esp8684: rename target to esp32c2

This commit is contained in:
laokaiyao
2022-01-18 10:32:56 +08:00
parent 6e00f10fd4
commit cf049e15ed
354 changed files with 894 additions and 897 deletions

View File

@@ -0,0 +1,23 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SOC_ADC1_DATA_INVERT_DEFAULT (0)
#define SOC_ADC2_DATA_INVERT_DEFAULT (0)
#define SOC_ADC_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define SOC_ADC_PWDET_CCT_DEFAULT (4)
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)

View File

@@ -0,0 +1,853 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "regi2c_ctrl.h"
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "hal/misc.h"
#include "hal/adc_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
typedef enum {
ADC_RTC_DATA_OK = 0,
ADC_RTC_CTRL_UNSELECTED = 1,
ADC_RTC_CTRL_BREAK = 2,
ADC_RTC_DATA_FAIL = -1,
} adc_ll_rtc_raw_data_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< For ADC1. Select DIG controller.
ADC_LL_CTRL_ARB = 1, ///< For ADC2. The controller is selected by the arbiter.
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32C2 only support ALTER_UNIT mode
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ALTER_UNIT = 0, // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
//These values should be set according to the HW
typedef enum {
ADC_LL_INTR_THRES1_LOW = BIT(26),
ADC_LL_INTR_THRES0_LOW = BIT(27),
ADC_LL_INTR_THRES1_HIGH = BIT(28),
ADC_LL_INTR_THRES0_HIGH = BIT(29),
ADC_LL_INTR_ADC2_DONE = BIT(30),
ADC_LL_INTR_ADC1_DONE = BIT(31),
} adc_ll_intr_t;
FLAG_ATTR(adc_ll_intr_t)
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
abort(); //TODO IDF-3908
// // Internal FSM reset wait time
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait);
// // Internal FSM start wait time
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait);
// // Internal FSM standby wait time
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
abort(); //TODO IDF-3908
// /* Should be called before writing I2C registers. */
// SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
abort(); //TODO IDF-3908
// /* ADC clock devided from digital controller clock clk */
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
abort(); //TODO IDF-3908
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_digi_convert_limit_enable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl2.meas_num_limit = 1;
}
/**
* Disable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_digi_convert_limit_disable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl2.meas_num_limit = 0;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32-C2 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32-C2 only supports ADC_CONV_ALTER_UNIT mode
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
abort(); //TODO IDF-3908
// uint32_t tab;
// uint8_t index = pattern_index / 4;
// uint8_t offset = (pattern_index % 4) * 6;
// adc_ll_digi_pattern_table_t pattern = {0};
// pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
// tab = APB_SARADC.sar_patt_tab[index].sar_patt_tab1; // Read old register value
// tab &= (~(0xFC0000 >> offset)); // Clear old data
// tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
// APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.sar_patt_p_clear = 1;
// APB_SARADC.ctrl.sar_patt_p_clear = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
// } else { // adc_n == ADC_NUM_2
// APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
// }
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl2.timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl2.timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl2.timer_en = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
abort(); //TODO IDF-3908
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num);
// APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b;
// APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
{
abort(); //TODO IDF-3908
// if (use_apll) {
// APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
// } else {
// APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
// }
// APB_SARADC.ctrl.sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.ctrl.sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
{
abort(); //TODO IDF-3908
// APB_SARADC.filter_ctrl0.filter_reset = 1;
}
/**
* Set adc digital controller filter factor.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
abort(); //TODO IDF-3908
// if (idx == ADC_DIGI_FILTER_IDX0) {
// APB_SARADC.filter_ctrl0.filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7);
// APB_SARADC.filter_ctrl1.filter_factor0 = filter->mode;
// } else if (idx == ADC_DIGI_FILTER_IDX1) {
// APB_SARADC.filter_ctrl0.filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7);
// APB_SARADC.filter_ctrl1.filter_factor1 = filter->mode;
// }
}
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
abort(); //TODO IDF-3908
// if (idx == ADC_DIGI_FILTER_IDX0) {
// filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel0 >> 3) & 0x1;
// filter->channel = APB_SARADC.filter_ctrl0.filter_channel0 & 0x7;
// filter->mode = APB_SARADC.filter_ctrl1.filter_factor0;
// } else if (idx == ADC_DIGI_FILTER_IDX1) {
// filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel1 >> 3) & 0x1;
// filter->channel = APB_SARADC.filter_ctrl0.filter_channel1 & 0x7;
// filter->mode = APB_SARADC.filter_ctrl1.filter_factor1;
// }
}
/**
* Disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
{
abort(); //TODO IDF-3908
// if (idx == ADC_DIGI_FILTER_IDX0) {
// APB_SARADC.filter_ctrl0.filter_channel0 = 0xF;
// APB_SARADC.filter_ctrl1.filter_factor0 = 0;
// } else if (idx == ADC_DIGI_FILTER_IDX1) {
// APB_SARADC.filter_ctrl0.filter_channel1 = 0xF;
// APB_SARADC.filter_ctrl1.filter_factor1 = 0;
// }
}
/**
* Set monitor mode of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
abort(); //TODO IDF-3908
// if (idx == ADC_DIGI_MONITOR_IDX0) {
// APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
// APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold;
// APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold;
// } else { // ADC_DIGI_MONITOR_IDX1
// APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
// APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold;
// APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold;
// }
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
abort(); //TODO IDF-3908
// if (idx == ADC_DIGI_MONITOR_IDX0) {
// APB_SARADC.thres0_ctrl.thres0_channel = 0xF;
// } else { // ADC_DIGI_MONITOR_IDX1
// APB_SARADC.thres1_ctrl.thres1_channel = 0xF;
// }
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
abort(); //TODO IDF-3908
// HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.dma_conf.apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.dma_conf.apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
abort(); //TODO IDF-3908
// APB_SARADC.dma_conf.apb_adc_reset_fsm = 1;
// APB_SARADC.dma_conf.apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
abort(); //TODO IDF-3908
// /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
abort(); //TODO IDF-3908
// /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
// return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// return ADC_RTC_DATA_OK;
// }
// //The raw data API returns value without channel information. Read value directly from the register
// if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) {
// return ADC_RTC_DATA_FAIL;
// }
// return ADC_RTC_DATA_OK;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
abort(); //TODO IDF-3908
// /* Bit1 0:Fsm 1: SW mode
// Bit0 0:SW mode power down 1: SW mode power on */
// if (manage == ADC_POWER_SW_ON) {
// APB_SARADC.ctrl.sar_clk_gated = 1;
// APB_SARADC.ctrl.xpd_sar_force = 3;
// } else if (manage == ADC_POWER_BY_FSM) {
// APB_SARADC.ctrl.sar_clk_gated = 1;
// APB_SARADC.ctrl.xpd_sar_force = 0;
// } else if (manage == ADC_POWER_SW_OFF) {
// APB_SARADC.ctrl.sar_clk_gated = 0;
// APB_SARADC.ctrl.xpd_sar_force = 2;
// }
}
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32-C2
}
/**
* Set ADC2 module arbiter work mode.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
*
* @param mode Refer to `adc_arbiter_mode_t`.
*/
static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
{
abort(); //TODO IDF-3908
// if (mode == ADC_ARB_MODE_FIX) {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1;
// } else if (mode == ADC_ARB_MODE_LOOP) {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0;
// } else {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter.
// }
}
/**
* Set ADC2 module controller priority in arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
*
* @param pri_rtc RTC controller priority. Range: 0 ~ 2.
* @param pri_dig Digital controller priority. Range: 0 ~ 2.
