docs: add FreeRTOS API docs

- Use `code` tags instead of a mix of `<pre></pre>` and
  `@verbatim .. @endverbatim`
- Remove manually added function prototypes from comment blocks
- Remove of grouping (`\defgroup`) — some extra work is needed
  to make groups compatible with the way we auto-generate API
  reference from Doxygen XML files. It's pretty easy to add the
  grouping directives back if/when we implement support for
  Doxygen groups in the later stages of documentation build
  process.
- Hide private APIs under `@cond .. @endcond`
- Convert some comments into Doxygen-compatible ones
- Fix various documentation issues: missing documentation for
  some parameters, mismatch between parameter names in comment
  block and in function prototype.
- Add doxygen comments for functions which didn't have them
  (thread local storage).
- Add [out] param tags where necessary
- Redefine `xTaskCreate` and `xTaskCreateStatic` as inline
  functions instead of macros.
This commit is contained in:
Ivan Grokhotkov
2017-12-01 12:50:45 +08:00
parent 2b92119840
commit cda22d9aaf
10 changed files with 2420 additions and 2627 deletions

View File

@@ -104,7 +104,6 @@ extern "C" {
* used to create a synchronisation point between multiple tasks (a
* 'rendezvous').
*
* \defgroup EventGroup
*/
@@ -116,7 +115,6 @@ extern "C" {
* xEventGroupCreate() returns an EventGroupHandle_t variable that can then
* be used as a parameter to other event group functions.
*
* \defgroup EventGroupHandle_t EventGroupHandle_t
* \ingroup EventGroup
*/
typedef void * EventGroupHandle_t;
@@ -126,17 +124,11 @@ typedef void * EventGroupHandle_t;
* number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
* 32 bits if set to 0.
*
* \defgroup EventBits_t EventBits_t
* \ingroup EventGroup
*/
typedef TickType_t EventBits_t;
/**
* event_groups.h
*<pre>
EventGroupHandle_t xEventGroupCreate( void );
</pre>
*
* Create a new event group.
*
* Internally, within the FreeRTOS implementation, event groups use a [small]
@@ -162,25 +154,24 @@ typedef TickType_t EventBits_t;
* event group then NULL is returned. See http://www.freertos.org/a00111.html
*
* Example usage:
<pre>
// Declare a variable to hold the created event group.
EventGroupHandle_t xCreatedEventGroup;
// Attempt to create the event group.
xCreatedEventGroup = xEventGroupCreate();
// Was the event group created successfully?
if( xCreatedEventGroup == NULL )
{
// The event group was not created because there was insufficient
// FreeRTOS heap available.
}
else
{
// The event group was created.
}
</pre>
* \defgroup xEventGroupCreate xEventGroupCreate
* @code{c}
* // Declare a variable to hold the created event group.
* EventGroupHandle_t xCreatedEventGroup;
*
* // Attempt to create the event group.
* xCreatedEventGroup = xEventGroupCreate();
*
* // Was the event group created successfully?
* if( xCreatedEventGroup == NULL )
* {
* // The event group was not created because there was insufficient
* // FreeRTOS heap available.
* }
* else
* {
* // The event group was created.
* }
* @endcode
* \ingroup EventGroup
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
@@ -188,11 +179,6 @@ typedef TickType_t EventBits_t;
#endif
/**
* event_groups.h
*<pre>
EventGroupHandle_t xEventGroupCreateStatic( EventGroupHandle_t * pxEventGroupBuffer );
</pre>
*
* Create a new event group.
*
* Internally, within the FreeRTOS implementation, event groups use a [small]
@@ -221,35 +207,26 @@ typedef TickType_t EventBits_t;
* returned. If pxEventGroupBuffer was NULL then NULL is returned.
*
* Example usage:
<pre>
// StaticEventGroup_t is a publicly accessible structure that has the same
// size and alignment requirements as the real event group structure. It is
// provided as a mechanism for applications to know the size of the event
// group (which is dependent on the architecture and configuration file
// settings) without breaking the strict data hiding policy by exposing the
// real event group internals. This StaticEventGroup_t variable is passed
// into the xSemaphoreCreateEventGroupStatic() function and is used to store
// the event group's data structures
StaticEventGroup_t xEventGroupBuffer;
// Create the event group without dynamically allocating any memory.
xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
</pre>
* @code{c}
* // StaticEventGroup_t is a publicly accessible structure that has the same
* // size and alignment requirements as the real event group structure. It is
* // provided as a mechanism for applications to know the size of the event
* // group (which is dependent on the architecture and configuration file
* // settings) without breaking the strict data hiding policy by exposing the
* // real event group internals. This StaticEventGroup_t variable is passed
* // into the xSemaphoreCreateEventGroupStatic() function and is used to store
* // the event group's data structures
* StaticEventGroup_t xEventGroupBuffer;
*
* // Create the event group without dynamically allocating any memory.
* xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
* @endcode
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
EventGroupHandle_t xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer ) PRIVILEGED_FUNCTION;
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit,
const BaseType_t xWaitForAllBits,
const TickType_t xTicksToWait );
</pre>
*
* [Potentially] block to wait for one or more bits to be set within a
* previously created event group.
*
@@ -292,54 +269,48 @@ typedef TickType_t EventBits_t;
* pdTRUE.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
// Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
// the event group. Clear the bits before exiting.
uxBits = xEventGroupWaitBits(
xEventGroup, // The event group being tested.
BIT_0 | BIT_4, // The bits within the event group to wait for.
pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
pdFALSE, // Don't wait for both bits, either bit will do.
xTicksToWait ); // Wait a maximum of 100ms for either bit to be set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// xEventGroupWaitBits() returned because both bits were set.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_0 was set.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_4 was set.
}
else
{
// xEventGroupWaitBits() returned because xTicksToWait ticks passed
// without either BIT_0 or BIT_4 becoming set.
}
}
</pre>
* \defgroup xEventGroupWaitBits xEventGroupWaitBits
* @code{c}
* #define BIT_0 ( 1 << 0 )
* #define BIT_4 ( 1 << 4 )
*
* void aFunction( EventGroupHandle_t xEventGroup )
* {
* EventBits_t uxBits;
* const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
*
* // Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
* // the event group. Clear the bits before exiting.
* uxBits = xEventGroupWaitBits(
* xEventGroup, // The event group being tested.
* BIT_0 | BIT_4, // The bits within the event group to wait for.
* pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
* pdFALSE, // Don't wait for both bits, either bit will do.
* xTicksToWait ); // Wait a maximum of 100ms for either bit to be set.
*
* if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
* {
* // xEventGroupWaitBits() returned because both bits were set.
* }
* else if( ( uxBits & BIT_0 ) != 0 )
* {
* // xEventGroupWaitBits() returned because just BIT_0 was set.
* }
* else if( ( uxBits & BIT_4 ) != 0 )
* {
* // xEventGroupWaitBits() returned because just BIT_4 was set.
* }
* else
* {
* // xEventGroupWaitBits() returned because xTicksToWait ticks passed
* // without either BIT_0 or BIT_4 becoming set.
* }
* }
* @endcode{c}
* \ingroup EventGroup
*/
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
</pre>
*
* Clear bits within an event group. This function cannot be called from an
* interrupt.
*
@@ -352,51 +323,45 @@ EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits
* @return The value of the event group before the specified bits were cleared.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Clear bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupClearBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being cleared.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 were set before xEventGroupClearBits() was
// called. Both will now be clear (not set).
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else
{
// Neither bit 0 nor bit 4 were set in the first place.
}
}
</pre>
* \defgroup xEventGroupClearBits xEventGroupClearBits
* @code{c}
* #define BIT_0 ( 1 << 0 )
* #define BIT_4 ( 1 << 4 )
*
* void aFunction( EventGroupHandle_t xEventGroup )
* {
* EventBits_t uxBits;
*
* // Clear bit 0 and bit 4 in xEventGroup.
* uxBits = xEventGroupClearBits(
* xEventGroup, // The event group being updated.
* BIT_0 | BIT_4 );// The bits being cleared.
*
* if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
* {
* // Both bit 0 and bit 4 were set before xEventGroupClearBits() was
* // called. Both will now be clear (not set).
* }
* else if( ( uxBits & BIT_0 ) != 0 )
* {
* // Bit 0 was set before xEventGroupClearBits() was called. It will
* // now be clear.
* }
* else if( ( uxBits & BIT_4 ) != 0 )
* {
* // Bit 4 was set before xEventGroupClearBits() was called. It will
* // now be clear.
* }
* else
* {
* // Neither bit 0 nor bit 4 were set in the first place.
* }
* }
* @endcode
* \ingroup EventGroup
*/
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* A version of xEventGroupClearBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
@@ -420,28 +385,27 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
// Clear bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupClearBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 ); // The bits being set.
if( xResult == pdPASS )
{
// The message was posted successfully.
}
}
</pre>
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
* @code{c}
* #define BIT_0 ( 1 << 0 )
* #define BIT_4 ( 1 << 4 )
*
* // An event group which it is assumed has already been created by a call to
* // xEventGroupCreate().
