wpa_supplicant: Write Crypto API based on mbedtls

This commit add following crypto changes

1. Update current crypto code with upstream supplicant code
2. Add a proper porting layer to use mbedtls APIs for all the crypto
   operations used by supplicant.

Internal crypto will be used when USE_MBEDLTS flag is disabled
in supplicant's menuconfig.

This commit also removes the clutter in crypto files due to partial
porting of some APIs to mbedtls, all the code from those files have
been removed and rewritten in a generic way, this is inspired from
current upstream code.

This also reduces the lib size significantly, supplicant's lib
size reduces around ~567kb after this change(NB: lib size doesn't
indicate reduction in final bin size).
This commit is contained in:
kapil.gupta
2020-09-14 13:51:25 +05:30
committed by bot
parent 639e7ad494
commit ad7cb5f5c1
68 changed files with 2009 additions and 1746 deletions

View File

@@ -28,9 +28,27 @@
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/md.h"
#include "mbedtls/aes.h"
#include "mbedtls/bignum.h"
#include "mbedtls/pkcs5.h"
#include "mbedtls/cmac.h"
#include "mbedtls/nist_kw.h"
#include "mbedtls/des.h"
#include "mbedtls/ccm.h"
#include "mbedtls/arc4.h"
int mbedtls_hmac_vector(mbedtls_md_type_t md_type, const u8 *key, size_t key_len,
size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
#include "common.h"
#include "utils/wpabuf.h"
#include "dh_group5.h"
#include "sha1.h"
#include "sha256.h"
#include "md5.h"
#include "aes_wrap.h"
#include "crypto.h"
#include "mbedtls/esp_config.h"
static int digest_vector(mbedtls_md_type_t md_type, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
size_t i;
const mbedtls_md_info_t *md_info;
@@ -39,16 +57,169 @@ int mbedtls_hmac_vector(mbedtls_md_type_t md_type, const u8 *key, size_t key_len
mbedtls_md_init(&md_ctx);
if((md_info = mbedtls_md_info_from_type(md_type)) == NULL )
md_info = mbedtls_md_info_from_type(md_type);
if (!md_info) {
wpa_printf(MSG_ERROR, "mbedtls_md_info_from_type() failed");
return -1;
}
if ((ret = mbedtls_md_setup( &md_ctx, md_info, 1)) != 0)
ret = mbedtls_md_setup(&md_ctx, md_info, 0);
if (ret != 0) {
wpa_printf(MSG_ERROR, "mbedtls_md_setup() returned error");
goto cleanup;
}
ret = mbedtls_md_starts(&md_ctx);
if (ret != 0) {
wpa_printf(MSG_ERROR, "mbedtls_md_starts returned error");
goto cleanup;
}
for (i = 0; i < num_elem; i++) {
ret = mbedtls_md_update(&md_ctx, addr[i], len[i]);
if (ret != 0) {
wpa_printf(MSG_ERROR, "mbedtls_md_update ret=%d", ret);
goto cleanup;
}
}
ret = mbedtls_md_finish(&md_ctx, mac);
cleanup:
mbedtls_md_free(&md_ctx);
return ret;
}
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
return digest_vector(MBEDTLS_MD_SHA256, num_elem, addr, len, mac);
}
int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
return digest_vector(MBEDTLS_MD_SHA384, num_elem, addr, len, mac);
}
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return digest_vector(MBEDTLS_MD_SHA1, num_elem, addr, len, mac);
}
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return digest_vector(MBEDTLS_MD_MD5, num_elem, addr, len, mac);