* @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
*/
static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
{
abort(); //TODO IDF-3908
// if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet;
// }
// /* Should select highest priority controller. */
// if (pri_rtc > pri_dig) {
// if (pri_rtc > pri_pwdet) {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
// } else {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
// }
// } else {
// if (pri_dig > pri_pwdet) {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
// } else {
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
// APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
// }
// }
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_ll_num_t adc_n)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
// }
}
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param channel adc channel number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
{
abort(); //TODO IDF-3908
// /* Enable/disable internal connect GND (for calibration). */
// if (adc_n == ADC_NUM_1) {
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
// }
// } else {
// if (internal_gnd) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
// }
// }
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
// }
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
{
abort(); //TODO IDF-3908
// uint8_t msb = param >> 8;
// uint8_t lsb = param & 0xFF;
// if (adc_n == ADC_NUM_1) {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
// }
}
/* Temp code end. */
/**
* Output ADCn inter reference voltage to ADC2 channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC1's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @param[in] adc ADC unit select
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
{
abort(); //TODO IDF-3908
// if (en) {
// REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
// SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
// REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2);
// SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
// SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
// SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
// APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF;
// APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF;
// APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
// APB_SARADC.onetime_sample.onetime_channel = channel;
// SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
// if (adc == ADC_NUM_1) {
// /* Config test mux to route v_ref to ADC1 Channels */
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
// } else {
// /* Config test mux to route v_ref to ADC2 Channels */
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
// }
// } else {
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
// REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
// APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
// APB_SARADC.onetime_sample.onetime_channel = 0xf;
// REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0);
// REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0);
// CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
// CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
// CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
// }
}
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
/**
* Trigger single read
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_ll_onetime_start(bool val)
{
abort(); //TODO IDF-3908
// APB_SARADC.onetime_sample.onetime_start = val;
}
static inline void adc_ll_onetime_set_channel(adc_ll_num_t unit, adc_channel_t channel)
{
abort(); //TODO IDF-3908
// APB_SARADC.onetime_sample.onetime_channel = ((unit << 3) | channel);
}
static inline void adc_ll_onetime_set_atten(adc_atten_t atten)
{
abort(); //TODO IDF-3908
// APB_SARADC.onetime_sample.onetime_atten = atten;
}
static inline void adc_ll_intr_enable(adc_ll_intr_t mask)
{
abort(); //TODO IDF-3908
// APB_SARADC.int_ena.val |= mask;
}
static inline void adc_ll_intr_disable(adc_ll_intr_t mask)
{
abort(); //TODO IDF-3908
// APB_SARADC.int_ena.val &= ~mask;
}
static inline void adc_ll_intr_clear(adc_ll_intr_t mask)
{
abort(); //TODO IDF-3908
// APB_SARADC.int_clr.val |= mask;
}
static inline bool adc_ll_intr_get_raw(adc_ll_intr_t mask)
{
abort(); //TODO IDF-3908
// return (APB_SARADC.int_raw.val & mask);
}
static inline bool adc_ll_intr_get_status(adc_ll_intr_t mask)
{
abort(); //TODO IDF-3908
// return (APB_SARADC.int_st.val & mask);
}
static inline void adc_ll_onetime_sample_enable(adc_ll_num_t adc_n, bool enable)
{
abort(); //TODO IDF-3908
// if (adc_n == ADC_NUM_1) {
// APB_SARADC.onetime_sample.adc1_onetime_sample = enable;
// } else {
// APB_SARADC.onetime_sample.adc2_onetime_sample = enable;
// }
}
static inline uint32_t adc_ll_adc1_read(void)
{
abort(); //TODO IDF-3908
// //On ESP32-C2, valid data width is 12-bit
// return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff);
}
static inline uint32_t adc_ll_adc2_read(void)
{
abort(); //TODO IDF-3908
// //On ESP32-C2, valid data width is 12-bit
// return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,191 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/***************************************************************
*
* This file needs to be removed. Left here just for passing build
* TODO // TODO: IDF-3844
***************************************************************/
#pragma once
#include <stdbool.h>
#include "soc/hwcrypto_reg.h"
#include "hal/aes_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief State of AES accelerator, busy, idle or done
*
*/
typedef enum {
ESP_AES_STATE_IDLE = 0, /* AES accelerator is idle */
ESP_AES_STATE_BUSY, /* Transform in progress */
ESP_AES_STATE_DONE, /* Transform completed */
} esp_aes_state_t;
/**
* @brief Write the encryption/decryption key to hardware
*
* @param key Key to be written to the AES hardware
* @param key_word_len Number of words in the key
*
* @return volatile number of bytes written to hardware, used for fault injection check
*/
static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Sets the mode
*
* @param mode ESP_AES_ENCRYPT = 1, or ESP_AES_DECRYPT = 0
* @param key_bytes Number of bytes in the key
*/
static inline void aes_ll_set_mode(int mode, uint8_t key_bytes)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Writes message block to AES hardware
*
* @param input Block to be written
*/
static inline void aes_ll_write_block(const void *input)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Read the AES block
*
* @param output the output of the transform, length = AES_BLOCK_BYTES
*/
static inline void aes_ll_read_block(void *output)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Starts block transform
*
*/
static inline void aes_ll_start_transform(void)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Read state of AES accelerator
*
* @return esp_aes_state_t
*/
static inline esp_aes_state_t aes_ll_get_state(void)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Set mode of operation
*
* @note Only used for DMA transforms
*
* @param mode
*/
static inline void aes_ll_set_block_mode(esp_aes_mode_t mode)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Set AES-CTR counter to INC32
*
* @note Only affects AES-CTR mode
*
*/
static inline void aes_ll_set_inc(void)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Release the DMA
*
*/
static inline void aes_ll_dma_exit(void)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Sets the number of blocks to be transformed
*
* @note Only used for DMA transforms
*
* @param num_blocks Number of blocks to transform
*/
static inline void aes_ll_set_num_blocks(size_t num_blocks)
{
abort(); // TODO: IDF-3844
}
/*
* Write IV to hardware iv registers
*/
static inline void aes_ll_set_iv(const uint8_t *iv)
{
abort(); // TODO: IDF-3844
}
/*
* Read IV from hardware iv registers
*/
static inline void aes_ll_read_iv(uint8_t *iv)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Enable or disable DMA mode
*
* @param enable true to enable, false to disable.
*/
static inline void aes_ll_dma_enable(bool enable)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Enable or disable transform completed interrupt
*
* @param enable true to enable, false to disable.
*/
static inline void aes_ll_interrupt_enable(bool enable)
{
abort(); // TODO: IDF-3844
}
/**
* @brief Clears the interrupt
*
*/
static inline void aes_ll_interrupt_clear(void)
{
abort(); // TODO: IDF-3844
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,188 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/periph_defs.h"
#include "soc/system_reg.h"
#include "soc/syscon_reg.h"
#include "soc/dport_access.h"
static inline uint32_t periph_ll_get_clk_en_mask(periph_module_t periph)
{
switch (periph) {
case PERIPH_SARADC_MODULE:
return SYSTEM_APB_SARADC_CLK_EN;
case PERIPH_LEDC_MODULE:
return SYSTEM_LEDC_CLK_EN;
case PERIPH_UART0_MODULE:
return SYSTEM_UART_CLK_EN;
case PERIPH_UART1_MODULE:
return SYSTEM_UART1_CLK_EN;
case PERIPH_I2C0_MODULE:
return SYSTEM_I2C_EXT0_CLK_EN;
case PERIPH_TIMG0_MODULE:
return SYSTEM_TIMERGROUP_CLK_EN;
case PERIPH_SYSTIMER_MODULE:
return SYSTEM_SYSTIMER_CLK_EN;
case PERIPH_SPI_MODULE:
return SYSTEM_SPI01_CLK_EN;
case PERIPH_SPI2_MODULE:
return SYSTEM_SPI2_CLK_EN;
case PERIPH_GDMA_MODULE:
return SYSTEM_DMA_CLK_EN;
case PERIPH_SHA_MODULE:
return SYSTEM_CRYPTO_SHA_CLK_EN;
case PERIPH_RNG_MODULE:
return SYSTEM_WIFI_CLK_RNG_EN;
case PERIPH_WIFI_MODULE:
return SYSTEM_WIFI_CLK_WIFI_EN_M;
case PERIPH_BT_MODULE:
return SYSTEM_WIFI_CLK_BT_EN_M;
case PERIPH_WIFI_BT_COMMON_MODULE:
