adc_digi: add dma drivers

This commit is contained in:
Armando
2020-12-08 14:50:32 +08:00
committed by bot
parent 76bb9565af
commit b38f4646de
13 changed files with 656 additions and 124 deletions

View File

@@ -20,8 +20,6 @@
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "regi2c_ctrl.h"
#include "esp_attr.h"
@@ -29,6 +27,8 @@
extern "C" {
#endif
#define ADC_LL_ADC2_CHANNEL_MAX 1
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
@@ -75,7 +75,7 @@ typedef struct {
};
uint16_t val;
};
} adc_ll_rtc_output_data_t;
} adc_rtc_output_data_t;
#ifdef _MSC_VER
#pragma pack(pop)
@@ -95,7 +95,7 @@ typedef enum {
ADC2_CTRL_FORCE_PWDET = 3, /*!<For ADC2. Arbiter in shield mode. Force select Wi-Fi controller work. */
ADC2_CTRL_FORCE_RTC = 4, /*!<For ADC2. Arbiter in shield mode. Force select RTC controller work. */
ADC2_CTRL_FORCE_DIG = 6, /*!<For ADC2. Arbiter in shield mode. Force select digital controller work. */
} adc_ll_controller_t;
} adc_controller_t;
/*---------------------------------------------------------------
Digital controller setting
@@ -127,7 +127,7 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
abort(); // TODO ESP32-C3 IDF-2094
// APB_SARADC.fsm.sample_cycle = sample_cycle;
}
/**
@@ -149,7 +149,7 @@ static inline void adc_ll_digi_set_clk_div(uint32_t div)
*/
static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format)
{
abort(); // TODO ESP32-C3 IDF-2094
/*take off*/
}
/**
@@ -184,17 +184,20 @@ static inline void adc_ll_digi_convert_limit_disable(void)
/**
* Set adc conversion mode for digital controller.
*
* @note ADC digital controller on C3 only has one pattern table list, and do conversions one by one
* @note ESP32 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode)
{
abort(); // TODO ESP32-C3 IDF-2528
/*take off*/
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
@@ -209,6 +212,9 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 15.
@@ -372,7 +378,7 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
{
abort(); // TODO ESP32-C3 IDF-2528
}
/**
@@ -384,7 +390,11 @@ static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_fi
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.filter_ctrl.adc1_filter_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.filter_ctrl.adc2_filter_en = enable;
// }
}
/**
@@ -397,7 +407,12 @@ static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
*/
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// if (adc_n == ADC_NUM_1) {
// return APB_SARADC.filter_status.adc1_filter_data;
// } else { // adc_n == ADC_NUM_2
// return APB_SARADC.filter_status.adc2_filter_data;
// }
}
/**
@@ -410,7 +425,11 @@ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger;
// }
}
/**
@@ -422,7 +441,11 @@ static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larg
*/
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres = threshold;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres = threshold;
// }
}
/**
@@ -433,7 +456,11 @@ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t th
*/
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.thres_ctrl.adc1_thres_en = enable;
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.thres_ctrl.adc2_thres_en = enable;
// }
}
/**
@@ -444,7 +471,21 @@ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
*/
static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 1;
// }
// }
}
/**
@@ -455,7 +496,21 @@ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t i
*/
static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc1_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc1_done = 0;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_ena.adc2_thres = 0;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_ena.adc2_done = 0;
// }
// }
}
/**
@@ -466,7 +521,21 @@ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t
*/
static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc1_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc1_done = 1;
// }
// } else { // adc_n == ADC_NUM_2
// if (intr & ADC_DIGI_INTR_MASK_MONITOR) {
// APB_SARADC.int_clr.adc2_thres = 1;
// }
// if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
// APB_SARADC.int_clr.adc2_done = 1;
// }
// }
}
/**
@@ -478,7 +547,28 @@ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t in
*/
static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// uint32_t int_st = APB_SARADC.int_st.val;
// uint32_t ret_msk = 0;
// if (adc_n == ADC_NUM_1) {
// if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC1_THRES_INT_ST) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// } else { // adc_n == ADC_NUM_2
// if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
// ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
// }