* EventGroupHandle_t xEventGroup;
*
* void anInterruptHandler( void )
* {
* // Clear bit 0 and bit 4 in xEventGroup.
* xResult = xEventGroupClearBitsFromISR(
* xEventGroup, // The event group being updated.
* BIT_0 | BIT_4 ); // The bits being set.
*
* if( xResult == pdPASS )
* {
* // The message was posted successfully.
* }
* }
* @endcode
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
@@ -451,11 +415,6 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* Set bits within an event group.
* This function cannot be called from an interrupt. xEventGroupSetBitsFromISR()
* is a version that can be called from an interrupt.
@@ -480,56 +439,50 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit
* event group value before the call to xEventGroupSetBits() returns.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Set bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupSetBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 remained set when the function returned.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 remained set when the function returned, but bit 4 was
// cleared. It might be that bit 4 was cleared automatically as a
// task that was waiting for bit 4 was removed from the Blocked
// state.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 remained set when the function returned, but bit 0 was
// cleared. It might be that bit 0 was cleared automatically as a
// task that was waiting for bit 0 was removed from the Blocked
// state.
}
else
{
// Neither bit 0 nor bit 4 remained set. It might be that a task
// was waiting for both of the bits to be set, and the bits were
// cleared as the task left the Blocked state.
}
}
</pre>
* \defgroup xEventGroupSetBits xEventGroupSetBits
* @code{c}
* #define BIT_0 ( 1 << 0 )
* #define BIT_4 ( 1 << 4 )
*
* void aFunction( EventGroupHandle_t xEventGroup )
* {
* EventBits_t uxBits;
*
* // Set bit 0 and bit 4 in xEventGroup.
* uxBits = xEventGroupSetBits(
* xEventGroup, // The event group being updated.
* BIT_0 | BIT_4 );// The bits being set.
*
* if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
* {
* // Both bit 0 and bit 4 remained set when the function returned.
* }
* else if( ( uxBits & BIT_0 ) != 0 )
* {
* // Bit 0 remained set when the function returned, but bit 4 was
* // cleared. It might be that bit 4 was cleared automatically as a
* // task that was waiting for bit 4 was removed from the Blocked
* // state.
* }
* else if( ( uxBits & BIT_4 ) != 0 )
* {
* // Bit 4 remained set when the function returned, but bit 0 was
* // cleared. It might be that bit 0 was cleared automatically as a
* // task that was waiting for bit 0 was removed from the Blocked
* // state.
* }
* else
* {
* // Neither bit 0 nor bit 4 remained set. It might be that a task
* // was waiting for both of the bits to be set, and the bits were
* // cleared as the task left the Blocked state.
* }
* }
* @endcode{c}
* \ingroup EventGroup
*/
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
</pre>
*
* A version of xEventGroupSetBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
@@ -561,39 +514,38 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
BaseType_t xHigherPriorityTaskWoken, xResult;
// xHigherPriorityTaskWoken must be initialised to pdFALSE.
xHigherPriorityTaskWoken = pdFALSE;
// Set bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupSetBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 // The bits being set.
&xHigherPriorityTaskWoken );
// Was the message posted successfully?
if( xResult == pdPASS )
{
// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
// switch should be requested. The macro used is port specific and
// will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
// refer to the documentation page for the port being used.
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
}
</pre>
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
* @code{c}
* #define BIT_0 ( 1 << 0 )
* #define BIT_4 ( 1 << 4 )
*
* // An event group which it is assumed has already been created by a call to
* // xEventGroupCreate().
* EventGroupHandle_t xEventGroup;
*
* void anInterruptHandler( void )
* {
* BaseType_t xHigherPriorityTaskWoken, xResult;
*
* // xHigherPriorityTaskWoken must be initialised to pdFALSE.
* xHigherPriorityTaskWoken = pdFALSE;
*
* // Set bit 0 and bit 4 in xEventGroup.
* xResult = xEventGroupSetBitsFromISR(
* xEventGroup, // The event group being updated.
* BIT_0 | BIT_4 // The bits being set.
* &xHigherPriorityTaskWoken );
*
* // Was the message posted successfully?
* if( xResult == pdPASS )
* {
* // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
* // switch should be requested. The macro used is port specific and
* // will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
* // refer to the documentation page for the port being used.
* portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
* }
* }
* @endcode
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
@@ -603,14 +555,6 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet,
const EventBits_t uxBitsToWaitFor,
TickType_t xTicksToWait );
</pre>
*
* Atomically set bits within an event group, then wait for a combination of
* bits to be set within the same event group. This functionality is typically
* used to synchronise multiple tasks, where each task has to wait for the other
@@ -648,93 +592,87 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_
* automatically cleared.
