ esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusre
|
||||
//Mark as unusable for other interrupt sources. This is ours now!
|
||||
vd->flags=VECDESC_FL_NONSHARED;
|
||||
if (handler) {
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
non_shared_isr_arg_t *ns_isr_arg=malloc(sizeof(non_shared_isr_arg_t));
|
||||
if (!ns_isr_arg) {
|
||||
portEXIT_CRITICAL(&spinlock);
|
||||
free(ret);
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
ns_isr_arg->isr=handler;
|
||||
ns_isr_arg->isr_arg=arg;
|
||||
ns_isr_arg->source=source;
|
||||
xt_set_interrupt_handler(intr, non_shared_intr_isr, ns_isr_arg);
|
||||
#else
|
||||
xt_set_interrupt_handler(intr, handler, arg);
|
||||
#endif
|
||||
}
|
||||
if (flags&ESP_INTR_FLAG_EDGE) xthal_set_intclear(1 << intr);
|
||||
vd->source=source;
|
||||
@@ -555,18 +603,18 @@ esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusre
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t esp_intr_alloc(int source, int flags, intr_handler_t handler, void *arg, intr_handle_t *ret_handle)
|
||||
esp_err_t esp_intr_alloc(int source, int flags, intr_handler_t handler, void *arg, intr_handle_t *ret_handle)
|
||||
{
|
||||
/*
|
||||
As an optimization, we can create a table with the possible interrupt status registers and masks for every single
|
||||
source there is. We can then add code here to look up an applicable value and pass that to the
|
||||
source there is. We can then add code here to look up an applicable value and pass that to the
|
||||
esp_intr_alloc_intrstatus function.
|
||||
*/
|
||||
return esp_intr_alloc_intrstatus(source, flags, 0, 0, handler, arg, ret_handle);
|
||||
}
|
||||
|
||||
|
||||
esp_err_t esp_intr_free(intr_handle_t handle)
|
||||
esp_err_t esp_intr_free(intr_handle_t handle)
|
||||
{
|
||||
bool free_shared_vector=false;
|
||||
if (!handle) return ESP_ERR_INVALID_ARG;
|
||||
@@ -576,7 +624,7 @@ esp_err_t esp_intr_free(intr_handle_t handle)
|
||||
portENTER_CRITICAL(&spinlock);
|
||||
esp_intr_disable(handle);
|
||||
if (handle->vector_desc->flags&VECDESC_FL_SHARED) {
|
||||
//Find and kill the shared int
|
||||
//Find and kill the shared int
|
||||
shared_vector_desc_t *svd=handle->vector_desc->shared_vec_info;
|
||||
shared_vector_desc_t *prevsvd=NULL;
|
||||
assert(svd); //should be something in there for a shared int
|
||||
@@ -601,11 +649,19 @@ esp_err_t esp_intr_free(intr_handle_t handle)
|
||||
|
||||
if ((handle->vector_desc->flags&VECDESC_FL_NONSHARED) || free_shared_vector) {
|
||||
ESP_LOGV(TAG, "esp_intr_free: Disabling int, killing handler");
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
if (!free_shared_vector) {
|
||||
void *isr_arg = xt_get_interrupt_handler_arg(handle->vector_desc->intno);
|
||||
if (isr_arg) {
|
||||
free(isr_arg);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
//Reset to normal handler
|
||||
xt_set_interrupt_handler(handle->vector_desc->intno, xt_unhandled_interrupt, (void*)((int)handle->vector_desc->intno));
|
||||
//Theoretically, we could free the vector_desc... not sure if that's worth the few bytes of memory
|
||||
//we save.(We can also not use the same exit path for empty shared ints anymore if we delete
|
||||
//the desc.) For now, just mark it as free.
|
||||
//we save.(We can also not use the same exit path for empty shared ints anymore if we delete
|
||||
//the desc.) For now, just mark it as free.
|
||||
handle->vector_desc->flags&=!(VECDESC_FL_NONSHARED|VECDESC_FL_RESERVED);
|
||||
//Also kill non_iram mask bit.
|
||||
non_iram_int_mask[handle->vector_desc->cpu]&=~(1<<(handle->vector_desc->intno));
|
||||
|
||||
@@ -86,7 +86,8 @@ SECTIONS
|
||||
*libesp32.a:panic.o(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:core_dump.o(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:heap_alloc_caps.o(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:app_trace.o(.literal .text .literal.* .text.*)
|
||||
*libapp_trace.a:(.literal .text .literal.* .text.*)
|
||||
*libxtensa-debug-module.a:eri.o(.literal .text .literal.* .text.*)
|
||||
*libphy.a:(.literal .text .literal.* .text.*)
|
||||
*librtc.a:(.literal .text .literal.* .text.*)
|
||||
*libsoc.a:(.literal .text .literal.* .text.*)
|
||||
@@ -111,8 +112,8 @@ SECTIONS
|
||||
KEEP(*(.jcr))
|
||||
*(.dram1 .dram1.*)
|
||||
*libesp32.a:panic.o(.rodata .rodata.*)
|
||||
*libesp32.a:app_trace.o(.rodata .rodata.*)
|
||||
*libphy.a:(.rodata .rodata.*)
|
||||
*libapp_trace.a:(.rodata .rodata.*)
|
||||
_data_end = ABSOLUTE(.);
|
||||
. = ALIGN(4);
|
||||
} >dram0_0_seg
|
||||
|
||||
@@ -39,7 +39,15 @@
|
||||
#include "esp_spi_flash.h"
|
||||
#include "esp_cache_err_int.h"
|
||||
#include "esp_app_trace.h"
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
#include "SEGGER_RTT.h"
|
||||
#endif
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO == -1
|
||||
#define APPTRACE_ONPANIC_HOST_FLUSH_TMO ESP_APPTRACE_TMO_INFINITE
|
||||
#else
|
||||
#define APPTRACE_ONPANIC_HOST_FLUSH_TMO (1000*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO)
|
||||
#endif
|
||||
/*
|
||||
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
|
||||
task switching / interrupt code runs into an unrecoverable error. The default task stack
|
||||
@@ -116,7 +124,12 @@ static __attribute__((noreturn)) inline void invoke_abort()
|
||||
{
|
||||
abort_called = true;
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TRAX_BLOCK_SIZE*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH/100, CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
while(1) {
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
@@ -234,7 +247,12 @@ void panicHandler(XtExcFrame *frame)
|
||||
|
||||
if (esp_cpu_in_ocd_debug_mode()) {
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TRAX_BLOCK_SIZE*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH/100, CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
setFirstBreakpoint(frame->pc);
|
||||
return;
|
||||
@@ -261,7 +279,12 @@ void xt_unhandled_exception(XtExcFrame *frame)
|
||||
panicPutHex(frame->pc);
|
||||
panicPutStr(". Setting bp and returning..\r\n");
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TRAX_BLOCK_SIZE*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH/100, CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
#endif
|
||||
//Stick a hardware breakpoint on the address the handler returns to. This way, the OCD debugger
|
||||
//will kick in exactly at the context the error happened.