}
#ifdef MBEDTLS_MD4_C
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return digest_vector(MBEDTLS_MD_MD4, num_elem, addr, len, mac);
}
#endif
struct crypto_hash {
mbedtls_md_context_t ctx;
};
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len)
{
struct crypto_hash *ctx;
mbedtls_md_type_t md_type;
const mbedtls_md_info_t *md_info;
int ret;
switch (alg) {
case CRYPTO_HASH_ALG_HMAC_MD5:
md_type = MBEDTLS_MD_MD5;
break;
case CRYPTO_HASH_ALG_HMAC_SHA1:
md_type = MBEDTLS_MD_SHA1;
break;
case CRYPTO_HASH_ALG_HMAC_SHA256:
md_type = MBEDTLS_MD_SHA256;
break;
default:
return NULL;
}
ctx = os_zalloc(sizeof(*ctx));
if (ctx == NULL) {
return NULL;
}
mbedtls_md_init(&ctx->ctx);
md_info = mbedtls_md_info_from_type(md_type);
if (!md_info) {
os_free(ctx);
return NULL;
}
ret = mbedtls_md_setup(&ctx->ctx, md_info, 1);
if (ret != 0) {
os_free(ctx);
return NULL;
}
mbedtls_md_hmac_starts(&ctx->ctx, key, key_len);
return ctx;
}
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
{
if (ctx == NULL) {
return;
}
mbedtls_md_hmac_update(&ctx->ctx, data, len);
}
int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
{
if (ctx == NULL) {
return -2;
}
if (mac == NULL || len == NULL) {
mbedtls_md_free(&ctx->ctx);
bin_clear_free(ctx, sizeof(*ctx));
return 0;
}
mbedtls_md_hmac_finish(&ctx->ctx, mac);
mbedtls_md_free(&ctx->ctx);
bin_clear_free(ctx, sizeof(*ctx));
return 0;
}
static int hmac_vector(mbedtls_md_type_t md_type,
const u8 *key, size_t key_len,
size_t num_elem, const u8 *addr[],
const size_t *len, u8 *mac)
{
size_t i;
const mbedtls_md_info_t *md_info;
mbedtls_md_context_t md_ctx;
int ret;
mbedtls_md_init(&md_ctx);
md_info = mbedtls_md_info_from_type(md_type);
if (!md_info) {
return -1;
}
ret = mbedtls_md_setup(&md_ctx, md_info, 1);
if (ret != 0) {
return(ret);
}
mbedtls_md_hmac_starts(&md_ctx, key, key_len);
for( i = 0; i < num_elem; i++)
for (i = 0; i < num_elem; i++) {
mbedtls_md_hmac_update(&md_ctx, addr[i], len[i]);
}
mbedtls_md_hmac_finish(&md_ctx, mac);
@@ -60,8 +231,8 @@ int mbedtls_hmac_vector(mbedtls_md_type_t md_type, const u8 *key, size_t key_len
int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return mbedtls_hmac_vector(MBEDTLS_MD_SHA384, key, key_len, num_elem, addr,
len, mac);
return hmac_vector(MBEDTLS_MD_SHA384, key, key_len, num_elem, addr,
len, mac);
}
@@ -70,3 +241,666 @@ int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
{
return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
}
int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return hmac_vector(MBEDTLS_MD_SHA256, key, key_len, num_elem, addr,
len, mac);
}
int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
}
int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return hmac_vector(MBEDTLS_MD_MD5, key, key_len,
num_elem, addr, len, mac);
}
int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
}
int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return hmac_vector(MBEDTLS_MD_SHA1, key, key_len, num_elem, addr,
len, mac);
}
int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}
void *aes_crypt_init(const u8 *key, size_t len)