return SYSTEM_WIFI_CLK_WIFI_BT_COMMON_M;
case PERIPH_BT_BASEBAND_MODULE:
return SYSTEM_BT_BASEBAND_EN;
case PERIPH_BT_LC_MODULE:
return SYSTEM_BT_LC_EN;
default:
return 0;
}
}
static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool enable)
{
(void)enable; // unused
switch (periph) {
case PERIPH_SARADC_MODULE:
return SYSTEM_APB_SARADC_RST;
case PERIPH_LEDC_MODULE:
return SYSTEM_LEDC_RST;
case PERIPH_UART0_MODULE:
return SYSTEM_UART_RST;
case PERIPH_UART1_MODULE:
return SYSTEM_UART1_RST;
case PERIPH_I2C0_MODULE:
return SYSTEM_I2C_EXT0_RST;
case PERIPH_TIMG0_MODULE:
return SYSTEM_TIMERGROUP_RST;
case PERIPH_SYSTIMER_MODULE:
return SYSTEM_SYSTIMER_RST;
case PERIPH_GDMA_MODULE:
return SYSTEM_DMA_RST;
case PERIPH_SPI_MODULE:
return SYSTEM_SPI01_RST;
case PERIPH_SPI2_MODULE:
return SYSTEM_SPI2_RST;
case PERIPH_SHA_MODULE:
if (enable == true) {
// Clear reset on digital signature and HMAC, otherwise SHA is held in reset
return (SYSTEM_CRYPTO_SHA_RST);
} else {
// Don't assert reset on secure boot, otherwise AES is held in reset
return SYSTEM_CRYPTO_SHA_RST;
}
default:
return 0;
}
}
static uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
{
switch (periph) {
case PERIPH_RNG_MODULE:
case PERIPH_WIFI_MODULE:
case PERIPH_BT_MODULE:
case PERIPH_WIFI_BT_COMMON_MODULE:
case PERIPH_BT_BASEBAND_MODULE:
case PERIPH_BT_LC_MODULE:
return SYSTEM_WIFI_CLK_EN_REG;
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_CLK_EN1_REG;
default:
return SYSTEM_PERIP_CLK_EN0_REG;
}
}
static uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
{
switch (periph) {
case PERIPH_RNG_MODULE:
case PERIPH_WIFI_MODULE:
case PERIPH_BT_MODULE:
case PERIPH_WIFI_BT_COMMON_MODULE:
case PERIPH_BT_BASEBAND_MODULE:
case PERIPH_BT_LC_MODULE:
return SYSTEM_WIFI_RST_EN_REG;
case PERIPH_SHA_MODULE:
case PERIPH_GDMA_MODULE:
return SYSTEM_PERIP_RST_EN1_REG;
default:
return SYSTEM_PERIP_RST_EN0_REG;
}
}
static inline void periph_ll_enable_clk_clear_rst(periph_module_t periph)
{
DPORT_SET_PERI_REG_MASK(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph));
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, true));
}
static inline void periph_ll_disable_clk_set_rst(periph_module_t periph)
{
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph));
DPORT_SET_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
}
static inline void IRAM_ATTR periph_ll_wifi_bt_module_enable_clk_clear_rst(void)
{
DPORT_SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_WIFI_BT_COMMON_M);
DPORT_CLEAR_PERI_REG_MASK(SYSTEM_CORE_RST_EN_REG, 0);
}
static inline void IRAM_ATTR periph_ll_wifi_bt_module_disable_clk_set_rst(void)
{
DPORT_CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_WIFI_BT_COMMON_M);
DPORT_SET_PERI_REG_MASK(SYSTEM_CORE_RST_EN_REG, 0);
}
static inline void periph_ll_reset(periph_module_t periph)
{
DPORT_SET_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
}
static inline bool IRAM_ATTR periph_ll_periph_enabled(periph_module_t periph)
{
return DPORT_REG_GET_BIT(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false)) == 0 &&
DPORT_REG_GET_BIT(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph)) != 0;
}
static inline void periph_ll_wifi_module_enable_clk_clear_rst(void)
{
DPORT_SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_WIFI_EN_M);
DPORT_CLEAR_PERI_REG_MASK(SYSTEM_CORE_RST_EN_REG, 0);
}
static inline void periph_ll_wifi_module_disable_clk_set_rst(void)
{
DPORT_CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_WIFI_EN_M);
DPORT_SET_PERI_REG_MASK(SYSTEM_CORE_RST_EN_REG, 0);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,193 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/soc_caps.h"
#include "soc/dport_access.h"
#include "soc/system_reg.h"
#include "esp_bit_defs.h"
#include "soc/assist_debug_reg.h"
#include "esp_attr.h"
#include "riscv/csr.h"
/*performance counter*/
#define CSR_PCER_MACHINE 0x7e0
#define CSR_PCMR_MACHINE 0x7e1
#define CSR_PCCR_MACHINE 0x7e2
/*fast gpio*/
#define CSR_GPIO_OEN_USER 0x803
#define CSR_GPIO_IN_USER 0x804
#define CSR_GPIO_OUT_USER 0x805
#ifdef __cplusplus
extern "C" {
#endif
static inline int IRAM_ATTR cpu_ll_get_core_id(void)
{
#if SOC_CPU_CORES_NUM == 1
return 0; // No need to check core ID on single core hardware
#else
int cpuid;
cpuid = RV_READ_CSR(mhartid);
return cpuid;
#endif
}
static inline void cpu_ll_enable_cycle_count(void)
{
RV_WRITE_CSR(CSR_PCER_MACHINE,1);
RV_WRITE_CSR(CSR_PCMR_MACHINE,1);
return;
}
static inline uint32_t IRAM_ATTR cpu_ll_get_cycle_count(void)
{
uint32_t result;
result = RV_READ_CSR(CSR_PCCR_MACHINE);
return result;
}
static inline void IRAM_ATTR cpu_ll_set_cycle_count(uint32_t val)
{
RV_WRITE_CSR(CSR_PCCR_MACHINE, val);
}
static inline void* cpu_ll_get_sp(void)
{
void *sp;
asm volatile ("mv %0, sp;" : "=r" (sp));
return sp;
}
static inline void cpu_ll_init_hwloop(void)
{
// Nothing needed here for ESP32-C3
}
static inline void cpu_ll_set_breakpoint(int id, uint32_t pc)
{
RV_WRITE_CSR(tselect,id);
RV_SET_CSR(CSR_TCONTROL,TCONTROL_MTE);
RV_SET_CSR(CSR_TDATA1, TDATA1_USER|TDATA1_MACHINE|TDATA1_EXECUTE);
RV_WRITE_CSR(tdata2,pc);
return;
}
static inline void cpu_ll_clear_breakpoint(int id)
{
RV_WRITE_CSR(tselect,id);
RV_CLEAR_CSR(CSR_TCONTROL,TCONTROL_MTE);
RV_CLEAR_CSR(CSR_TDATA1, TDATA1_USER|TDATA1_MACHINE|TDATA1_EXECUTE);
return;
}
static inline uint32_t cpu_ll_ptr_to_pc(const void* addr)
{
return ((uint32_t) addr);
}
static inline void* cpu_ll_pc_to_ptr(uint32_t pc)
{
return (void*) ((pc & 0x3fffffff) | 0x40000000);
}
static inline void cpu_ll_set_watchpoint(int id,
const void* addr,
size_t size,
bool on_read,
bool on_write)
{
uint32_t addr_napot;
RV_WRITE_CSR(tselect,id);
RV_SET_CSR(CSR_TCONTROL, TCONTROL_MPTE | TCONTROL_MTE);
RV_SET_CSR(CSR_TDATA1, TDATA1_USER|TDATA1_MACHINE);
RV_SET_CSR_FIELD(CSR_TDATA1, (long unsigned int) TDATA1_MATCH, 1);
// add 0 in napot encoding
addr_napot = ((uint32_t) addr) | ((size >> 1) - 1);
if (on_read) {
RV_SET_CSR(CSR_TDATA1, TDATA1_LOAD);
}
if (on_write) {
RV_SET_CSR(CSR_TDATA1, TDATA1_STORE);
}
RV_WRITE_CSR(tdata2,addr_napot);
return;
}
static inline void cpu_ll_clear_watchpoint(int id)
{
RV_WRITE_CSR(tselect,id);
RV_CLEAR_CSR(CSR_TCONTROL,TCONTROL_MTE);
RV_CLEAR_CSR(CSR_TDATA1, TDATA1_USER|TDATA1_MACHINE);
RV_CLEAR_CSR_FIELD(CSR_TDATA1, (long unsigned int) TDATA1_MATCH);
RV_CLEAR_CSR(CSR_TDATA1, TDATA1_MACHINE);
RV_CLEAR_CSR(CSR_TDATA1, TDATA1_LOAD|TDATA1_STORE|TDATA1_EXECUTE);
return;
}
FORCE_INLINE_ATTR bool cpu_ll_is_debugger_attached(void)
{
return REG_GET_BIT(ASSIST_DEBUG_CORE_0_DEBUG_MODE_REG, ASSIST_DEBUG_CORE_0_DEBUG_MODULE_ACTIVE);
}
static inline void cpu_ll_break(void)
{
asm volatile("ebreak\n");
return;
}
static inline void cpu_ll_set_vecbase(const void* vecbase)
{
uintptr_t vecbase_int = (uintptr_t)vecbase;
vecbase_int |= 1; // Set MODE field to treat MTVEC as a vector base address
RV_WRITE_CSR(mtvec, vecbase_int);
}
static inline void cpu_ll_waiti(void)
{
if (cpu_ll_is_debugger_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) {
/* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
so do not enter that mode when debugger is connected */
return;
}
asm volatile ("wfi\n");
}
static inline void cpu_ll_enable_dedic_gpio_output(uint32_t mask)
{
RV_WRITE_CSR(CSR_GPIO_OEN_USER, mask);
}
static inline void cpu_ll_write_dedic_gpio_all(uint32_t value)
{
RV_WRITE_CSR(CSR_GPIO_OUT_USER, value);
}
static inline uint32_t cpu_ll_read_dedic_gpio_in(void)
{
uint32_t value = RV_READ_CSR(CSR_GPIO_IN_USER);
return value;
}
static inline uint32_t cpu_ll_read_dedic_gpio_out(void)
{
uint32_t value = RV_READ_CSR(CSR_GPIO_OUT_USER);
return value;
}
static inline void cpu_ll_write_dedic_gpio_mask(uint32_t mask, uint32_t value)
{
RV_SET_CSR(CSR_GPIO_OUT_USER, mask & value);
RV_CLEAR_CSR(CSR_GPIO_OUT_USER, mask & ~(value));
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,467 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/gdma_struct.h"
#include "soc/gdma_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GDMA_LL_GET_HW(id) (((id) == 0) ? (&GDMA) : NULL)
#define GDMA_LL_RX_EVENT_MASK (0x06A7)
#define GDMA_LL_TX_EVENT_MASK (0x1958)
#define GDMA_LL_EVENT_TX_FIFO_UDF (1<<12)
#define GDMA_LL_EVENT_TX_FIFO_OVF (1<<11)
#define GDMA_LL_EVENT_RX_FIFO_UDF (1<<10)
#define GDMA_LL_EVENT_RX_FIFO_OVF (1<<9)
#define GDMA_LL_EVENT_TX_TOTAL_EOF (1<<8)
#define GDMA_LL_EVENT_RX_DESC_EMPTY (1<<7)
#define GDMA_LL_EVENT_TX_DESC_ERROR (1<<6)
#define GDMA_LL_EVENT_RX_DESC_ERROR (1<<5)
#define GDMA_LL_EVENT_TX_EOF (1<<4)
#define GDMA_LL_EVENT_TX_DONE (1<<3)
#define GDMA_LL_EVENT_RX_ERR_EOF (1<<2)
#define GDMA_LL_EVENT_RX_SUC_EOF (1<<1)
#define GDMA_LL_EVENT_RX_DONE (1<<0)
///////////////////////////////////// Common /////////////////////////////////////////
/**
* @brief Enable DMA channel M2M mode (TX channel n forward data to RX channel n), disabled by default
*/
static inline void gdma_ll_enable_m2m_mode(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].in.in_conf0.mem_trans_en = enable;
if (enable) {
// to enable m2m mode, the tx chan has to be the same to rx chan, and set to a valid value
dev->channel[channel].in.in_peri_sel.sel = 0;
dev->channel[channel].out.out_peri_sel.sel = 0;
}
}
/**
* @brief Enable DMA clock gating
*/
static inline void gdma_ll_enable_clock(gdma_dev_t *dev, bool enable)
{
dev->misc_conf.clk_en = enable;
}
///////////////////////////////////// RX /////////////////////////////////////////
/**
* @brief Get DMA RX channel interrupt status word
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_rx_get_interrupt_status(gdma_dev_t *dev, uint32_t channel)
{