|
||||
@@ -432,7 +455,12 @@ static __attribute__((noreturn)) void commonErrorHandler(XtExcFrame *frame)
|
||||
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE
|
||||
disableAllWdts();
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TRAX_BLOCK_SIZE*CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH/100, CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#if CONFIG_SYSVIEW_ENABLE
|
||||
SEGGER_RTT_ESP32_FlushNoLock(CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH, APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#else
|
||||
esp_apptrace_flush_nolock(ESP_APPTRACE_DEST_TRAX, CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH,
|
||||
APPTRACE_ONPANIC_HOST_FLUSH_TMO);
|
||||
#endif
|
||||
reconfigureAllWdts();
|
||||
#endif
|
||||
|
||||
|
||||
@@ -1,817 +0,0 @@
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include "unity.h"
|
||||
#include "driver/timer.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/task.h"
|
||||
#if CONFIG_ESP32_APPTRACE_ENABLE == 1
|
||||
#include "esp_app_trace.h"
|
||||
|
||||
#define ESP_APPTRACE_TEST_USE_PRINT_LOCK 0
|
||||
#define ESP_APPTRACE_TEST_PRN_WRERR_MAX 5
|
||||
#define ESP_APPTRACE_TEST_BLOCKS_BEFORE_CRASH 100
|
||||
#define ESP_APPTRACE_TEST_BLOCK_SIZE 1024
|
||||
|
||||
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
|
||||
#include "esp_log.h"
|
||||
const static char *TAG = "esp_apptrace_test";
|
||||
|
||||
#if ESP_APPTRACE_TEST_USE_PRINT_LOCK == 1
|
||||
#define ESP_APPTRACE_TEST_LOG( format, ... ) \
|
||||
do { \
|
||||
BaseType_t ret; \
|
||||
if (xPortInIsrContext()) \
|
||||
ret = xSemaphoreTakeFromISR(s_print_lock, NULL); \
|
||||
else \
|
||||
ret = xSemaphoreTake(s_print_lock, portMAX_DELAY); \
|
||||
if (ret == pdTRUE) { \
|
||||
ets_printf(format, ##__VA_ARGS__); \
|
||||
if (xPortInIsrContext()) \
|
||||
xSemaphoreGiveFromISR(s_print_lock, NULL); \
|
||||
else \
|
||||
xSemaphoreGive(s_print_lock); \
|
||||
} \
|
||||
} while(0)
|
||||
#else
|
||||
#define ESP_APPTRACE_TEST_LOG( format, ... ) \
|
||||
do { \
|
||||
ets_printf(format, ##__VA_ARGS__); \
|
||||
} while(0)
|
||||
#endif
|
||||
|
||||
#define ESP_APPTRACE_TEST_LOG_LEVEL( _L_, level, format, ... ) \
|
||||
do { \
|
||||
if (LOG_LOCAL_LEVEL >= level) { \
|
||||
ESP_APPTRACE_TEST_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#define ESP_APPTRACE_TEST_LOGE( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_TEST_LOGW( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_TEST_LOGI( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_TEST_LOGD( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_TEST_LOGV( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
|
||||
#define ESP_APPTRACE_TEST_LOGO( format, ... ) ESP_APPTRACE_TEST_LOG_LEVEL(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
|
||||
|
||||
#define ESP_APPTRACE_TEST_WRITE(_b_, _s_) esp_apptrace_write(ESP_APPTRACE_DEST_TRAX, _b_, _s_, ESP_APPTRACE_TMO_INFINITE)
|
||||
#define ESP_APPTRACE_TEST_WRITE_FROM_ISR(_b_, _s_) esp_apptrace_write(ESP_APPTRACE_DEST_TRAX, _b_, _s_, 100UL)
|
||||
#define ESP_APPTRACE_TEST_WRITE_NOWAIT(_b_, _s_) esp_apptrace_write(ESP_APPTRACE_DEST_TRAX, _b_, _s_, 0)
|
||||
|
||||
#define ESP_APPTRACE_TEST_CPUTICKS2US(_t_) ((_t_)/(XT_CLOCK_FREQ/1000000))
|
||||
|
||||
typedef struct {
|
||||
uint8_t *buf;
|
||||
uint32_t buf_sz;
|
||||
uint8_t mask;
|
||||
uint32_t period; // trace write period in us
|
||||
uint32_t wr_err;
|
||||
uint32_t wr_cnt;
|
||||
} esp_apptrace_test_gen_data_t;
|
||||
|
||||
typedef struct {
|
||||
int group;
|
||||
int id;
|
||||
void (*isr_func)(void *);
|
||||
esp_apptrace_test_gen_data_t data;
|
||||
} esp_apptrace_test_timer_arg_t;
|
||||
|
||||
typedef struct {
|
||||
int nowait;
|
||||
int core;
|
||||
int prio;
|
||||
void (*task_func)(void *);
|
||||
esp_apptrace_test_gen_data_t data;
|
||||
volatile int stop;
|
||||
SemaphoreHandle_t done;
|
||||
|
||||
uint32_t timers_num;
|
||||
esp_apptrace_test_timer_arg_t *timers;
|
||||
} esp_apptrace_test_task_arg_t;
|
||||
|
||||
typedef struct {
|
||||
uint32_t tasks_num;
|
||||
esp_apptrace_test_task_arg_t *tasks;
|
||||
} esp_apptrace_test_cfg_t;
|
||||
|
||||
#if ESP_APPTRACE_TEST_USE_PRINT_LOCK == 1
|
||||
static SemaphoreHandle_t s_print_lock;
|
||||
#endif
|
||||
|
||||
static uint64_t esp_apptrace_test_ts_get();
|
||||