{
mbedtls_aes_context *aes = os_malloc(sizeof(*aes));
if (!aes) {
return NULL;
}
mbedtls_aes_init(aes);
if (mbedtls_aes_setkey_enc(aes, key, len * 8) < 0) {
mbedtls_aes_free(aes);
os_free(aes);
wpa_printf(MSG_ERROR, "%s: mbedtls_aes_setkey_enc failed", __func__);
return NULL;
}
return (void *) aes;
}
int aes_crypt(void *ctx, int mode, const u8 *in, u8 *out)
{
return mbedtls_aes_crypt_ecb((mbedtls_aes_context *)ctx,
mode, in, out);
}
void aes_crypt_deinit(void *ctx)
{
mbedtls_aes_free((mbedtls_aes_context *)ctx);
os_free(ctx);
}
void *aes_encrypt_init(const u8 *key, size_t len)
{
return aes_crypt_init(key, len);
}
int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
{
return aes_crypt(ctx, MBEDTLS_AES_ENCRYPT, plain, crypt);
}
void aes_encrypt_deinit(void *ctx)
{
return aes_crypt_deinit(ctx);
}
void * aes_decrypt_init(const u8 *key, size_t len)
{
return aes_crypt_init(key, len);
}
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
{
return aes_crypt(ctx, MBEDTLS_AES_DECRYPT, crypt, plain);
}
void aes_decrypt_deinit(void *ctx)
{
return aes_crypt_deinit(ctx);
}
int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
int ret = 0;
mbedtls_aes_context ctx;
u8 cbc[MBEDTLS_AES_BLOCK_SIZE];
mbedtls_aes_init(&ctx);
ret = mbedtls_aes_setkey_enc(&ctx, key, 128);
if (ret < 0) {
mbedtls_aes_free(&ctx);
return ret;
}
os_memcpy(cbc, iv, MBEDTLS_AES_BLOCK_SIZE);
ret = mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_ENCRYPT,
data_len, cbc, data, data);
mbedtls_aes_free(&ctx);
return ret;
}
int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
int ret = 0;
mbedtls_aes_context ctx;
u8 cbc[MBEDTLS_AES_BLOCK_SIZE];
mbedtls_aes_init(&ctx);
ret = mbedtls_aes_setkey_dec(&ctx, key, 128);
if (ret < 0) {
mbedtls_aes_free(&ctx);
return ret;
}
os_memcpy(cbc, iv, MBEDTLS_AES_BLOCK_SIZE);
ret = mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_DECRYPT,
data_len, cbc, data, data);
mbedtls_aes_free(&ctx);
return ret;
}
struct crypto_cipher {
mbedtls_cipher_context_t ctx_enc;
mbedtls_cipher_context_t ctx_dec;
};
static int crypto_init_cipher_ctx(mbedtls_cipher_context_t *ctx,
const mbedtls_cipher_info_t *cipher_info,
const u8 *iv, const u8 *key,
mbedtls_operation_t operation)
{
mbedtls_cipher_init(ctx);
int ret;
ret = mbedtls_cipher_setup(ctx, cipher_info);
if (ret != 0) {
return -1;
}
if (mbedtls_cipher_setkey(ctx, key, cipher_info->key_bitlen,
operation) != 0) {
wpa_printf(MSG_ERROR, "mbedtls_cipher_setkey returned error");
return -1;
}
if (mbedtls_cipher_set_iv(ctx, iv, cipher_info->iv_size) != 0) {
wpa_printf(MSG_ERROR, "mbedtls_cipher_set_iv returned error");
return -1;
}
if (mbedtls_cipher_reset(ctx) != 0) {
wpa_printf(MSG_ERROR, "mbedtls_cipher_reset() returned error");
return -1;
}
return 0;
}
static mbedtls_cipher_type_t alg_to_mbedtls_cipher(enum crypto_cipher_alg alg,
size_t key_len)
{
switch (alg) {
#ifdef MBEDTLS_ARC4_C
case CRYPTO_CIPHER_ALG_RC4:
return MBEDTLS_CIPHER_ARC4_128;
#endif
case CRYPTO_CIPHER_ALG_AES:
if (key_len == 16) {
return MBEDTLS_CIPHER_AES_128_CBC;
}
if (key_len == 24) {
return MBEDTLS_CIPHER_AES_192_CBC;