return dev->intr[channel].st.val & GDMA_LL_RX_EVENT_MASK;
}
/**
* @brief Enable DMA RX channel interrupt
*/
static inline void gdma_ll_rx_enable_interrupt(gdma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->intr[channel].ena.val |= (mask & GDMA_LL_RX_EVENT_MASK);
} else {
dev->intr[channel].ena.val &= ~(mask & GDMA_LL_RX_EVENT_MASK);
}
}
/**
* @brief Clear DMA RX channel interrupt
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_clear_interrupt_status(gdma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->intr[channel].clr.val = (mask & GDMA_LL_RX_EVENT_MASK);
}
/**
* @brief Get DMA RX channel interrupt status register address
*/
static inline volatile void *gdma_ll_rx_get_interrupt_status_reg(gdma_dev_t *dev, uint32_t channel)
{
return (volatile void *)(&dev->intr[channel].st);
}
/**
* @brief Enable DMA RX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void gdma_ll_rx_enable_owner_check(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].in.in_conf1.in_check_owner = enable;
}
/**
* @brief Enable DMA RX channel burst reading data, disabled by default
*/
static inline void gdma_ll_rx_enable_data_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].in.in_conf0.in_data_burst_en = enable;
}
/**
* @brief Enable DMA RX channel burst reading descriptor link, disabled by default
*/
static inline void gdma_ll_rx_enable_descriptor_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].in.in_conf0.indscr_burst_en = enable;
}
/**
* @brief Reset DMA RX channel FSM and FIFO pointer
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_reset_channel(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].in.in_conf0.in_rst = 1;
dev->channel[channel].in.in_conf0.in_rst = 0;
}
/**
* @brief Check if DMA RX FIFO is full
* @param fifo_level only supports level 1
*/
static inline bool gdma_ll_rx_is_fifo_full(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].in.infifo_status.val & 0x01;
}
/**
* @brief Check if DMA RX FIFO is empty
* @param fifo_level only supports level 1
*/
static inline bool gdma_ll_rx_is_fifo_empty(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].in.infifo_status.val & 0x02;
}
/**
* @brief Get number of bytes in RX FIFO
* @param fifo_level only supports level 1
*/
static inline uint32_t gdma_ll_rx_get_fifo_bytes(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].in.infifo_status.infifo_cnt;
}
/**
* @brief Pop data from DMA RX FIFO
*/
static inline uint32_t gdma_ll_rx_pop_data(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].in.in_pop.infifo_pop = 1;
return dev->channel[channel].in.in_pop.infifo_rdata;
}
/**
* @brief Set the descriptor link base address for RX channel
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_set_desc_addr(gdma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->channel[channel].in.in_link.addr = addr;
}
/**
* @brief Start dealing with RX descriptors
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_start(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].in.in_link.start = 1;
}
/**
* @brief Stop dealing with RX descriptors
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_stop(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].in.in_link.stop = 1;
}
/**
* @brief Restart a new inlink right after the last descriptor
*/
__attribute__((always_inline))
static inline void gdma_ll_rx_restart(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].in.in_link.restart = 1;
}
/**
* @brief Enable DMA RX to return the address of current descriptor when receives error
*/
static inline void gdma_ll_rx_enable_auto_return(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].in.in_link.auto_ret = enable;
}
/**
* @brief Check if DMA RX FSM is in IDLE state
*/
static inline bool gdma_ll_rx_is_fsm_idle(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].in.in_link.park;
}
/**
* @brief Get RX success EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_rx_get_success_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].in.in_suc_eof_des_addr;
}
/**
* @brief Get RX error EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_rx_get_error_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].in.in_err_eof_des_addr;
}
/**
* @brief Get current RX descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_rx_get_current_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].in.in_dscr;
}
/**
* @brief Set priority for DMA RX channel
*/
static inline void gdma_ll_rx_set_priority(gdma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->channel[channel].in.in_pri.rx_pri = prio;
}
/**
* @brief Connect DMA RX channel to a given peripheral
*/
static inline void gdma_ll_rx_connect_to_periph(gdma_dev_t *dev, uint32_t channel, int periph_id)
{
dev->channel[channel].in.in_peri_sel.sel = periph_id;
}
///////////////////////////////////// TX /////////////////////////////////////////
/**
* @brief Get DMA TX channel interrupt status word
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_tx_get_interrupt_status(gdma_dev_t *dev, uint32_t channel)
{
return dev->intr[channel].st.val & GDMA_LL_TX_EVENT_MASK;
}
/**
* @brief Enable DMA TX channel interrupt
*/
static inline void gdma_ll_tx_enable_interrupt(gdma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->intr[channel].ena.val |= (mask & GDMA_LL_TX_EVENT_MASK);
} else {
dev->intr[channel].ena.val &= ~(mask & GDMA_LL_TX_EVENT_MASK);
}
}
/**
* @brief Clear DMA TX channel interrupt
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_clear_interrupt_status(gdma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->intr[channel].clr.val = (mask & GDMA_LL_TX_EVENT_MASK);
}
/**
* @brief Get DMA TX channel interrupt status register address
*/
static inline volatile void *gdma_ll_tx_get_interrupt_status_reg(gdma_dev_t *dev, uint32_t channel)
{
return (volatile void *)(&dev->intr[channel].st);
}
/**
* @brief Enable DMA TX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void gdma_ll_tx_enable_owner_check(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].out.out_conf1.out_check_owner = enable;
}
/**
* @brief Enable DMA TX channel burst sending data, disabled by default
*/
static inline void gdma_ll_tx_enable_data_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].out.out_conf0.out_data_burst_en = enable;
}
/**
* @brief Enable DMA TX channel burst reading descriptor link, disabled by default
*/
static inline void gdma_ll_tx_enable_descriptor_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].out.out_conf0.outdscr_burst_en = enable;
}
/**
* @brief Set TX channel EOF mode
*/
static inline void gdma_ll_tx_set_eof_mode(gdma_dev_t *dev, uint32_t channel, uint32_t mode)
{
dev->channel[channel].out.out_conf0.out_eof_mode = mode;
}
/**
* @brief Enable DMA TX channel automatic write results back to descriptor after all data has been sent out, disabled by default
*/
static inline void gdma_ll_tx_enable_auto_write_back(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->channel[channel].out.out_conf0.out_auto_wrback = enable;
}
/**
* @brief Reset DMA TX channel FSM and FIFO pointer
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_reset_channel(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].out.out_conf0.out_rst = 1;
dev->channel[channel].out.out_conf0.out_rst = 0;
}
/**
* @brief Check if DMA TX FIFO is full
* @param fifo_level only supports level 1
*/
static inline bool gdma_ll_tx_is_fifo_full(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].out.outfifo_status.val & 0x01;
}
/**
* @brief Check if DMA TX FIFO is empty
* @param fifo_level only supports level 1
*/
static inline bool gdma_ll_tx_is_fifo_empty(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].out.outfifo_status.val & 0x02;
}
/**
* @brief Get number of bytes in TX FIFO
* @param fifo_level only supports level 1
*/
static inline uint32_t gdma_ll_tx_get_fifo_bytes(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->channel[channel].out.outfifo_status.outfifo_cnt;
}
/**
* @brief Push data into DMA TX FIFO
*/
static inline void gdma_ll_tx_push_data(gdma_dev_t *dev, uint32_t channel, uint32_t data)
{
dev->channel[channel].out.out_push.outfifo_wdata = data;
dev->channel[channel].out.out_push.outfifo_push = 1;
}
/**
* @brief Set the descriptor link base address for TX channel
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_set_desc_addr(gdma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->channel[channel].out.out_link.addr = addr;
}
/**
* @brief Start dealing with TX descriptors
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_start(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].out.out_link.start = 1;
}
/**
* @brief Stop dealing with TX descriptors
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_stop(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].out.out_link.stop = 1;
}
/**
* @brief Restart a new outlink right after the last descriptor
*/
__attribute__((always_inline))
static inline void gdma_ll_tx_restart(gdma_dev_t *dev, uint32_t channel)
{
dev->channel[channel].out.out_link.restart = 1;
}
/**
* @brief Check if DMA TX FSM is in IDLE state
*/
static inline bool gdma_ll_tx_is_fsm_idle(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].out.out_link.park;
}
/**
* @brief Get TX EOF descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_tx_get_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].out.out_eof_des_addr;
}
/**
* @brief Get current TX descriptor's address
*/
__attribute__((always_inline))
static inline uint32_t gdma_ll_tx_get_current_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->channel[channel].out.out_dscr;
}
/**
