mirror of
https://github.com/espressif/esp-idf.git
synced 2025-10-08 05:48:36 +00:00
fix(dma): feat(adc): support ADC oneshot mod on ESP32P4
This commit is contained in:
588
components/hal/esp32p4/include/hal/adc_ll.h
Normal file
588
components/hal/esp32p4/include/hal/adc_ll.h
Normal file
@@ -0,0 +1,588 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include "esp_attr.h"
|
||||
|
||||
#include "soc/adc_periph.h"
|
||||
// #include "soc/ADC_struct.h"
|
||||
// #include "soc/ADC_reg.h"
|
||||
#include "soc/pmu_reg.h"
|
||||
#include "soc/clk_tree_defs.h"
|
||||
// #include "soc/pcr_struct.h"
|
||||
#include "hal/misc.h"
|
||||
#include "hal/assert.h"
|
||||
#include "hal/adc_types.h"
|
||||
#include "hal/adc_types_private.h"
|
||||
#include "hal/regi2c_ctrl.h"
|
||||
#include "hal/sar_ctrl_ll.h"
|
||||
|
||||
#include "soc/regi2c_saradc.h"
|
||||
|
||||
#include "soc/hp_sys_clkrst_struct.h"
|
||||
#include "soc/adc_struct.h"
|
||||
#include "soc/lp_adc_struct.h"
|
||||
#include "soc/lpperi_struct.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
|
||||
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Oneshot
|
||||
---------------------------------------------------------------*/
|
||||
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
|
||||
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
|
||||
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
DMA
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
PWDET (Power Detect)
|
||||
---------------------------------------------------------------*/
|
||||
#define ADC_LL_PWDET_CCT_DEFAULT (4)
|
||||
|
||||
typedef enum {
|
||||
ADC_LL_CTRL_RTC = 0, ///< For ADC1 and ADC2. Select RTC controller.
|
||||
ADC_LL_CTRL_ULP = 1, ///< For ADC1 and ADC2. Select ULP controller.
|
||||
ADC_LL_CTRL_DIG = 2, ///< For ADC1 and ADC2. Select DIG controller.
|
||||
ADC_LL_CTRL_PWDET = 3, ///< ???
|
||||
ADC_LL_CTRL_ARB = 4, ///< ???
|
||||
} adc_ll_controller_t;
|
||||
|
||||
typedef enum {
|
||||
ADC_LL_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
|
||||
ADC_LL_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
|
||||
ADC_LL_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
|
||||
} adc_ll_power_t;
|
||||
|
||||
/**
|
||||
* @brief ADC digital controller (DMA mode) work mode.
|
||||
*
|
||||
* @note The conversion mode affects the sampling frequency:
|
||||
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
|
||||
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
|
||||
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
|
||||
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
|
||||
*/
|
||||
typedef enum {
|
||||
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
|
||||
ADC_LL_DIGI_CONV_ONLY_ADC2 = 1, // Only use ADC2 for conversion
|
||||
ADC_LL_DIGI_CONV_BOTH_UNIT = 2, // Use Both ADC1 and ADC2 for conversion simultaneously
|
||||
ADC_LL_DIGI_CONV_ALTER_UNIT = 3 // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
|
||||
} adc_ll_digi_convert_mode_t;
|
||||
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
uint8_t atten: 2;
|
||||
uint8_t channel: 3;
|
||||
uint8_t unit: 1;
|
||||
uint8_t reserved: 2;
|
||||
};
|
||||
uint8_t val;
|
||||
};
|
||||
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
|
||||
|
||||
/**
|
||||
* @brief Analyze whether the obtained raw data is correct.
|
||||
* ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data.
|
||||
*
|
||||
*/
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
|
||||
uint16_t reserved: 1; /*!<reserved */
|
||||
uint16_t flag: 2; /*!<ADC data flag info.
|
||||
If (flag == 0), The data is valid.