// // if (int_st & APB_SARADC_ADC2_THRES_INT_ST_M) {
// // ret_msk |= ADC_DIGI_INTR_MASK_MONITOR;
// // }
// }
// return ret_msk;
}
/**
@@ -528,7 +618,8 @@ static inline void adc_ll_digi_reset(void)
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
abort(); // TODO ESP32-C3 IDF-2094
// /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// SENS.sar_meas2_mux.sar2_pwdet_cct = cct;
}
/**
@@ -539,7 +630,9 @@ static inline void adc_ll_pwdet_set_cct(uint32_t cct)
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
abort(); // TODO ESP32-C3 IDF-2094
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// return SENS.sar_meas2_mux.sar2_pwdet_cct;
return 0;
}
/*---------------------------------------------------------------
@@ -567,7 +660,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
// }
}
/**
@@ -580,7 +677,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
// }
}
/**
@@ -593,7 +694,14 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// while (SENS.sar_slave_addr1.meas_status != 0);
// SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
// SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
// SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
// }
}
/**
@@ -606,7 +714,13 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
bool ret = true;
// if (adc_n == ADC_NUM_1) {
// ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
// } else { // adc_n == ADC_NUM_2
// ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
// }
return ret;
}
/**
@@ -618,7 +732,13 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
int ret_val = 0;
// if (adc_n == ADC_NUM_1) {
// ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar;
// } else { // adc_n == ADC_NUM_2
// ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar;
// }
return ret_val;
}
/**
@@ -629,7 +749,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
// }
}
/**
@@ -639,7 +763,13 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc1 = 1;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 1;
// RTCCNTL.int_ena.rtc_saradc2 = 1;
// }
}
/**
@@ -649,7 +779,13 @@ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc1 = 0;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_int_en = 0;
// RTCCNTL.int_ena.rtc_saradc2 = 0;
// }
}
/**
@@ -657,7 +793,8 @@ static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_reset(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 1;
// SENS.sar_meas1_ctrl1.rtc_saradc_reset = 0;
}
/**
@@ -668,24 +805,30 @@ static inline void adc_ll_rtc_reset(void)
*/
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
* ADC2 can use arbiter.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 0: The data is correct to use.
* - 1: The data is invalid. The current controller is not enabled by the arbiter.
* - 2: The data is invalid. The current controller process was interrupted by a higher priority controller.
* - -1: The data is error.
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
{
abort(); // TODO ESP32-C3 IDF-2094
if (adc_n == ADC_NUM_1) {
return ADC_RTC_DATA_OK;
}
if (((APB_SARADC.apb_saradc2_data_status.adc2_data & 0xffff) >> 13) >= ADC_LL_ADC2_CHANNEL_MAX) {
return ADC_RTC_DATA_FAIL;
}
return ADC_RTC_DATA_OK;
}
/*---------------------------------------------------------------
@@ -720,7 +863,18 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
*/
static inline adc_ll_power_t adc_ll_get_power_manage(void)
{
abort(); // TODO ESP32-C3 IDF-2094
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
// adc_ll_power_t manage;
// if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PU) {
// manage = ADC_POWER_SW_ON;
// } else if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PD) {
// manage = ADC_POWER_SW_OFF;
// } else {
// manage = ADC_POWER_BY_FSM;
// }
// return manage;
return 0;
}
/**
@@ -730,7 +884,11 @@ static inline adc_ll_power_t adc_ll_get_power_manage(void)
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_reader1_ctrl.sar1_clk_div = div;
// } else { // adc_n == ADC_NUM_2
// SENS.sar_reader2_ctrl.sar2_clk_div = div;
// }
}
/**
@@ -768,7 +926,11 @@ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
abort(); // TODO ESP32-C3 IDF-2094
// if (adc_n == ADC_NUM_1) {
// SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
// } else { // adc_n == ADC_NUM_2
// SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
// }
}
/**
@@ -780,7 +942,12 @@ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, a
*/
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
{
abort(); // TODO ESP32-C3 IDF-2094
abort(); // FIXME
// if (adc_n == ADC_NUM_1) {
// return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3);
// } else {
// return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3);
// }
}
/**