}
if (key_len == 32) {
return MBEDTLS_CIPHER_AES_256_CBC;
}
break;
#ifdef MBEDTLS_DES_C
case CRYPTO_CIPHER_ALG_3DES:
return MBEDTLS_CIPHER_DES_EDE3_CBC;
case CRYPTO_CIPHER_ALG_DES:
return MBEDTLS_CIPHER_DES_CBC;
#endif
default:
break;
}
return MBEDTLS_CIPHER_NONE;
}
struct crypto_cipher *crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len)
{
struct crypto_cipher *ctx;
mbedtls_cipher_type_t cipher_type;
const mbedtls_cipher_info_t *cipher_info;
ctx = (struct crypto_cipher *)os_zalloc(sizeof(*ctx));
if (!ctx) {
return NULL;
}
cipher_type = alg_to_mbedtls_cipher(alg, key_len);
if (cipher_type == MBEDTLS_CIPHER_NONE) {
goto cleanup;
}
cipher_info = mbedtls_cipher_info_from_type(cipher_type);
if (cipher_info == NULL) {
goto cleanup;
}
/* Init both ctx encryption/decryption */
if (crypto_init_cipher_ctx(&ctx->ctx_enc, cipher_info, iv, key,
MBEDTLS_ENCRYPT) < 0) {
goto cleanup;
}
if (crypto_init_cipher_ctx(&ctx->ctx_dec, cipher_info, iv, key,
MBEDTLS_DECRYPT) < 0) {
goto cleanup;
}
return ctx;
cleanup:
os_free(ctx);
return NULL;
}
#if 0
int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
u8 *crypt, size_t len)
{
int ret;
size_t olen = 1200;
ret = mbedtls_cipher_update(&ctx->ctx_enc, plain, len, crypt, &olen);
if (ret != 0) {
return -1;
}
ret = mbedtls_cipher_finish(&ctx->ctx_enc, crypt + olen, &olen);
if (ret != 0) {
return -1;
}
return 0;
}
int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
u8 *plain, size_t len)
{
int ret;
size_t olen = 1200;
ret = mbedtls_cipher_update(&ctx->ctx_dec, crypt, len, plain, &olen);
if (ret != 0) {
return -1;
}
ret = mbedtls_cipher_finish(&ctx->ctx_dec, plain + olen, &olen);
if (ret != 0) {
return -1;
}
return 0;
}
#endif
void crypto_cipher_deinit(struct crypto_cipher *ctx)
{
mbedtls_cipher_free(&ctx->ctx_enc);
mbedtls_cipher_free(&ctx->ctx_dec);
os_free(ctx);
}
int aes_ctr_encrypt(const u8 *key, size_t key_len, const u8 *nonce,
u8 *data, size_t data_len)
{
int ret;
mbedtls_aes_context ctx;
uint8_t stream_block[MBEDTLS_AES_BLOCK_SIZE];
size_t offset = 0;
mbedtls_aes_init(&ctx);
ret = mbedtls_aes_setkey_enc(&ctx, key, key_len * 8);
if (ret < 0) {
goto cleanup;
}
ret = mbedtls_aes_crypt_ctr(&ctx, data_len, &offset, (u8 *)nonce,
stream_block, data, data);
cleanup:
mbedtls_aes_free(&ctx);
return ret;
}
int aes_128_ctr_encrypt(const u8 *key, const u8 *nonce,
u8 *data, size_t data_len)
{
return aes_ctr_encrypt(key, 16, nonce, data, data_len);
}
#ifdef MBEDTLS_NIST_KW_C
int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
{
mbedtls_nist_kw_context ctx;
size_t olen;
int ret = 0;
mbedtls_nist_kw_init(&ctx);
ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
kek, kek_len * 8, 1);
if (ret != 0) {
return ret;
}
ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KW, plain,
n * 8, cipher, &olen, (n + 1) * 8);
mbedtls_nist_kw_free(&ctx);
return ret;
}
int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
u8 *plain)
{
mbedtls_nist_kw_context ctx;
size_t olen;
int ret = 0;
mbedtls_nist_kw_init(&ctx);
ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
kek, kek_len * 8, 0);