|
||||
If (flag > 0), The data is invalid. */
|
||||
};
|
||||
uint16_t val;
|
||||
};
|
||||
} adc_ll_rtc_output_data_t;
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Digital controller setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Set SAR ADC module clock division factor.
|
||||
* SAR ADC clock divided from digital controller clock.
|
||||
*
|
||||
* @param div Division factor.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_clk_div(uint32_t div)
|
||||
{
|
||||
/* ADC clock divided from digital controller clock clk */
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.ctrl_reg, sar_clk_div, div);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
|
||||
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
|
||||
*
|
||||
* @param div_num Division factor. Range: 0 ~ 255.
|
||||
* @param div_b Division factor. Range: 1 ~ 63.
|
||||
* @param div_a Division factor. Range: 0 ~ 63.
|
||||
*/
|
||||
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
|
||||
{
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl23, reg_adc_clk_div_num, div_num);
|
||||
HP_SYS_CLKRST.root_clk_ctrl0.reg_cpu_clk_div_numerator = div_b;
|
||||
HP_SYS_CLKRST.root_clk_ctrl0.reg_cpu_clk_div_denominator = div_a;
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable clock and select clock source for ADC digital controller.
|
||||
*
|
||||
* @param clk_src clock source for ADC digital controller.
|
||||
*/
|
||||
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
|
||||
{
|
||||
switch (clk_src) {
|
||||
case ADC_DIGI_CLK_SRC_XTAL:
|
||||
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 0;
|
||||
break;
|
||||
case ADC_DIGI_CLK_SRC_RC_FAST:
|
||||
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 1;
|
||||
break;
|
||||
case ADC_DIGI_CLK_SRC_PLL_F80M:
|
||||
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 2;
|
||||
break;
|
||||
default:
|
||||
HAL_ASSERT(false && "unsupported clock");
|
||||
}
|
||||
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
|
||||
ADC.ctrl_reg.sar_clk_gated = 1;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
PWDET(Power detect) controller setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Set adc cct for PWDET controller.
|
||||
*
|
||||
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
|
||||
* @param cct Range: 0 ~ 7.
|
||||
*/
|
||||
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
|
||||
{
|
||||
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
|
||||
LP_ADC.meas2_mux.sar2_pwdet_cct = cct;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get adc cct for PWDET controller.
|
||||
*
|
||||
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
|
||||
* @return cct Range: 0 ~ 7.
|
||||
*/
|
||||
static inline uint32_t adc_ll_pwdet_get_cct(void)
|
||||
{
|
||||
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
|
||||
return LP_ADC.meas2_mux.sar2_pwdet_cct;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Common setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Set ADC module controller.
|
||||
* There are five SAR ADC controllers:
|
||||
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
|
||||
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
|
||||
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param ctrl ADC controller.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
switch (ctrl) {
|
||||
case ADC_LL_CTRL_RTC:
|
||||
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
case ADC_LL_CTRL_ULP:
|
||||
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
case ADC_LL_CTRL_DIG:
|
||||
LP_ADC.meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
switch (ctrl) {
|
||||
case ADC_LL_CTRL_RTC:
|
||||
LP_ADC.meas2_mux.sar2_rtc_force = 1; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
case ADC_LL_CTRL_ULP:
|
||||
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
case ADC_LL_CTRL_DIG:
|
||||
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
|
||||
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
|
||||
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// /**
|
||||
// * Set ADC2 module arbiter work mode.
|
||||
// * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
|
||||
// * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
|
||||
// *
|
||||
// * @note Only ADC2 support arbiter.
|
||||
// * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
|
||||
// *
|
||||
// * @param mode Refer to ``adc_arbiter_mode_t``.
|
||||
// */
|
||||
// __attribute__((always_inline))
|
||||
// static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
|
||||
// {
|
||||
// LP_ADC.meas2_mux.sar2_rtc_force = 0; // Enable arbiter in wakeup mode
|
||||
// if (mode == ADC_ARB_MODE_FIX) {
|
||||
// ADC.arb_ctrl.arb_grant_force = 0;
|
||||
// ADC.arb_ctrl.arb_fix_priority = 1;
|
||||
// } else if (mode == ADC_ARB_MODE_LOOP) {
|
||||
// ADC.arb_ctrl.arb_grant_force = 0;
|
||||
// ADC.arb_ctrl.arb_fix_priority = 0;
|
||||
// } else {
|
||||
// ADC.arb_ctrl.arb_grant_force = 1; // Shield arbiter.