|
||||
static void esp_apptrace_test_timer_init(int timer_group, int timer_idx, uint32_t period)
|
||||
{
|
||||
timer_config_t config;
|
||||
uint64_t alarm_val = (period * (TIMER_BASE_CLK / 1000000UL)) / 2;
|
||||
|
||||
config.alarm_en = 1;
|
||||
config.auto_reload = 1;
|
||||
config.counter_dir = TIMER_COUNT_UP;
|
||||
config.divider = 1;
|
||||
config.intr_type = TIMER_INTR_LEVEL;
|
||||
config.counter_en = TIMER_PAUSE;
|
||||
/*Configure timer*/
|
||||
timer_init(timer_group, timer_idx, &config);
|
||||
/*Stop timer counter*/
|
||||
timer_pause(timer_group, timer_idx);
|
||||
/*Load counter value */
|
||||
timer_set_counter_value(timer_group, timer_idx, 0x00000000ULL);
|
||||
/*Set alarm value*/
|
||||
timer_set_alarm_value(timer_group, timer_idx, alarm_val);
|
||||
/*Enable timer interrupt*/
|
||||
timer_enable_intr(timer_group, timer_idx);
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_timer_isr(void *arg)
|
||||
{
|
||||
esp_apptrace_test_timer_arg_t *tim_arg = (esp_apptrace_test_timer_arg_t *)arg;
|
||||
|
||||
uint32_t *ts = (uint32_t *)(tim_arg->data.buf + sizeof(uint32_t));
|
||||
*ts = (uint32_t)esp_apptrace_test_ts_get();
|
||||
memset(tim_arg->data.buf + 2 * sizeof(uint32_t), tim_arg->data.wr_cnt & tim_arg->data.mask, tim_arg->data.buf_sz - 2 * sizeof(uint32_t));
|
||||
int res = ESP_APPTRACE_TEST_WRITE_FROM_ISR(tim_arg->data.buf, tim_arg->data.buf_sz);
|
||||
if (res != ESP_OK) {
|
||||
} else {
|
||||
if (0) {
|
||||
ets_printf("tim-%d-%d: Written chunk%d %d bytes, %x\n",
|
||||
tim_arg->group, tim_arg->id, tim_arg->data.wr_cnt, tim_arg->data.buf_sz, tim_arg->data.wr_cnt & tim_arg->data.mask);
|
||||
}
|
||||
tim_arg->data.wr_err = 0;
|
||||
}
|
||||
|
||||
tim_arg->data.wr_cnt++;
|
||||
if (tim_arg->group == 0) {
|
||||
if (tim_arg->id == 0) {
|
||||
TIMERG0.int_clr_timers.t0 = 1;
|
||||
TIMERG0.hw_timer[0].update = 1;
|
||||
TIMERG0.hw_timer[0].config.alarm_en = 1;
|
||||
} else {
|
||||
TIMERG0.int_clr_timers.t1 = 1;
|
||||
TIMERG0.hw_timer[1].update = 1;
|
||||
TIMERG0.hw_timer[1].config.alarm_en = 1;
|
||||
}
|
||||
}
|
||||
if (tim_arg->group == 1) {
|
||||
if (tim_arg->id == 0) {
|
||||
TIMERG1.int_clr_timers.t0 = 1;
|
||||
TIMERG1.hw_timer[0].update = 1;
|
||||
TIMERG1.hw_timer[0].config.alarm_en = 1;
|
||||
} else {
|
||||
TIMERG1.int_clr_timers.t1 = 1;
|
||||
TIMERG1.hw_timer[1].update = 1;
|
||||
TIMERG1.hw_timer[1].config.alarm_en = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_timer_isr_crash(void *arg)
|
||||
{
|
||||
esp_apptrace_test_timer_arg_t *tim_arg = (esp_apptrace_test_timer_arg_t *)arg;
|
||||
|
||||
if (tim_arg->group == 0) {
|
||||
if (tim_arg->id == 0) {
|
||||
TIMERG0.int_clr_timers.t0 = 1;
|
||||
TIMERG0.hw_timer[0].update = 1;
|
||||
TIMERG0.hw_timer[0].config.alarm_en = 1;
|
||||
} else {
|
||||
TIMERG0.int_clr_timers.t1 = 1;
|
||||
TIMERG0.hw_timer[1].update = 1;
|
||||
TIMERG0.hw_timer[1].config.alarm_en = 1;
|
||||
}
|
||||
}
|
||||
if (tim_arg->group == 1) {
|
||||
if (tim_arg->id == 0) {
|
||||
TIMERG1.int_clr_timers.t0 = 1;
|
||||
TIMERG1.hw_timer[0].update = 1;
|
||||
TIMERG1.hw_timer[0].config.alarm_en = 1;
|
||||
} else {
|
||||
TIMERG1.int_clr_timers.t1 = 1;
|
||||
TIMERG1.hw_timer[1].update = 1;
|
||||
TIMERG1.hw_timer[1].config.alarm_en = 1;
|
||||
}
|
||||
}
|
||||
if (tim_arg->data.wr_cnt < ESP_APPTRACE_TEST_BLOCKS_BEFORE_CRASH) {
|
||||
uint32_t *ts = (uint32_t *)(tim_arg->data.buf + sizeof(uint32_t));
|
||||
*ts = (uint32_t)esp_apptrace_test_ts_get();//xthal_get_ccount();//xTaskGetTickCount();
|
||||
memset(tim_arg->data.buf + 2 * sizeof(uint32_t), tim_arg->data.wr_cnt & tim_arg->data.mask, tim_arg->data.buf_sz - 2 * sizeof(uint32_t));
|
||||
int res = ESP_APPTRACE_TEST_WRITE_FROM_ISR(tim_arg->data.buf, tim_arg->data.buf_sz);
|
||||
if (res != ESP_OK) {
|
||||
ets_printf("tim-%d-%d: Failed to write trace %d %x!\n", tim_arg->group, tim_arg->id, res, tim_arg->data.wr_cnt & tim_arg->data.mask);
|
||||
} else {
|
||||
ets_printf("tim-%d-%d: Written chunk%d %d bytes, %x\n",
|
||||
tim_arg->group, tim_arg->id, tim_arg->data.wr_cnt, tim_arg->data.buf_sz, tim_arg->data.wr_cnt & tim_arg->data.mask);
|
||||
tim_arg->data.wr_cnt++;
|
||||
}
|
||||
} else {
|
||||
uint32_t *ptr = 0;
|
||||
*ptr = 1000;
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_apptrace_dummy_task(void *p)
|