* @brief Set priority for DMA TX channel
*/
static inline void gdma_ll_tx_set_priority(gdma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->channel[channel].out.out_pri.tx_pri = prio;
}
/**
* @brief Connect DMA TX channel to a given peripheral
*/
static inline void gdma_ll_tx_connect_to_periph(gdma_dev_t *dev, uint32_t channel, int periph_id)
{
dev->channel[channel].out.out_peri_sel.sel = periph_id;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,561 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-C2 GPIO register operations
#pragma once
#include "soc/soc.h"
#include "soc/gpio_periph.h"
#include "soc/rtc_cntl_reg.h"
#include "hal/gpio_types.h"
#include "hal/assert.h"
#include "stdlib.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get GPIO hardware instance with giving gpio num
#define GPIO_LL_GET_HW(num) (((num) == 0) ? (&GPIO) : NULL)
#define GPIO_LL_PRO_CPU_INTR_ENA (BIT(0))
#define GPIO_LL_PRO_CPU_NMI_INTR_ENA (BIT(1))
/**
* @brief Enable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Disable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Enable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief Disable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief GPIO set interrupt trigger type
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the trigger type of e.g. of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param intr_type Interrupt type, select from gpio_int_type_t
*/
static inline void gpio_ll_set_intr_type(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
}
/**
* @brief Get GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status
*/
static inline void gpio_ll_get_intr_status(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = hw->pcpu_int.procpu_int;
}
/**
* @brief Get GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status high
*/
static inline void gpio_ll_get_intr_status_high(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = 0; // Less than 32 GPIOs in ESP32-C2
}
/**
* @brief Clear GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status clear mask
*/
static inline void gpio_ll_clear_intr_status(gpio_dev_t *hw, uint32_t mask)
{
hw->status_w1tc.status_w1tc = mask;
}
/**
* @brief Clear GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status high clear mask
*/
static inline void gpio_ll_clear_intr_status_high(gpio_dev_t *hw, uint32_t mask)
{
// Less than 32 GPIOs in ESP32-C2. Do nothing.
}
/**
* @brief Enable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id Interrupt enabled CPU to corresponding ID
* @param gpio_num GPIO number. If you want to enable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_enable_on_core(gpio_dev_t *hw, uint32_t core_id, gpio_num_t gpio_num)
{
HAL_ASSERT(core_id == 0 && "target SoC only has a single core");
GPIO.pin[gpio_num].int_ena = GPIO_LL_PRO_CPU_INTR_ENA; //enable pro cpu intr
}
/**
* @brief Disable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to disable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].int_ena = 0; //disable GPIO intr
}
/**
* @brief Disable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->enable_w1tc.enable_w1tc = (0x1 << gpio_num);
// Ensure no other output signal is routed via GPIO matrix to this pin
REG_WRITE(GPIO_FUNC0_OUT_SEL_CFG_REG + (gpio_num * 4),
SIG_GPIO_OUT_IDX);
}
/**
* @brief Enable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->enable_w1ts.enable_w1ts = (0x1 << gpio_num);
}
/**
* @brief Disable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 0;
}
/**
* @brief Enable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 1;
}
/**
* @brief GPIO set output level
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the output level of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param level Output level. 0: low ; 1: high
*/
static inline void gpio_ll_set_level(gpio_dev_t *hw, gpio_num_t gpio_num, uint32_t level)
{
if (level) {
hw->out_w1ts.out_w1ts = (1 << gpio_num);
} else {
hw->out_w1tc.out_w1tc = (1 << gpio_num);
}
}
/**
* @brief GPIO get input level
*
* @warning If the pad is not configured for input (or input and output) the returned value is always 0.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to get the logic level of e.g. pin GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - 0 the GPIO input level is 0
* - 1 the GPIO input level is 1
*/
static inline int gpio_ll_get_level(gpio_dev_t *hw, gpio_num_t gpio_num)
{
return (hw->in.in_data_next >> gpio_num) & 0x1;
}
/**
* @brief Enable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number.
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or GPIO_INTR_HIGH_LEVEL can be used.
*/
static inline void gpio_ll_wakeup_enable(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
hw->pin[gpio_num].wakeup_enable = 0x1;
}
/**
* @brief Disable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_wakeup_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].wakeup_enable = 0;
}
/**
* @brief Set GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Drive capability of the pad
*/
static inline void gpio_ll_set_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t strength)
{
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, strength, FUN_DRV_S);
}
/**
* @brief Get GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Pointer to accept drive capability of the pad
*/
static inline void gpio_ll_get_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t *strength)
{
*strength = (gpio_drive_cap_t)GET_PERI_REG_BITS2(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, FUN_DRV_S);
}
/**
* @brief Enable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_en(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_AUTOHOLD_EN_M);
}
/**
* @brief Disable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_dis(gpio_dev_t *hw)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
/**
* @brief Enable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num <= GPIO_NUM_5) {
REG_SET_BIT(RTC_CNTL_PAD_HOLD_REG, BIT(gpio_num));
} else {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
}
/**
* @brief Disable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num <= GPIO_NUM_5) {
REG_CLR_BIT(RTC_CNTL_PAD_HOLD_REG, BIT(gpio_num));
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
}
/**
* @brief Set pad input to a peripheral signal through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
}
/**
* @brief Select a function for the pin in the IOMUX
*
* @param pin_name Pin name to configure
* @param func Function to assign to the pin
*/
static inline void gpio_ll_iomux_func_sel(uint32_t pin_name, uint32_t func)
{
PIN_FUNC_SELECT(pin_name, func);
}
/**
* @brief Set peripheral output to an GPIO pad through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num gpio_num GPIO number of the pad.
* @param func The function number of the peripheral pin to output pin.
* One of the ``FUNC_X_*`` of specified pin (X) in ``soc/io_mux_reg.h``.
* @param oen_inv True if the output enable needs to be inverted, otherwise False.
*/
static inline void gpio_ll_iomux_out(gpio_dev_t *hw, uint8_t gpio_num, int func, uint32_t oen_inv)
{
hw->func_out_sel_cfg[gpio_num].oen_sel = 0;
hw->func_out_sel_cfg[gpio_num].oen_inv_sel = oen_inv;
gpio_ll_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], func);
}
static inline void gpio_ll_force_hold_all(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
}
static inline void gpio_ll_force_unhold_all(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
/**
* @brief Enable GPIO pin used for wakeup from sleep.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_sel_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_SEL_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable GPIO pin used for wakeup from sleep.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_sel_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_SEL_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable GPIO pull-up in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_pullup_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_PULLUP_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable GPIO pull-up in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_pullup_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_PULLUP_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable GPIO pull-down in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_pulldown_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_PULLDOWN_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable GPIO pull-down in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_pulldown_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_PULLDOWN_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable GPIO input in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_input_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_INPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable GPIO input in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_input_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable GPIO output in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_output_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_OUTPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable GPIO output in sleep mode.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_sleep_output_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_SLP_OUTPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable GPIO deep-sleep wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number.
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or GPIO_INTR_HIGH_LEVEL can be used.