if (ret != 0) {
return ret;
}
ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KW, cipher,
(n + 1) * 8, plain, &olen, (n * 8));
mbedtls_nist_kw_free(&ctx);
return ret;
}
#endif
int crypto_mod_exp(const uint8_t *base, size_t base_len,
const uint8_t *power, size_t power_len,
const uint8_t *modulus, size_t modulus_len,
uint8_t *result, size_t *result_len)
{
mbedtls_mpi bn_base, bn_exp, bn_modulus, bn_result, bn_rinv;
int ret = 0;
mbedtls_mpi_init(&bn_base);
mbedtls_mpi_init(&bn_exp);
mbedtls_mpi_init(&bn_modulus);
mbedtls_mpi_init(&bn_result);
mbedtls_mpi_init(&bn_rinv);
mbedtls_mpi_read_binary(&bn_base, base, base_len);
mbedtls_mpi_read_binary(&bn_exp, power, power_len);
mbedtls_mpi_read_binary(&bn_modulus, modulus, modulus_len);
ret = mbedtls_mpi_exp_mod(&bn_result, &bn_base, &bn_exp, &bn_modulus,
&bn_rinv);
if (ret < 0) {
mbedtls_mpi_free(&bn_base);
mbedtls_mpi_free(&bn_exp);
mbedtls_mpi_free(&bn_modulus);
mbedtls_mpi_free(&bn_result);
mbedtls_mpi_free(&bn_rinv);
return ret;
}
ret = mbedtls_mpi_write_binary(&bn_result, result, *result_len);
mbedtls_mpi_free(&bn_base);
mbedtls_mpi_free(&bn_exp);
mbedtls_mpi_free(&bn_modulus);
mbedtls_mpi_free(&bn_result);
mbedtls_mpi_free(&bn_rinv);
return ret;
}
int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
int iterations, u8 *buf, size_t buflen)
{
mbedtls_md_context_t sha1_ctx;
const mbedtls_md_info_t *info_sha1;
int ret;
mbedtls_md_init(&sha1_ctx);
info_sha1 = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);
if (info_sha1 == NULL) {
ret = -1;
goto cleanup;
}
if ((ret = mbedtls_md_setup(&sha1_ctx, info_sha1, 1)) != 0) {
ret = -1;
goto cleanup;
}
ret = mbedtls_pkcs5_pbkdf2_hmac(&sha1_ctx, (const u8 *) passphrase,
os_strlen(passphrase) , ssid,
ssid_len, iterations, 32, buf);
if (ret != 0) {
ret = -1;
goto cleanup;
}
cleanup:
mbedtls_md_free(&sha1_ctx);
return ret;
}
#ifdef MBEDTLS_DES_C
int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
{
int ret;
mbedtls_des_context des;
u8 pkey[8], next, tmp;
int i;
/* Add parity bits to the key */
next = 0;
for (i = 0; i < 7; i++) {
tmp = key[i];
pkey[i] = (tmp >> i) | next | 1;
next = tmp << (7 - i);
}
pkey[i] = next | 1;
mbedtls_des_init(&des);
ret = mbedtls_des_setkey_enc(&des, pkey);
if (ret < 0) {
return ret;
}
ret = mbedtls_des_crypt_ecb(&des, clear, cypher);
mbedtls_des_free(&des);
return ret;
}
#endif
/* Only enable this if all other ciphers are using MbedTLS implementation */
#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CMAC_C) && defined(MBEDTLS_NIST_KW_C)
int aes_ccm_ae(const u8 *key, size_t key_len, const u8 *nonce,
size_t M, const u8 *plain, size_t plain_len,
const u8 *aad, size_t aad_len, u8 *crypt, u8 *auth)
{
int ret;
mbedtls_ccm_context ccm;
mbedtls_ccm_init(&ccm);
ret = mbedtls_ccm_setkey(&ccm, MBEDTLS_CIPHER_ID_AES,
key, key_len * 8);
if (ret < 0) {
wpa_printf(MSG_ERROR, "mbedtls_ccm_setkey failed");
goto cleanup;
}
ret = mbedtls_ccm_encrypt_and_tag(&ccm, plain_len, nonce, 13, aad,
aad_len, plain, crypt, auth, M);
cleanup:
mbedtls_ccm_free(&ccm);
return ret;
}
int aes_ccm_ad(const u8 *key, size_t key_len, const u8 *nonce,