||||
{
|
||||
esp_apptrace_test_task_arg_t *arg = (esp_apptrace_test_task_arg_t *) p;
|
||||
int res, flags = 0, i;
|
||||
timer_isr_handle_t *inth = NULL;
|
||||
TickType_t tmo_ticks = arg->data.period / (1000 * portTICK_PERIOD_MS);
|
||||
|
||||
ESP_APPTRACE_TEST_LOGI("%x: run dummy task (period %u us, %u timers)", xTaskGetCurrentTaskHandle(), arg->data.period, arg->timers_num);
|
||||
|
||||
if (arg->timers_num > 0) {
|
||||
inth = pvPortMalloc(arg->timers_num * sizeof(timer_isr_handle_t));
|
||||
if (!inth) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to alloc timer ISR handles!");
|
||||
goto on_fail;
|
||||
}
|
||||
memset(inth, 0, arg->timers_num * sizeof(timer_isr_handle_t));
|
||||
for (int i = 0; i < arg->timers_num; i++) {
|
||||
esp_apptrace_test_timer_init(arg->timers[i].group, arg->timers[i].id, arg->timers[i].data.period);
|
||||
res = timer_isr_register(arg->timers[i].group, arg->timers[i].id, arg->timers[i].isr_func, &arg->timers[i], flags, &inth[i]);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to timer_isr_register (%d)!", res);
|
||||
goto on_fail;
|
||||
}
|
||||
*(uint32_t *)arg->timers[i].data.buf = (uint32_t)inth[i] | (1 << 31);
|
||||
ESP_APPTRACE_TEST_LOGI("%x: start timer %x period %u us", xTaskGetCurrentTaskHandle(), inth[i], arg->timers[i].data.period);
|
||||
res = timer_start(arg->timers[i].group, arg->timers[i].id);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to timer_start (%d)!", res);
|
||||
goto on_fail;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i = 0;
|
||||
while (!arg->stop) {
|
||||
ESP_APPTRACE_TEST_LOGD("%x: dummy task work %d.%d", xTaskGetCurrentTaskHandle(), xPortGetCoreID(), i++);
|
||||
if (tmo_ticks) {
|
||||
vTaskDelay(tmo_ticks);
|
||||
}
|
||||
}
|
||||
|
||||
on_fail:
|
||||
if (inth) {
|
||||
for (int i = 0; i < arg->timers_num; i++) {
|
||||
timer_pause(arg->timers[i].group, arg->timers[i].id);
|
||||
timer_disable_intr(arg->timers[i].group, arg->timers[i].id);
|
||||
if (inth[i]) {
|
||||
esp_intr_free(inth[i]);
|
||||
}
|
||||
}
|
||||
vPortFree(inth);
|
||||
}
|
||||
xSemaphoreGive(arg->done);
|
||||
vTaskDelay(1);
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_task(void *p)
|
||||
{
|
||||
esp_apptrace_test_task_arg_t *arg = (esp_apptrace_test_task_arg_t *) p;
|
||||
int res, flags = 0;
|
||||
timer_isr_handle_t *inth = NULL;
|
||||
TickType_t tmo_ticks = arg->data.period / (1000 * portTICK_PERIOD_MS);
|
||||
|
||||
ESP_APPTRACE_TEST_LOGI("%x: run (period %u us, stamp mask %x, %u timers)", xTaskGetCurrentTaskHandle(), arg->data.period, arg->data.mask, arg->timers_num);
|
||||
|
||||
if (arg->timers_num > 0) {
|
||||
inth = pvPortMalloc(arg->timers_num * sizeof(timer_isr_handle_t));
|
||||
if (!inth) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to alloc timer ISR handles!");
|
||||
goto on_fail;
|
||||
}
|
||||
memset(inth, 0, arg->timers_num * sizeof(timer_isr_handle_t));
|
||||
for (int i = 0; i < arg->timers_num; i++) {
|
||||
esp_apptrace_test_timer_init(arg->timers[i].group, arg->timers[i].id, arg->timers[i].data.period);
|
||||
res = timer_isr_register(arg->timers[i].group, arg->timers[i].id, arg->timers[i].isr_func, &arg->timers[i], flags, &inth[i]);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to timer_isr_register (%d)!", res);
|
||||
goto on_fail;
|
||||
}
|
||||
*(uint32_t *)arg->timers[i].data.buf = ((uint32_t)inth[i]) | (1 << 31) | (xPortGetCoreID() ? 0x1 : 0);
|
||||
ESP_APPTRACE_TEST_LOGI("%x: start timer %x period %u us", xTaskGetCurrentTaskHandle(), inth[i], arg->timers[i].data.period);
|
||||
res = timer_start(arg->timers[i].group, arg->timers[i].id);
|
||||
if (res != ESP_OK) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to timer_start (%d)!", res);
|
||||
goto on_fail;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*(uint32_t *)arg->data.buf = (uint32_t)xTaskGetCurrentTaskHandle() | (xPortGetCoreID() ? 0x1 : 0);
|
||||
arg->data.wr_cnt = 0;
|
||||
arg->data.wr_err = 0;
|
||||
while (!arg->stop) {
|
||||
uint32_t *ts = (uint32_t *)(arg->data.buf + sizeof(uint32_t));
|
||||
*ts = (uint32_t)esp_apptrace_test_ts_get();
|
||||
memset(arg->data.buf + 2 * sizeof(uint32_t), arg->data.wr_cnt & arg->data.mask, arg->data.buf_sz - 2 * sizeof(uint32_t));
|
||||
if (arg->nowait) {
|
||||
res = ESP_APPTRACE_TEST_WRITE_NOWAIT(arg->data.buf, arg->data.buf_sz);