*/
static inline void gpio_ll_deepsleep_wakeup_enable(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
HAL_ASSERT(gpio_num <= GPIO_NUM_5 && "gpio larger than 5 does not support deep sleep wake-up function");
REG_SET_BIT(RTC_CNTL_GPIO_WAKEUP_REG, RTC_CNTL_GPIO_PIN_CLK_GATE);
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP_CONF_REG, RTC_CNTL_GPIO_WAKEUP_FILTER);
SET_PERI_REG_MASK(RTC_CNTL_GPIO_WAKEUP_REG, 1 << (RTC_CNTL_GPIO_PIN0_WAKEUP_ENABLE_S - gpio_num));
uint32_t reg = REG_READ(RTC_CNTL_GPIO_WAKEUP_REG);
reg &= (~(RTC_CNTL_GPIO_PIN0_INT_TYPE_V << (RTC_CNTL_GPIO_PIN0_INT_TYPE_S - gpio_num * 3)));
reg |= (intr_type << (RTC_CNTL_GPIO_PIN0_INT_TYPE_S - gpio_num * 3));
REG_WRITE(RTC_CNTL_GPIO_WAKEUP_REG, reg);
}
/**
* @brief Disable GPIO deep-sleep wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_deepsleep_wakeup_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
HAL_ASSERT(gpio_num <= GPIO_NUM_5 && "gpio larger than 5 does not support deep sleep wake-up function");
CLEAR_PERI_REG_MASK(RTC_CNTL_GPIO_WAKEUP_REG, 1 << (RTC_CNTL_GPIO_PIN0_WAKEUP_ENABLE_S - gpio_num));
CLEAR_PERI_REG_MASK(RTC_CNTL_GPIO_WAKEUP_REG, RTC_CNTL_GPIO_PIN0_INT_TYPE_S - gpio_num * 3);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,396 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
//NOTE: These macros are changed on 8684 for build. MODIFY these when bringup flash.
#define gpspi_flash_ll_get_hw(host_id) ( ((host_id)==SPI2_HOST) ? &GPSPI2 : ({abort();(spi_dev_t*)0;}) )
#define gpspi_flash_ll_hw_get_id(dev) ( ((dev) == (void*)&GPSPI2) ? SPI2_HOST : -1 )
typedef typeof(GPSPI2.clock) gpspi_flash_ll_clock_reg_t;
//Supported clock register values
#define GPSPI_FLASH_LL_CLKREG_VAL_5MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x0000F1CF}) ///< Clock set to 5 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_10MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x000070C7}) ///< Clock set to 10 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_20MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00003043}) ///< Clock set to 20 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_26MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00002002}) ///< Clock set to 26 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_40MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00001001}) ///< Clock set to 40 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_80MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_reset(spi_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
dev->clk_gate.clk_en = 1;
dev->clk_gate.mst_clk_active = 1;
dev->clk_gate.mst_clk_sel = 1;
dev->dma_conf.val = 0;
dev->dma_conf.tx_seg_trans_clr_en = 1;
dev->dma_conf.rx_seg_trans_clr_en = 1;
dev->dma_conf.dma_seg_trans_en = 0;
}
/**
* Set HD pin high when flash work at spi mode.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_set_hold_pol(spi_dev_t *dev, uint32_t pol_val)
{
dev->ctrl.hold_pol = pol_val;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool gpspi_flash_ll_cmd_is_done(const spi_dev_t *dev)
{
return (dev->cmd.usr == 0);
}
/**
* Get the read data from the buffer after ``gpspi_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void gpspi_flash_ll_get_buffer_data(spi_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Write a word to the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param word Data to write at address 0.
*/
static inline void gpspi_flash_ll_write_word(spi_dev_t *dev, uint32_t word)
{
dev->data_buf[0] = word;
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void gpspi_flash_ll_set_buffer_data(spi_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_user_start(spi_dev_t *dev)
{
dev->ctrl.hold_pol = 1;
dev->cmd.update = 1;
while (dev->cmd.update);
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool gpspi_flash_ll_host_idle(const spi_dev_t *dev)
{
return dev->cmd.usr == 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_read_phase(spi_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-2. Set to other values to disable all the CS pins.
*/
static inline void gpspi_flash_ll_set_cs_pin(spi_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin == 0) ? 0 : 1;
dev->misc.cs1_dis = (pin == 1) ? 0 : 1;
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void gpspi_flash_ll_set_read_mode(spi_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
typeof (dev->user) user = dev->user;
ctrl.val &= ~(SPI_FCMD_QUAD_M | SPI_FADDR_QUAD_M | SPI_FREAD_QUAD_M | SPI_FCMD_DUAL_M | SPI_FADDR_DUAL_M | SPI_FREAD_DUAL_M);
user.val &= ~(SPI_FWRITE_QUAD_M | SPI_FWRITE_DUAL_M);
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
case SPI_FLASH_SLOWRD:
break;
case SPI_FLASH_QIO:
ctrl.fread_quad = 1;
ctrl.faddr_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dual = 1;
ctrl.faddr_dual = 1;
user.fwrite_dual = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
user.fwrite_dual = 1;
break;
default:
abort();
}
dev->ctrl = ctrl;
dev->user = user;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void gpspi_flash_ll_set_clock(spi_dev_t *dev, gpspi_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void gpspi_flash_ll_set_miso_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
if (bitlen) {
dev->ms_dlen.ms_data_bitlen = bitlen - 1;
}
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void gpspi_flash_ll_set_mosi_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
if (bitlen) {
dev->ms_dlen.ms_data_bitlen = bitlen - 1;
}
}
/**
* Set the command.
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
* @param bitlen Length of the command
*/
static inline void gpspi_flash_ll_set_command(spi_dev_t *dev, uint8_t command, uint32_t bitlen)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (bitlen - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int gpspi_flash_ll_get_addr_bitlen(spi_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void gpspi_flash_ll_set_addr_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send in user mode. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_usr_address(spi_dev_t *dev, uint32_t addr, uint32_t bitlen)
{
// The blank region should be all ones
uint32_t padding_ones = (bitlen == 32? 0 : UINT32_MAX >> bitlen);
dev->addr = (addr << (32 - bitlen)) | padding_ones;
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_address(spi_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void gpspi_flash_ll_set_dummy(spi_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void gpspi_flash_ll_set_dummy_out(spi_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.dummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}
/**
* Set extra hold time of CS after the clocks.
*
* @param dev Beginning address of the peripheral registers.
* @param hold_n Cycles of clocks before CS is inactive
*/
static inline void gpspi_flash_ll_set_hold(spi_dev_t *dev, uint32_t hold_n)
{
dev->user1.cs_hold_time = hold_n - 1;
dev->user.cs_hold = (hold_n > 0? 1: 0);
}
static inline void gpspi_flash_ll_set_cs_setup(spi_dev_t *dev, uint32_t cs_setup_time)
{
dev->user.cs_setup = (cs_setup_time > 0 ? 1 : 0);
dev->user1.cs_setup_time = cs_setup_time - 1;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,804 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for I2C register operations
#pragma once
#include "soc/i2c_periph.h"
#include "soc/soc_caps.h"
#include "hal/i2c_types.h"
#include "soc/rtc_cntl_reg.h"
#include "esp_rom_sys.h"
#ifdef __cplusplus
extern "C" {
#endif
#define I2C_LL_INTR_MASK (0x3fff) /*!< I2C all interrupt bitmap */
/**
* @brief I2C hardware cmd register fields.
*/
typedef union {
struct {
uint32_t byte_num: 8,
ack_en: 1,
ack_exp: 1,
ack_val: 1,
op_code: 3,
reserved14: 17,
done: 1;
};
uint32_t val;
} i2c_hw_cmd_t;
/**
* @brief I2C interrupt event
*/
typedef enum {
I2C_INTR_EVENT_ERR,
I2C_INTR_EVENT_ARBIT_LOST, /*!< I2C arbition lost event */
I2C_INTR_EVENT_NACK, /*!< I2C NACK event */
I2C_INTR_EVENT_TOUT, /*!< I2C time out event */
I2C_INTR_EVENT_END_DET, /*!< I2C end detected event */
I2C_INTR_EVENT_TRANS_DONE, /*!< I2C trans done event */
I2C_INTR_EVENT_RXFIFO_FULL, /*!< I2C rxfifo full event */
I2C_INTR_EVENT_TXFIFO_EMPTY, /*!< I2C txfifo empty event */
} i2c_intr_event_t;
/**
* @brief Data structure for calculating I2C bus timing.
*/
typedef struct {
uint16_t clkm_div; /*!< I2C core clock devider */
uint16_t scl_low; /*!< I2C scl low period */
uint16_t scl_high; /*!< I2C scl hight period */
uint16_t scl_wait_high; /*!< I2C scl wait_high period */
uint16_t sda_hold; /*!< I2C scl low period */
uint16_t sda_sample; /*!< I2C sda sample time */
uint16_t setup; /*!< I2C start and stop condition setup period */
uint16_t hold; /*!< I2C start and stop condition hold period */
uint16_t tout; /*!< I2C bus timeout period */
} i2c_clk_cal_t;
// I2C operation mode command
#define I2C_LL_CMD_RESTART 6 /*!<I2C restart command */
#define I2C_LL_CMD_WRITE 1 /*!<I2C write command */
#define I2C_LL_CMD_READ 3 /*!<I2C read command */
#define I2C_LL_CMD_STOP 2 /*!<I2C stop command */
#define I2C_LL_CMD_END 4 /*!<I2C end command */
// Get the I2C hardware instance
#define I2C_LL_GET_HW(i2c_num) (&I2C0)
// Get the I2C hardware FIFO address
#define I2C_LL_GET_FIFO_ADDR(i2c_num) (I2C_DATA_APB_REG(i2c_num))
// I2C master TX interrupt bitmap
#define I2C_LL_MASTER_TX_INT (I2C_NACK_INT_ENA_M|I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C master RX interrupt bitmap
#define I2C_LL_MASTER_RX_INT (I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C slave TX interrupt bitmap
#define I2C_LL_SLAVE_TX_INT (I2C_TXFIFO_WM_INT_ENA_M)
// I2C slave RX interrupt bitmap
#define I2C_LL_SLAVE_RX_INT (I2C_RXFIFO_WM_INT_ENA_M | I2C_TRANS_COMPLETE_INT_ENA_M)
// I2C source clock
#define I2C_LL_CLK_SRC_FREQ(src_clk) (((src_clk) == I2C_SCLK_RTC) ? 20*1000*1000 : 40*1000*1000); // Another clock is XTAL clock
// delay time after rtc_clk swiching on
#define DELAY_RTC_CLK_SWITCH (5)
// I2C max timeout value
#define I2C_LL_MAX_TIMEOUT I2C_TIME_OUT_VALUE
/**
* @brief Calculate I2C bus frequency
* Note that the clock accuracy is affected by the external pull-up resistor,
* here we try to to calculate a configuration parameter which is close to the required clock.