*
* Example usage:
<pre>
// Bits used by the three tasks.
#define TASK_0_BIT ( 1 << 0 )
#define TASK_1_BIT ( 1 << 1 )
#define TASK_2_BIT ( 1 << 2 )
#define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
// Use an event group to synchronise three tasks. It is assumed this event
// group has already been created elsewhere.
EventGroupHandle_t xEventBits;
void vTask0( void *pvParameters )
{
EventBits_t uxReturn;
TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
for( ;; )
{
// Perform task functionality here.
// Set bit 0 in the event flag to note this task has reached the
// sync point. The other two tasks will set the other two bits defined
// by ALL_SYNC_BITS. All three tasks have reached the synchronisation
// point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
// for this to happen.
uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xTicksToWait );
if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
{
// All three tasks reached the synchronisation point before the call
// to xEventGroupSync() timed out.
}
}
}
void vTask1( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 1 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
void vTask2( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 2 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
</pre>
* \defgroup xEventGroupSync xEventGroupSync
* @code{c}
* // Bits used by the three tasks.
* #define TASK_0_BIT ( 1 << 0 )
* #define TASK_1_BIT ( 1 << 1 )
* #define TASK_2_BIT ( 1 << 2 )
*
* #define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
*
* // Use an event group to synchronise three tasks. It is assumed this event
* // group has already been created elsewhere.
* EventGroupHandle_t xEventBits;
*
* void vTask0( void *pvParameters )
* {
* EventBits_t uxReturn;
* TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
*
* for( ;; )
* {
* // Perform task functionality here.
*
* // Set bit 0 in the event flag to note this task has reached the
* // sync point. The other two tasks will set the other two bits defined
* // by ALL_SYNC_BITS. All three tasks have reached the synchronisation
* // point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
* // for this to happen.
* uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xTicksToWait );
*
* if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
* {
* // All three tasks reached the synchronisation point before the call
* // to xEventGroupSync() timed out.
* }
* }
* }
*
* void vTask1( void *pvParameters )
* {
* for( ;; )
* {
* // Perform task functionality here.
*
* // Set bit 1 in the event flag to note this task has reached the
* // synchronisation point. The other two tasks will set the other two
* // bits defined by ALL_SYNC_BITS. All three tasks have reached the
* // synchronisation point when all the ALL_SYNC_BITS are set. Wait
* // indefinitely for this to happen.
* xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
*
* // xEventGroupSync() was called with an indefinite block time, so
* // this task will only reach here if the syncrhonisation was made by all
* // three tasks, so there is no need to test the return value.
* }
* }
*
* void vTask2( void *pvParameters )
* {
* for( ;; )
* {
* // Perform task functionality here.
*
* // Set bit 2 in the event flag to note this task has reached the
* // synchronisation point. The other two tasks will set the other two
* // bits defined by ALL_SYNC_BITS. All three tasks have reached the
* // synchronisation point when all the ALL_SYNC_BITS are set. Wait
* // indefinitely for this to happen.
* xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
*
* // xEventGroupSync() was called with an indefinite block time, so
* // this task will only reach here if the syncrhonisation was made by all
* // three tasks, so there is no need to test the return value.
* }
* }
*
* @endcode
* \ingroup EventGroup
*/
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup );
</pre>
*
* Returns the current value of the bits in an event group. This function
* cannot be used from an interrupt.
*
@@ -742,33 +680,22 @@ EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t u
*
* @return The event group bits at the time xEventGroupGetBits() was called.
*
* \defgroup xEventGroupGetBits xEventGroupGetBits
* \ingroup EventGroup
*/
#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
</pre>
*
* A version of xEventGroupGetBits() that can be called from an ISR.
*
* @param xEventGroup The event group being queried.
*
* @return The event group bits at the time xEventGroupGetBitsFromISR() was called.
*
* \defgroup xEventGroupGetBitsFromISR xEventGroupGetBitsFromISR
* \ingroup EventGroup
*/
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
/**
* event_groups.h
*<pre>
void xEventGroupDelete( EventGroupHandle_t xEventGroup );
</pre>
*
* Delete an event group that was previously created by a call to
* xEventGroupCreate(). Tasks that are blocked on the event group will be
@@ -778,6 +705,8 @@ EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
*/
void vEventGroupDelete( EventGroupHandle_t xEventGroup );
/** @cond */
/* For internal use only. */
void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet );
void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear );
@@ -786,6 +715,8 @@ void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToCl
UBaseType_t uxEventGroupGetNumber( void* xEventGroup );
#endif
/** @endcond */
#ifdef __cplusplus
}
#endif