|
||||
} else {
|
||||
res = ESP_APPTRACE_TEST_WRITE(arg->data.buf, arg->data.buf_sz);
|
||||
}
|
||||
if (res) {
|
||||
if (arg->data.wr_err++ < ESP_APPTRACE_TEST_PRN_WRERR_MAX) {
|
||||
ESP_APPTRACE_TEST_LOGE("%x: Failed to write trace %d %x!", xTaskGetCurrentTaskHandle(), res, arg->data.wr_cnt & arg->data.mask);
|
||||
if (arg->data.wr_err == ESP_APPTRACE_TEST_PRN_WRERR_MAX) {
|
||||
ESP_APPTRACE_TEST_LOGE("\n");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (0) {
|
||||
ESP_APPTRACE_TEST_LOGD("%x:%x: Written chunk%d %d bytes, %x", xTaskGetCurrentTaskHandle(), *ts, arg->data.wr_cnt, arg->data.buf_sz, arg->data.wr_cnt & arg->data.mask);
|
||||
}
|
||||
arg->data.wr_err = 0;
|
||||
}
|
||||
arg->data.wr_cnt++;
|
||||
if (tmo_ticks) {
|
||||
vTaskDelay(tmo_ticks);
|
||||
}
|
||||
}
|
||||
|
||||
on_fail:
|
||||
if (inth) {
|
||||
for (int i = 0; i < arg->timers_num; i++) {
|
||||
timer_pause(arg->timers[i].group, arg->timers[i].id);
|
||||
timer_disable_intr(arg->timers[i].group, arg->timers[i].id);
|
||||
if (inth[i]) {
|
||||
esp_intr_free(inth[i]);
|
||||
}
|
||||
}
|
||||
vPortFree(inth);
|
||||
}
|
||||
xSemaphoreGive(arg->done);
|
||||
vTaskDelay(1);
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_task_crash(void *p)
|
||||
{
|
||||
esp_apptrace_test_task_arg_t *arg = (esp_apptrace_test_task_arg_t *) p;
|
||||
int res, i;
|
||||
|
||||
ESP_APPTRACE_TEST_LOGE("%x: run (period %u us, stamp mask %x, %u timers)", xTaskGetCurrentTaskHandle(), arg->data.period, arg->data.mask, arg->timers_num);
|
||||
|
||||
arg->data.wr_cnt = 0;
|
||||
*(uint32_t *)arg->data.buf = (uint32_t)xTaskGetCurrentTaskHandle();
|
||||
for (i = 0; i < ESP_APPTRACE_TEST_BLOCKS_BEFORE_CRASH; i++) {
|
||||
uint32_t *ts = (uint32_t *)(arg->data.buf + sizeof(uint32_t));
|
||||
*ts = (uint32_t)esp_apptrace_test_ts_get();
|
||||
memset(arg->data.buf + sizeof(uint32_t), arg->data.wr_cnt & arg->data.mask, arg->data.buf_sz - sizeof(uint32_t));
|
||||
res = ESP_APPTRACE_TEST_WRITE(arg->data.buf, arg->data.buf_sz);
|
||||
if (res) {
|
||||
ESP_APPTRACE_TEST_LOGE("%x: Failed to write trace %d %x!", xTaskGetCurrentTaskHandle(), res, arg->data.wr_cnt & arg->data.mask);
|
||||
} else {
|
||||
ESP_APPTRACE_TEST_LOGD("%x: Written chunk%d %d bytes, %x", xTaskGetCurrentTaskHandle(), arg->data.wr_cnt, arg->data.buf_sz, arg->data.wr_cnt & arg->data.mask);
|
||||
}
|
||||
arg->data.wr_cnt++;
|
||||
}
|
||||
vTaskDelay(500);
|
||||
uint32_t *ptr = 0;
|
||||
*ptr = 1000;
|
||||
|
||||
xSemaphoreGive(arg->done);
|
||||
vTaskDelay(1);
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
static int s_ts_timer_group, s_ts_timer_idx;
|
||||
|
||||
static uint64_t esp_apptrace_test_ts_get()
|
||||
{
|
||||
uint64_t ts = 0;
|
||||
timer_get_counter_value(s_ts_timer_group, s_ts_timer_idx, &ts);
|
||||
return ts;
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_ts_init(int timer_group, int timer_idx)
|
||||
{
|
||||
timer_config_t config;
|
||||
//uint64_t alarm_val = period * (TIMER_BASE_CLK / 1000000UL);
|
||||
|
||||
ESP_APPTRACE_TEST_LOGI("Use timer%d.%d for TS", timer_group, timer_idx);
|
||||
|
||||
s_ts_timer_group = timer_group;
|
||||
s_ts_timer_idx = timer_idx;
|
||||
|
||||
config.alarm_en = 0;
|
||||
config.auto_reload = 0;
|
||||
config.counter_dir = TIMER_COUNT_UP;
|
||||
config.divider = 1;
|
||||
config.counter_en = 0;
|
||||
/*Configure timer*/
|
||||
timer_init(timer_group, timer_idx, &config);
|
||||
/*Load counter value */
|
||||
timer_set_counter_value(timer_group, timer_idx, 0x00000000ULL);
|
||||
/*Enable timer interrupt*/
|
||||
timer_start(timer_group, timer_idx);
|
||||
}
|
||||
|
||||
static void esp_apptrace_test_ts_cleanup()
|
||||
{
|
||||
timer_config_t config;
|
||||
|
||||
config.alarm_en = 0;
|
||||
config.auto_reload = 0;
|
||||
config.counter_dir = TIMER_COUNT_UP;
|
||||
config.divider = 1;
|
||||
config.counter_en = 0;
|
||||
/*Configure timer*/
|
||||
timer_init(s_ts_timer_group, s_ts_timer_idx, &config);
|
||||
}
|
||||
|
||||
static void esp_apptrace_test(esp_apptrace_test_cfg_t *test_cfg)
|
||||
{
|
||||
int i, k;
|
||||
int tims_in_use[TIMER_GROUP_MAX][TIMER_MAX] = {{0, 0}, {0, 0}};
|
||||
esp_apptrace_test_task_arg_t dummy_task_arg[1];
|
||||
|
||||
memset(dummy_task_arg, 0, sizeof(dummy_task_arg));
|
||||
dummy_task_arg[0].core = 0;