* But in I2C communication, the clock accuracy is not very concerned.
*
* @param source_clk I2C source clock
* @param bus_freq I2C bus frequency
* @param clk_cal Pointer to accept the clock configuration
*
* @return None
*/
static inline void i2c_ll_cal_bus_clk(uint32_t source_clk, uint32_t bus_freq, i2c_clk_cal_t *clk_cal)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Update I2C configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_update(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure the I2C bus timing related register.
*
* @param hw Beginning address of the peripheral registers
* @param bus_cfg Pointer to the data structure holding the register configuration.
*
* @return None
*/
static inline void i2c_ll_set_bus_timing(i2c_dev_t *hw, i2c_clk_cal_t *bus_cfg)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Reset I2C txFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_txfifo_rst(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Reset I2C rxFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_rxfifo_rst(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C SCL timing
*
* @param hw Beginning address of the peripheral registers
* @param hight_period The I2C SCL hight period (in core clock cycle, hight_period > 2)
* @param low_period The I2C SCL low period (in core clock cycle, low_period > 1)
*
* @return None.
*/
static inline void i2c_ll_set_scl_timing(i2c_dev_t *hw, int hight_period, int low_period)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be cleared
*
* @return None
*/
static inline void i2c_ll_clr_intsts_mask(i2c_dev_t *hw, uint32_t mask)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Enable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be enabled
*
* @return None
*/
static inline void i2c_ll_enable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Disable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be disabled
*
* @return None
*/
static inline void i2c_ll_disable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
*
* @return I2C interrupt status
*/
static inline uint32_t i2c_ll_get_intsts_mask(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C memory access mode, FIFO mode or non-FIFO mode
*
* @param hw Beginning address of the peripheral registers
* @param fifo_mode_en Set true to enable FIFO access mode, else, set it false
*
* @return None
*/
static inline void i2c_ll_set_fifo_mode(i2c_dev_t *hw, bool fifo_mode_en)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C timeout
*
* @param hw Beginning address of the peripheral registers
* @param tout_num The I2C timeout value needs to be set (2^tout in core clock cycle)
*
* @return None
*/
static inline void i2c_ll_set_tout(i2c_dev_t *hw, int tout)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C slave address
*
* @param hw Beginning address of the peripheral registers
* @param slave_addr I2C slave address needs to be set
* @param addr_10bit_en Set true to enable 10-bit slave address mode, set false to enable 7-bit address mode
*
* @return None
*/
static inline void i2c_ll_set_slave_addr(i2c_dev_t *hw, uint16_t slave_addr, bool addr_10bit_en)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Write I2C hardware command register
*
* @param hw Beginning address of the peripheral registers
* @param cmd I2C hardware command
* @param cmd_idx The index of the command register, should be less than 16
*
* @return None
*/
static inline void i2c_ll_write_cmd_reg(i2c_dev_t *hw, i2c_hw_cmd_t cmd, int cmd_idx)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C start timing
*
* @param hw Beginning address of the peripheral registers
* @param start_setup The start condition setup period (in core clock cycle)
* @param start_hold The start condition hold period (in core clock cycle)
*
* @return None
*/
static inline void i2c_ll_set_start_timing(i2c_dev_t *hw, int start_setup, int start_hold)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param stop_setup The stop condition setup period (in core clock cycle)
* @param stop_hold The stop condition hold period (in core clock cycle)
*
* @return None
*/
static inline void i2c_ll_set_stop_timing(i2c_dev_t *hw, int stop_setup, int stop_hold)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample The SDA sample time (in core clock cycle)
* @param sda_hold The SDA hold time (in core clock cycle)
*
* @return None
*/
static inline void i2c_ll_set_sda_timing(i2c_dev_t *hw, int sda_sample, int sda_hold)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Set I2C txFIFO empty threshold
*
* @param hw Beginning address of the peripheral registers
* @param empty_thr The txFIFO empty threshold
*
* @return None
*/
static inline void i2c_ll_set_txfifo_empty_thr(i2c_dev_t *hw, uint8_t empty_thr)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Set I2C rxFIFO full threshold
*
* @param hw Beginning address of the peripheral registers
* @param full_thr The rxFIFO full threshold
*
* @return None
*/
static inline void i2c_ll_set_rxfifo_full_thr(i2c_dev_t *hw, uint8_t full_thr)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Set the I2C data mode, LSB or MSB
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Tx data bit mode
* @param rx_mode Rx data bit mode
*
* @return None
*/
static inline void i2c_ll_set_data_mode(i2c_dev_t *hw, i2c_trans_mode_t tx_mode, i2c_trans_mode_t rx_mode)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get the I2C data mode
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Pointer to accept the received bytes mode
* @param rx_mode Pointer to accept the sended bytes mode
*
* @return None
*/
static inline void i2c_ll_get_data_mode(i2c_dev_t *hw, i2c_trans_mode_t *tx_mode, i2c_trans_mode_t *rx_mode)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C sda timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample Pointer to accept the SDA sample timing configuration
* @param sda_hold Pointer to accept the SDA hold timing configuration
*
* @return None
*/
static inline void i2c_ll_get_sda_timing(i2c_dev_t *hw, int *sda_sample, int *sda_hold)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get the I2C hardware version
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C hardware version
*/
static inline uint32_t i2c_ll_get_hw_version(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Check if the I2C bus is busy
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C state machine is busy, else false will be returned
*/
static inline bool i2c_ll_is_bus_busy(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Check if I2C is master mode
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C is master mode, else false will be returned
*/
static inline bool i2c_ll_is_master_mode(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get the rxFIFO readable length
*
* @param hw Beginning address of the peripheral registers
*
* @return RxFIFO readable length
*/
static inline uint32_t i2c_ll_get_rxfifo_cnt(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C txFIFO writable length
*
* @param hw Beginning address of the peripheral registers
*
* @return TxFIFO writable length
*/
static inline uint32_t i2c_ll_get_txfifo_len(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C timeout configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C timeout value
*/
static inline uint32_t i2c_ll_get_tout(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Start I2C transfer
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_trans_start(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C start timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the start condition setup period
* @param hold_time Pointer to accept the start condition hold period
*
* @return None
*/
static inline void i2c_ll_get_start_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C stop timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the stop condition setup period
* @param hold_time Pointer to accept the stop condition hold period
*
* @return None
*/
static inline void i2c_ll_get_stop_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C SCL timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param high_period Pointer to accept the SCL high period
* @param low_period Pointer to accept the SCL low period
*
* @return None
*/
static inline void i2c_ll_get_scl_timing(i2c_dev_t *hw, int *high_period, int *low_period)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Write the I2C hardware txFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs to be writen
*
* @return None.
*/
static inline void i2c_ll_write_txfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Read the I2C hardware rxFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs read
*
* @return None
*/
static inline void i2c_ll_read_rxfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Configure I2C hardware filter
*
* @param hw Beginning address of the peripheral registers
* @param filter_num If the glitch period on the line is less than this value, it can be filtered out
* If `filter_num == 0`, the filter will be disabled
*
* @return None
*/
static inline void i2c_ll_set_filter(i2c_dev_t *hw, uint8_t filter_num)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C hardware filter configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The hardware filter configuration
*/
static inline uint8_t i2c_ll_get_filter(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Enable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Enable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Disable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Disable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C master TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C master RX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Enable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Disable I2C slave TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Disable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C slave TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_tx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C slave RX interrupt status register.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_rx_it(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Reste I2C master FSM. When the master FSM is stuck, call this function to reset the FSM
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_fsm_rst(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Clear I2C bus, when the slave is stuck in a deadlock and keeps pulling the bus low,
* master can controls the SCL bus to generate 9 CLKs.