|
||||
// }
|
||||
// }
|
||||
|
||||
/**
|
||||
* Set ADC2 module controller priority in arbiter.
|
||||
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
|
||||
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
|
||||
*
|
||||
* @note Only ADC2 support arbiter.
|
||||
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
|
||||
* @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
|
||||
*
|
||||
* @param pri_rtc RTC controller priority. Range: 0 ~ 2.
|
||||
* @param pri_dig Digital controller priority. Range: 0 ~ 2.
|
||||
* @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
|
||||
{
|
||||
if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
|
||||
ADC.arb_ctrl.arb_rtc_priority = pri_rtc;
|
||||
ADC.arb_ctrl.arb_apb_priority = pri_dig;
|
||||
ADC.arb_ctrl.arb_wifi_priority = pri_pwdet;
|
||||
}
|
||||
/* Should select highest priority controller. */
|
||||
if (pri_rtc > pri_dig) {
|
||||
ADC.arb_ctrl.arb_apb_force = 0;
|
||||
ADC.arb_ctrl.arb_rtc_force = 1;
|
||||
ADC.arb_ctrl.arb_wifi_force = 0;
|
||||
} else {
|
||||
ADC.arb_ctrl.arb_apb_force = 1;
|
||||
ADC.arb_ctrl.arb_rtc_force = 0;
|
||||
ADC.arb_ctrl.arb_wifi_force = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Oneshot Read
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
|
||||
{
|
||||
abort();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc output data format for RTC controller.
|
||||
*
|
||||
* @note ESP32P4 RTC controller only support 12bit.
|
||||
* @param adc_n ADC unit.
|
||||
* @param bits Output data bits width option.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
|
||||
{
|
||||
//ESP32P4 only supports 12bit, leave here for compatibility
|
||||
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected for once measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
LP_ADC.meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
LP_ADC.meas2_ctrl2.sar2_en_pad = (1 << ((channel + 2))); //only one channel is selected.
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected in once measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
LP_ADC.meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
LP_ADC.meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Start conversion once by software for RTC controller.
|
||||
*
|
||||
* @note It may be block to wait conversion idle for ADC1.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_start(adc_unit_t adc_n)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
LP_ADC.meas1_ctrl2.meas1_start_sar = 0;
|
||||
LP_ADC.meas1_ctrl2.meas1_start_sar = 1;
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
LP_ADC.meas2_ctrl2.meas2_start_sar = 0;
|
||||
LP_ADC.meas2_ctrl2.meas2_start_sar = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Clear the event for each ADCn for Oneshot mode
|
||||
*
|
||||
* @param event ADC event
|
||||
*/
|
||||
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
|
||||
{
|
||||
// ADC.int_clr.val |= event_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check the event for each ADCn for Oneshot mode
|
||||
*
|
||||
* @param event ADC event
|
||||
*
|
||||
* @return
|
||||
* -true : The conversion process is finish.
|
||||
* -false : The conversion process is not finish.
|
||||
*/
|
||||
static inline bool adc_oneshot_ll_get_event(uint32_t event)
|
||||
{
|
||||
bool ret = true;
|
||||
if (event == ADC_LL_EVENT_ADC1_ONESHOT_DONE) {
|
||||
ret = (bool)LP_ADC.meas1_ctrl2.meas1_done_sar;
|
||||
} else if (event == ADC_LL_EVENT_ADC2_ONESHOT_DONE) {
|
||||
ret = (bool)LP_ADC.meas2_ctrl2.meas2_done_sar;
|
||||
} else {
|
||||
HAL_ASSERT(false);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the converted value for each ADCn for RTC controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @return
|
||||
* - Converted value.