|
||||
dummy_task_arg[0].prio = 3;
|
||||
dummy_task_arg[0].task_func = esp_apptrace_test_task_crash;
|
||||
dummy_task_arg[0].data.buf = NULL;
|
||||
dummy_task_arg[0].data.buf_sz = 0;
|
||||
dummy_task_arg[0].data.period = 500000;
|
||||
dummy_task_arg[0].timers_num = 0;
|
||||
dummy_task_arg[0].timers = NULL;
|
||||
#if ESP_APPTRACE_TEST_USE_PRINT_LOCK == 1
|
||||
s_print_lock = xSemaphoreCreateBinary();
|
||||
if (!s_print_lock) {
|
||||
ets_printf("%s: Failed to create print lock!", TAG);
|
||||
return;
|
||||
}
|
||||
xSemaphoreGive(s_print_lock);
|
||||
#else
|
||||
#endif
|
||||
|
||||
for (i = 0; i < test_cfg->tasks_num; i++) {
|
||||
test_cfg->tasks[i].data.mask = 0xFF;
|
||||
test_cfg->tasks[i].stop = 0;
|
||||
test_cfg->tasks[i].done = xSemaphoreCreateBinary();
|
||||
if (!test_cfg->tasks[i].done) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to create task completion semaphore!");
|
||||
goto on_fail;
|
||||
}
|
||||
for (k = 0; k < test_cfg->tasks[i].timers_num; k++) {
|
||||
test_cfg->tasks[i].timers[k].data.mask = 0xFF;
|
||||
tims_in_use[test_cfg->tasks[i].timers[k].group][test_cfg->tasks[i].timers[k].id] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
int found = 0;
|
||||
for (i = 0; i < TIMER_GROUP_MAX; i++) {
|
||||
for (k = 0; k < TIMER_MAX; k++) {
|
||||
if (!tims_in_use[i][k]) {
|
||||
ESP_APPTRACE_TEST_LOGD("Found timer%d.%d", i, k);
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (found) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
ESP_APPTRACE_TEST_LOGE("No free timer for TS!");
|
||||
goto on_fail;
|
||||
}
|
||||
esp_apptrace_test_ts_init(i, k);
|
||||
|
||||
for (int i = 0; i < test_cfg->tasks_num; i++) {
|
||||
char name[30];
|
||||
TaskHandle_t thnd;
|
||||
sprintf(name, "apptrace_test%d", i);
|
||||
xTaskCreatePinnedToCore(test_cfg->tasks[i].task_func, name, 2048, &test_cfg->tasks[i], test_cfg->tasks[i].prio, &thnd, test_cfg->tasks[i].core);
|
||||
ESP_APPTRACE_TEST_LOGI("Created task %x", thnd);
|
||||
}
|
||||
xTaskCreatePinnedToCore(esp_apptrace_dummy_task, "dummy0", 2048, &dummy_task_arg[0], dummy_task_arg[0].prio, NULL, 0);
|
||||
xTaskCreatePinnedToCore(esp_apptrace_dummy_task, "dummy1", 2048, &dummy_task_arg[0], dummy_task_arg[0].prio, NULL, 1);
|
||||
|
||||
for (int i = 0; i < test_cfg->tasks_num; i++) {
|
||||
//arg1.stop = 1;
|
||||
xSemaphoreTake(test_cfg->tasks[i].done, portMAX_DELAY);
|
||||
}
|
||||
|
||||
on_fail:
|
||||
for (int i = 0; i < test_cfg->tasks_num; i++) {
|
||||
if (test_cfg->tasks[i].done) {
|
||||
vSemaphoreDelete(test_cfg->tasks[i].done);
|
||||
}
|
||||
}
|
||||
esp_apptrace_test_ts_cleanup();
|
||||
|
||||
#if ESP_APPTRACE_TEST_USE_PRINT_LOCK == 1
|
||||
vSemaphoreDelete(s_print_lock);
|
||||
#else
|
||||
#endif
|
||||
}
|
||||
|
||||
static esp_apptrace_test_task_arg_t s_test_tasks[4];
|
||||
static esp_apptrace_test_timer_arg_t s_test_timers[2];
|
||||
static uint8_t s_bufs[6][ESP_APPTRACE_TEST_BLOCK_SIZE];
|
||||
|
||||
TEST_CASE("App trace test (1 task + 1 crashed timer ISR @ 1 core)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 1,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_timers, 0, sizeof(s_test_timers));
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_timers[0].group = TIMER_GROUP_0;
|
||||
s_test_timers[0].id = TIMER_0;
|
||||
s_test_timers[0].isr_func = esp_apptrace_test_timer_isr_crash;
|
||||
s_test_timers[0].data.buf = s_bufs[0];
|
||||
s_test_timers[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_timers[0].data.period = 1000;
|
||||
|
||||
s_test_tasks[0].core = 0;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_dummy_task;
|
||||
s_test_tasks[0].data.buf = NULL;
|
||||
s_test_tasks[0].data.buf_sz = 0;
|
||||
s_test_tasks[0].data.period = 1000000;
|
||||
s_test_tasks[0].timers_num = 1;
|
||||
s_test_tasks[0].timers = s_test_timers;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("App trace test (1 crashed task)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_task_arg_t s_test_tasks[1];
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 1,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_tasks[0].core = 0;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_test_task_crash;
|
||||
s_test_tasks[0].data.buf = s_bufs[0];
|
||||
s_test_tasks[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_tasks[0].data.period = 6000;