size_t M, const u8 *crypt, size_t crypt_len,
const u8 *aad, size_t aad_len, const u8 *auth,
u8 *plain)
{
int ret;
mbedtls_ccm_context ccm;
mbedtls_ccm_init(&ccm);
ret = mbedtls_ccm_setkey(&ccm, MBEDTLS_CIPHER_ID_AES,
key, key_len * 8);
if (ret < 0) {
goto cleanup;;
}
ret = mbedtls_ccm_star_auth_decrypt(&ccm, crypt_len,
nonce, 13, aad, aad_len,
crypt, plain, auth, M);
cleanup:
mbedtls_ccm_free(&ccm);
return ret;
}
#endif
#ifdef MBEDTLS_ARC4_C
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
u8 *data, size_t data_len)
{
int ret;
unsigned char skip_buf_in[16];
unsigned char skip_buf_out[16];
mbedtls_arc4_context ctx;
unsigned char *obuf = os_malloc(data_len);
if (!obuf) {
wpa_printf(MSG_ERROR, "%s:memory allocation failed", __func__);
return -1;
}
mbedtls_arc4_init(&ctx);
mbedtls_arc4_setup(&ctx, key, keylen);
while (skip >= sizeof(skip_buf_in)) {
size_t len = skip;
if (len > sizeof(skip_buf_in)) {
len = sizeof(skip_buf_in);
}
if ((ret = mbedtls_arc4_crypt(&ctx, len, skip_buf_in,
skip_buf_out)) != 0) {
wpa_printf(MSG_ERROR, "rc4 encryption failed");
return -1;
}
os_memcpy(skip_buf_in, skip_buf_out, 16);
skip -= len;
}
mbedtls_arc4_crypt(&ctx, data_len, data, obuf);
memcpy(data, obuf, data_len);
os_free(obuf);
return 0;
}
#endif
#ifdef MBEDTLS_CMAC_C
int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
const mbedtls_cipher_info_t *cipher_info;
int i, ret = 0;
mbedtls_cipher_type_t cipher_type;
mbedtls_cipher_context_t ctx;
switch (key_len) {
case 16:
cipher_type = MBEDTLS_CIPHER_AES_128_ECB;
break;
case 24:
cipher_type = MBEDTLS_CIPHER_AES_192_ECB;
break;
case 32:
cipher_type = MBEDTLS_CIPHER_AES_256_ECB;
break;
default:
cipher_type = MBEDTLS_CIPHER_NONE;
break;
}
cipher_info = mbedtls_cipher_info_from_type(cipher_type);
if (cipher_info == NULL) {
/* Failing at this point must be due to a build issue */
ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
goto cleanup;
}
if (key == NULL || mac == NULL) {
return -1;
}
mbedtls_cipher_init(&ctx);
ret = mbedtls_cipher_setup(&ctx, cipher_info);
if (ret != 0) {
goto cleanup;
}
ret = mbedtls_cipher_cmac_starts(&ctx, key, key_len * 8);
if (ret != 0) {
goto cleanup;
}
for (i = 0 ; i < num_elem; i++) {
ret = mbedtls_cipher_cmac_update(&ctx, addr[i], len[i]);
if (ret != 0) {
goto cleanup;
}
}
ret = mbedtls_cipher_cmac_finish(&ctx, mac);
cleanup:
mbedtls_cipher_free(&ctx);
return(ret);
}
int omac1_aes_128_vector(const u8 *key, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
}
int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}
#endif
int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
u8 *pubkey)
{
size_t pubkey_len, pad;
if (os_get_random(privkey, prime_len) < 0) {
return -1;
}
if (os_memcmp(privkey, prime, prime_len) > 0) {
/* Make sure private value is smaller than prime */
privkey[0] = 0;
}
pubkey_len = prime_len;
if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
pubkey, &pubkey_len) < 0) {
return -1;
}
if (pubkey_len < prime_len) {
pad = prime_len - pubkey_len;
os_memmove(pubkey + pad, pubkey, pubkey_len);
os_memset(pubkey, 0, pad);
}
return 0;
}