|
||||
*/
|
||||
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
|
||||
{
|
||||
uint32_t ret_val = 0;
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas1_ctrl2, meas1_data_sar);
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas2_ctrl2, meas2_data_sar);
|
||||
}
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyze whether the obtained raw data is correct.
|
||||
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param raw ADC raw data input (convert value).
|
||||
* @return
|
||||
* - true: raw data is valid
|
||||
* - false: raw data is invalid
|
||||
*/
|
||||
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
return true;
|
||||
}
|
||||
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw;
|
||||
if (temp->flag == 0) {
|
||||
return true;
|
||||
} else {
|
||||
//Could be ADC_LL_RTC_CTRL_UNSELECTED, ADC_LL_RTC_CTRL_BREAK or ADC_LL_RTC_DATA_FAIL
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ADC module RTC output data invert or not.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param inv_en data invert or not.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
LP_ADC.reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
LP_ADC.reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable oneshot conversion trigger
|
||||
*
|
||||
* @param adc_n ADC unit
|
||||
*/
|
||||
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
|
||||
{
|
||||
(void)adc_n;
|
||||
HP_SYS_CLKRST.soc_clk_ctrl2.reg_adc_apb_clk_en = 1;
|
||||
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_en = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable oneshot conversion trigger for all the ADC units
|
||||
*/
|
||||
static inline void adc_oneshot_ll_disable_all_unit(void)
|
||||
{
|
||||
HP_SYS_CLKRST.soc_clk_ctrl2.reg_adc_apb_clk_en = 0;
|
||||
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_en = 0;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
|
||||
*
|
||||
* @param div Division factor.
|
||||
*/
|
||||
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader1_ctrl, sar1_clk_div, div);
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader2_ctrl, sar2_clk_div, div);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset RTC controller FSM.
|
||||
*/
|
||||
static inline void adc_ll_rtc_reset(void)
|
||||
{
|
||||
LPPERI.reset_en.rst_en_lp_adc = 1;
|
||||
LPPERI.reset_en.rst_en_lp_adc = 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Set the attenuation of a particular channel on ADCn.
|
||||
*
|
||||
* @note For any given channel, this function must be called before the first time conversion.
|
||||
*
|
||||
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
|
||||
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
|
||||
*
|
||||
* When VDD_A is 3.3V:
|
||||
*
|
||||
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
|
||||
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
|
||||
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
|
||||
* - 11dB attenuation (ADC_ATTEN_DB_12) gives full-scale voltage 3.9V (see note below)
|
||||
*
|
||||
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
|
||||
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
|
||||
*
|
||||
* @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
|
||||
*
|
||||
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
|
||||
*
|
||||
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
|
||||
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
|
||||
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
|
||||
* - 11dB attenuation (ADC_ATTEN_DB_12) between 150 to 2450mV
|
||||
*
|
||||
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADCn channel number.
|
||||
* @param atten The attenuation option.
|
||||
*/
|
||||
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
LP_ADC.atten1.sar1_atten = ( LP_ADC.atten1.sar1_atten & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
|
||||
} else { // adc_n == ADC_UNIT_2
|
||||
LP_ADC.atten2.sar2_atten = ( LP_ADC.atten2.sar2_atten & ~(0x3 << ((channel + 2) * 2)) ) | ((atten & 0x3) << ((channel + 2) * 2));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the attenuation of a particular channel on ADCn.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADCn channel number.
|
||||
* @return atten The attenuation option.
|
||||
*/
|
||||
__attribute__((always_inline))
|
||||
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
|
||||
{
|
||||
if (adc_n == ADC_UNIT_1) {
|
||||
return (adc_atten_t)((LP_ADC.atten1.sar1_atten >> (channel * 2)) & 0x3);
|
||||
} else {
|
||||
return (adc_atten_t)((LP_ADC.atten2.sar2_atten >> ((channel + 2) * 2)) & 0x3);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user