|
||||
s_test_tasks[0].timers_num = 0;
|
||||
s_test_tasks[0].timers = NULL;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
TEST_CASE("App trace test (2 tasks + 1 timer @ each core", "[trace][ignore]")
|
||||
{
|
||||
int ntask = 0;
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 4,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
memset(s_test_timers, 0, sizeof(s_test_timers));
|
||||
|
||||
s_test_timers[0].group = TIMER_GROUP_0;
|
||||
s_test_timers[0].id = TIMER_0;
|
||||
s_test_timers[0].isr_func = esp_apptrace_test_timer_isr;
|
||||
s_test_timers[0].data.buf = s_bufs[0];
|
||||
s_test_timers[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_timers[0].data.period = 150;
|
||||
|
||||
s_test_timers[1].group = TIMER_GROUP_1;
|
||||
s_test_timers[1].id = TIMER_0;
|
||||
s_test_timers[1].isr_func = esp_apptrace_test_timer_isr;
|
||||
s_test_timers[1].data.buf = s_bufs[1];
|
||||
s_test_timers[1].data.buf_sz = sizeof(s_bufs[1]);
|
||||
s_test_timers[1].data.period = 150;
|
||||
|
||||
s_test_tasks[ntask].core = 0;
|
||||
s_test_tasks[ntask].prio = 4;
|
||||
s_test_tasks[ntask].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[ntask].data.buf = s_bufs[2];
|
||||
s_test_tasks[ntask].data.buf_sz = sizeof(s_bufs[2]);
|
||||
s_test_tasks[ntask].data.period = 1000;
|
||||
s_test_tasks[ntask].timers_num = 1;
|
||||
s_test_tasks[ntask].timers = &s_test_timers[0];
|
||||
ntask++;
|
||||
s_test_tasks[ntask].core = 0;
|
||||
s_test_tasks[ntask].prio = 3;
|
||||
s_test_tasks[ntask].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[ntask].data.buf = s_bufs[3];
|
||||
s_test_tasks[ntask].data.buf_sz = sizeof(s_bufs[3]);
|
||||
s_test_tasks[ntask].data.period = 0;
|
||||
s_test_tasks[ntask].timers_num = 0;
|
||||
s_test_tasks[ntask].timers = NULL;
|
||||
ntask++;
|
||||
s_test_tasks[ntask].core = 1;
|
||||
s_test_tasks[ntask].prio = 4;
|
||||
s_test_tasks[ntask].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[ntask].data.buf = s_bufs[4];
|
||||
s_test_tasks[ntask].data.buf_sz = sizeof(s_bufs[4]);
|
||||
s_test_tasks[ntask].data.period = 1000;
|
||||
s_test_tasks[ntask].timers_num = 1;
|
||||
s_test_tasks[ntask].timers = &s_test_timers[1];
|
||||
ntask++;
|
||||
s_test_tasks[ntask].core = 1;
|
||||
s_test_tasks[ntask].prio = 3;
|
||||
s_test_tasks[ntask].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[ntask].data.buf = s_bufs[5];
|
||||
s_test_tasks[ntask].data.buf_sz = sizeof(s_bufs[5]);
|
||||
s_test_tasks[ntask].data.period = 0;
|
||||
s_test_tasks[ntask].timers_num = 0;
|
||||
s_test_tasks[ntask].timers = NULL;
|
||||
ntask++;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
TEST_CASE("App trace test (1 task + 1 timer @ 1 core)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 1,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_timers, 0, sizeof(s_test_timers));
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_timers[0].group = TIMER_GROUP_0;
|
||||
s_test_timers[0].id = TIMER_0;
|
||||
s_test_timers[0].isr_func = esp_apptrace_test_timer_isr;
|
||||
s_test_timers[0].data.buf = s_bufs[0];
|
||||
s_test_timers[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_timers[0].data.period = 150;
|
||||
|
||||
s_test_tasks[0].core = 0;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[0].data.buf = s_bufs[1];
|
||||
s_test_tasks[0].data.buf_sz = sizeof(s_bufs[1]);
|
||||
s_test_tasks[0].data.period = 0;
|
||||
s_test_tasks[0].timers_num = 1;
|
||||
s_test_tasks[0].timers = s_test_timers;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
TEST_CASE("App trace test (2 tasks (nowait): 1 @ each core)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 2,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_tasks[0].nowait = 1;
|
||||
s_test_tasks[0].core = 0;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[0].data.buf = s_bufs[0];
|
||||
s_test_tasks[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_tasks[0].data.period = 6700;
|
||||
s_test_tasks[0].timers_num = 0;
|
||||
s_test_tasks[0].timers = NULL;
|
||||
|
||||
s_test_tasks[1].nowait = 1;
|
||||
s_test_tasks[1].core = 1;
|
||||
s_test_tasks[1].prio = 3;
|
||||
s_test_tasks[1].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[1].data.buf = s_bufs[1];
|
||||
s_test_tasks[1].data.buf_sz = sizeof(s_bufs[1]);
|
||||