@@ -793,9 +960,43 @@ static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t cha
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ctrl)
{
abort(); // TODO ESP32-C3 IDF-2094
//NOTE: ULP is removed on C3, please remove ULP related (if there still are any) code and this comment
// if (adc_n == ADC_NUM_1) {
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
// SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// } else { // adc_n == ADC_NUM_2
// switch ( ctrl ) {
// case ADC_CTRL_RTC:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC_CTRL_DIG:
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// case ADC2_CTRL_PWDET: // currently only used by Wi-Fi
// SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
// SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
// break;
// default:
// break;
// }
// }
}
/**
@@ -877,7 +1078,7 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
*/
static inline void adc_ll_enable_sleep_controller(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas2_mux.sar2_rtc_force = 1;
}
/**
@@ -891,10 +1092,51 @@ static inline void adc_ll_enable_sleep_controller(void)
*/
static inline void adc_ll_disable_sleep_controller(void)
{
abort(); // TODO ESP32-C3 IDF-2094
// SENS.sar_meas2_mux.sar2_rtc_force = 0;
}
/* ADC calibration code. */
#include "soc/rtc_cntl_reg.h"
#include "regi2c_ctrl.h"
#define I2C_ADC 0X69
#define I2C_ADC_HOSTID 0
#define ANA_CONFIG2_REG 0x6000E048
#define ANA_CONFIG2_M (BIT(18))
#define SAR1_ENCAL_GND_ADDR 0x7
#define SAR1_ENCAL_GND_ADDR_MSB 5
#define SAR1_ENCAL_GND_ADDR_LSB 5
#define SAR2_ENCAL_GND_ADDR 0x7
#define SAR2_ENCAL_GND_ADDR_MSB 7
#define SAR2_ENCAL_GND_ADDR_LSB 7
#define SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR1_DREF_ADDR 0x2
#define SAR1_DREF_ADDR_MSB 0x6
#define SAR1_DREF_ADDR_LSB 0x4
#define SAR2_DREF_ADDR 0x5
#define SAR2_DREF_ADDR_MSB 0x6
#define SAR2_DREF_ADDR_LSB 0x4
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
#define ADC_HAL_CAL_TIMES (10)
@@ -910,7 +1152,30 @@ static inline void adc_ll_disable_sleep_controller(void)
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
{
abort(); // TODO ESP32-C3 IDF-2526
// /* Enable i2s_write_reg function. */
// void phy_get_romfunc_addr(void);
// phy_get_romfunc_addr();
// //CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
// //SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
// CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
// SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
// /* Enable/disable internal connect GND (for calibration). */
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_DREF_ADDR, 4);
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
// }
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_DREF_ADDR, 4);
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
// }
// }
}
/**
@@ -920,7 +1185,11 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
{
abort(); // TODO ESP32-C3 IDF-2526
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
// }
}
/**
@@ -932,8 +1201,24 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
{
abort(); // TODO ESP32-C3 IDF-2526
// uint8_t msb = param >> 8;
// uint8_t lsb = param & 0xFF;
// /* Enable i2s_write_reg function. */
// void phy_get_romfunc_addr(void);
// phy_get_romfunc_addr();
// //SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
// CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
// SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_ADC, SAR1_INITIAL_CODE_LOW_ADDR, lsb);
// } else {
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_ADC, SAR2_INITIAL_CODE_LOW_ADDR, lsb);
// }
}
/* Temp code end. */
/*---------------------------------------------------------------
Single Read
@@ -998,7 +1283,8 @@ static inline void adc_ll_adc1_onetime_sample_dis(void)
static inline uint32_t adc_ll_adc1_read(void)
{
return APB_SARADC.apb_saradc1_data_status.adc1_data;
//On ESP32C3, valid data width is 12-bit
return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff);
}
//--------------------------------adc2------------------------------//
@@ -1014,8 +1300,10 @@ static inline void adc_ll_adc2_onetime_sample_dis(void)
static inline uint32_t adc_ll_adc2_read(void)
{
return APB_SARADC.apb_saradc2_data_status.adc2_data;
//On ESP32C3, valid data width is 12-bit
return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff);
}
#ifdef __cplusplus
}
#endif

View File

@@ -172,6 +172,7 @@ static uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_CLK_EN1_REG;
case PERIPH_SARADC_MODULE:
default:
return SYSTEM_PERIP_CLK_EN0_REG;
}
@@ -195,6 +196,7 @@ static uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_RST_EN1_REG;
case PERIPH_SARADC_MODULE:
default:
return SYSTEM_PERIP_RST_EN0_REG;
}