s_test_tasks[1].data.period = 6700;
|
||||
s_test_tasks[1].timers_num = 0;
|
||||
s_test_tasks[1].timers = NULL;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
TEST_CASE("App trace test (2 tasks: 1 @ each core)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 2,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_tasks[0].core = 0;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[0].data.buf = s_bufs[0];
|
||||
s_test_tasks[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_tasks[0].data.period = 0;
|
||||
s_test_tasks[0].timers_num = 0;
|
||||
s_test_tasks[0].timers = NULL;
|
||||
|
||||
s_test_tasks[1].core = 1;
|
||||
s_test_tasks[1].prio = 3;
|
||||
s_test_tasks[1].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[1].data.buf = s_bufs[1];
|
||||
s_test_tasks[1].data.buf_sz = sizeof(s_bufs[1]);
|
||||
s_test_tasks[1].data.period = 0;
|
||||
s_test_tasks[1].timers_num = 0;
|
||||
s_test_tasks[1].timers = NULL;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
TEST_CASE("App trace test (1 task)", "[trace][ignore]")
|
||||
{
|
||||
esp_apptrace_test_cfg_t test_cfg = {
|
||||
.tasks_num = 1,
|
||||
.tasks = s_test_tasks,
|
||||
};
|
||||
|
||||
memset(s_test_tasks, 0, sizeof(s_test_tasks));
|
||||
|
||||
s_test_tasks[0].core = 1;
|
||||
s_test_tasks[0].prio = 3;
|
||||
s_test_tasks[0].task_func = esp_apptrace_test_task;
|
||||
s_test_tasks[0].data.buf = s_bufs[0];
|
||||
s_test_tasks[0].data.buf_sz = sizeof(s_bufs[0]);
|
||||
s_test_tasks[0].data.period = 0;
|
||||
s_test_tasks[0].timers_num = 0;
|
||||
s_test_tasks[0].timers = NULL;
|
||||
|
||||
esp_apptrace_test(&test_cfg);
|
||||
}
|
||||
|
||||
static int esp_logtrace_printf(const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
|
||||
va_start(ap, fmt);
|
||||
|
||||
int ret = esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TMO_INFINITE, fmt, ap);
|
||||
|
||||
va_end(ap);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
SemaphoreHandle_t done;
|
||||
} esp_logtrace_task_t;
|
||||
|
||||
static void esp_logtrace_task(void *p)
|
||||
{
|
||||
esp_logtrace_task_t *arg = (esp_logtrace_task_t *) p;
|
||||
|
||||
ESP_APPTRACE_TEST_LOGI("%x: run log test task", xTaskGetCurrentTaskHandle());
|
||||
|
||||
int i = 0;
|
||||
while (1) {
|
||||
esp_logtrace_printf("sample print %lx %hx %c\n", 2 * i + 0x10, 2 * i + 0x20, (2 * i + 0x30) & 0xFF);
|
||||
esp_logtrace_printf("sample print %lx %hx %c %lu %hu %d %d %d %d\n", i, i + 0x10, (i + 0x20) & 0xFF, i + 0x30, i + 0x40, i + 0x50, i + 0x60, i + 0x70, i + 0x80);
|
||||
ESP_LOGI(TAG, "%p: sample print 1", xTaskGetCurrentTaskHandle());
|
||||
ESP_LOGI(TAG, "%p: sample print 2 %u", xTaskGetCurrentTaskHandle(), (unsigned)i);
|
||||
ESP_LOGI(TAG, "%p: sample print 4 %c", xTaskGetCurrentTaskHandle(), ((i & 0xFF) % 95) + 32);
|
||||
ESP_LOGI(TAG, "%p: sample print 5 %f", xTaskGetCurrentTaskHandle(), 1.0);
|
||||
ESP_LOGI(TAG, "%p: sample print 6 %f", xTaskGetCurrentTaskHandle(), 3.45);
|
||||
ESP_LOGI(TAG, "%p: logtrace task work %d.%d", xTaskGetCurrentTaskHandle(), xPortGetCoreID(), i);
|
||||
if (++i == 10000) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
esp_err_t ret = esp_apptrace_flush(ESP_APPTRACE_DEST_TRAX, ESP_APPTRACE_TMO_INFINITE);
|
||||
if (ret != ESP_OK) {
|
||||
ESP_APPTRACE_TEST_LOGE("Failed to flush printf buf (%d)!", ret);
|
||||
}
|
||||
|
||||
ESP_APPTRACE_TEST_LOGI("%x: finished", xTaskGetCurrentTaskHandle());
|
||||
|
||||
xSemaphoreGive(arg->done);
|
||||
vTaskDelay(1);
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
TEST_CASE("Log trace test (1 task)", "[trace][ignore]")
|
||||
{
|
||||
TaskHandle_t thnd;
|
||||
|
||||
esp_logtrace_task_t arg1 = {
|
||||
.done = xSemaphoreCreateBinary(),
|
||||
};
|
||||
esp_logtrace_task_t arg2 = {
|
||||
.done = xSemaphoreCreateBinary(),
|
||||
};
|
||||
|
||||
xTaskCreatePinnedToCore(esp_logtrace_task, "logtrace0", 2048, &arg1, 3, &thnd, 0);
|
||||
ESP_APPTRACE_TEST_LOGI("Created task %x", thnd);
|
||||
xTaskCreatePinnedToCore(esp_logtrace_task, "logtrace1", 2048, &arg2, 3, &thnd, 1);
|
||||
ESP_APPTRACE_TEST_LOGI("Created task %x", thnd);
|
||||
|
||||
xSemaphoreTake(arg1.done, portMAX_DELAY);
|
||||
vSemaphoreDelete(arg1.done);
|
||||
xSemaphoreTake(arg2.done, portMAX_DELAY);
|
||||
vSemaphoreDelete(arg2.done);
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user