*
* Note: The master cannot detect if deadlock happens, but when the scl_st_to interrupt is generated, a deadlock may occur.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_bus(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Set I2C source clock
*
* @param hw Beginning address of the peripheral registers
* @param src_clk Source clock of the I2C
*
* @return None
*/
static inline void i2c_ll_set_source_clk(i2c_dev_t *hw, i2c_sclk_t src_clk)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C master interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_master_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Get I2C slave interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_slave_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Init I2C master
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_init(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
/**
* @brief Init I2C slave
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_init(i2c_dev_t *hw)
{
abort(); //TODO: I2C support IDF-3918
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,124 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/soc_caps.h"
#include "soc/soc.h"
#include "soc/interrupt_core0_reg.h"
#include "riscv/interrupt.h"
#include "riscv/csr.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief enable interrupts specified by the mask
*
* @param mask bitmask of interrupts that needs to be enabled
*/
static inline void intr_cntrl_ll_enable_interrupts(uint32_t mask)
{
unsigned old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
esprv_intc_int_enable(mask);
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
}
/**
* @brief disable interrupts specified by the mask
*
* @param mask bitmask of interrupts that needs to be disabled
*/
static inline void intr_cntrl_ll_disable_interrupts(uint32_t mask)
{
unsigned old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
esprv_intc_int_disable(mask);
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
}
/**
* @brief Read the current interrupt mask of the CPU running this code.
*
* @return The current interrupt bitmask.
*/
static inline uint32_t intr_cntrl_ll_read_interrupt_mask(void)
{
return REG_READ(INTERRUPT_CORE0_CPU_INT_ENABLE_REG);
}
/**
* @brief checks if given interrupt number has a valid handler
*
* @param intr interrupt number ranged from 0 to 31
* @param cpu cpu number ranged betweeen 0 to SOC_CPU_CORES_NUM - 1
* @return true for valid handler, false otherwise
*/
static inline bool intr_cntrl_ll_has_handler(uint8_t intr, uint8_t cpu)
{
return intr_handler_get(intr);
}
/**
* @brief sets interrupt handler and optional argument of a given interrupt number
*
* @param intr interrupt number ranged from 0 to 31
* @param handler handler invoked when an interrupt occurs
* @param arg optional argument to pass to the handler
*/
static inline void intr_cntrl_ll_set_int_handler(uint8_t intr, interrupt_handler_t handler, void *arg)
{
intr_handler_set(intr, (void *)handler, arg);
}
/**
* @brief Gets argument passed to handler of a given interrupt number
*
* @param intr interrupt number ranged from 0 to 31
*
* @return argument used by handler of passed interrupt number
*/
static inline void *intr_cntrl_ll_get_int_handler_arg(uint8_t intr)
{
return intr_handler_get_arg(intr);
}
/**
* @brief Acknowledge an edge-trigger interrupt by clearing its pending flag
*
* @param intr interrupt number ranged from 0 to 31
*/
static inline void intr_cntrl_ll_edge_int_acknowledge(int intr)
{
REG_SET_BIT(INTERRUPT_CORE0_CPU_INT_CLEAR_REG, intr);
}
/**
* @brief Sets the interrupt level int the interrupt controller.
*
* @param interrupt_number Interrupt number 0 to 31
* @param level priority between 1 (lowest) to 7 (highest)
*/
static inline void intr_cntrl_ll_set_int_level(int intr, int level)
{
esprv_intc_int_set_priority(intr, level);
}
/**
* @brief Set the type of an interrupt in the controller.
*
* @param interrupt_number Interrupt number 0 to 31
* @param type interrupt type as edge or level triggered
*/
static inline void intr_cntrl_ll_set_int_type(int intr, int_type_t type)
{
esprv_intc_int_set_type(BIT(intr), type);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,493 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for LEDC register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/ledc_types.h"
#include "soc/ledc_periph.h"
#ifdef __cplusplus
extern "C" {
#endif
#define LEDC_LL_GET_HW() &LEDC
#define LEDC_LL_FRACTIONAL_BITS (8)
#define LEDC_LL_FRACTIONAL_MAX ((1 << LEDC_LL_FRACTIONAL_BITS) - 1)
#define LEDC_LL_GLOBAL_CLOCKS { \
LEDC_SLOW_CLK_APB, \
LEDC_SLOW_CLK_XTAL, \
LEDC_SLOW_CLK_RTC8M, \
}
/**
* @brief Set LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_set_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t slow_clk_sel)
{
uint32_t clk_sel_val = 0;
if (slow_clk_sel == LEDC_SLOW_CLK_APB) {
clk_sel_val = 1;
} else if (slow_clk_sel == LEDC_SLOW_CLK_RTC8M) {
clk_sel_val = 2;
} else if (slow_clk_sel == LEDC_SLOW_CLK_XTAL) {
clk_sel_val = 3;
}
hw->conf.apb_clk_sel = clk_sel_val;
}
/**
* @brief Get LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_get_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t *slow_clk_sel)
{
uint32_t clk_sel_val = hw->conf.apb_clk_sel;
if (clk_sel_val == 1) {
*slow_clk_sel = LEDC_SLOW_CLK_APB;
} else if (clk_sel_val == 2) {
*slow_clk_sel = LEDC_SLOW_CLK_RTC8M;
} else if (clk_sel_val == 3) {
*slow_clk_sel = LEDC_SLOW_CLK_XTAL;
}
}
/**
* @brief Update LEDC low speed timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_ls_timer_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.low_speed_update = 1;
}
/**
* @brief Reset LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_rst(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
}
/**
* @brief Pause LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_pause(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
}
/**
* @brief Resume LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_resume(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
}
/**
* @brief Set LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_set_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider = clock_divider;
}
/**
* @brief Get LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *clock_divider)
{
*clock_divider = hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider;
}
/**
* @brief Get LEDC timer clock source
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clk_src Pointer to accept the timer clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_source(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, ledc_clk_src_t *clk_src)
{
*clk_src = LEDC_APB_CLK;
}
/**
* @brief Set LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Resolution of duty setting in number of bits. The range of duty values is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t duty_resolution)
{
hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution = duty_resolution;
}
/**
* @brief Get LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Pointer to accept the resolution of duty setting in number of bits.
*
* @return None
*/
static inline void ledc_ll_get_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *duty_resolution)
{
*duty_resolution = hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution;
}
/**
* @brief Update channel configure when select low speed mode
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_ls_channel_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num)
{
hw->channel_group[speed_mode].channel[channel_num].conf0.low_speed_update = 1;
}
/**
* @brief Get LEDC max duty
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param max_duty Pointer to accept the max duty
*
* @return None
*/
static inline void ledc_ll_get_max_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *max_duty)
{
uint32_t timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
*max_duty = (1 << (LEDC.timer_group[speed_mode].timer[timer_sel].conf.duty_resolution));
}
/**
* @brief Set LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_set_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t hpoint_val)
{
hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint = hpoint_val;
}
/**
* @brief Get LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val Pointer to accept the LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_get_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *hpoint_val)
{
*hpoint_val = hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint;
}
/**
* @brief Set LEDC the integer part of duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val LEDC duty value, the range of duty setting is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_int_part(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_val)
{
hw->channel_group[speed_mode].channel[channel_num].duty.duty = duty_val << 4;
}
/**
* @brief Get LEDC duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val Pointer to accept the LEDC duty value
*
* @return None
*/
static inline void ledc_ll_get_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *duty_val)
{
*duty_val = (hw->channel_group[speed_mode].channel[channel_num].duty_rd.duty_read >> 4);
}
/**
* @brief Set LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_set_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t duty_direction)
{
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc = duty_direction;
}
/**
* @brief Get LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction Pointer to accept the LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_get_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t *duty_direction)
{
*duty_direction = hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc;
}
/**
* @brief Set the number of increased or decreased times
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_num The number of increased or decreased times
*
* @return None
*/
static inline void ledc_ll_set_duty_num(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_num)
{
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_num = duty_num;
}
/**
* @brief Set the duty cycles of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_cycle The duty cycles
*
* @return None
*/
static inline void ledc_ll_set_duty_cycle(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_cycle)
{
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_cycle = duty_cycle;
}
/**
* @brief Set the step scale of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_scale The step scale
*
* @return None
*/
static inline void ledc_ll_set_duty_scale(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_scale)
{
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_scale = duty_scale;
}
/**
* @brief Set the output enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param sig_out_en The output enable status
*
* @return None
*/
static inline void ledc_ll_set_sig_out_en(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool sig_out_en)
{
hw->channel_group[speed_mode].channel[channel_num].conf0.sig_out_en = sig_out_en;
}
/**
* @brief Set the duty start
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_start The duty start
*
* @return None
*/
static inline void ledc_ll_set_duty_start(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool duty_start)
{
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_start = duty_start;
}
/**
* @brief Set output idle level
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param idle_level The output idle level
*
* @return None
*/
static inline void ledc_ll_set_idle_level(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t idle_level)
{
hw->channel_group[speed_mode].channel[channel_num].conf0.idle_lv = idle_level & 0x1;
}
/**
* @brief Set fade end interrupt enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param fade_end_intr_en The fade end interrupt enable status
*
* @return None
*/
static inline void ledc_ll_set_fade_end_intr(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool fade_end_intr_en)
{
uint32_t value = hw->int_ena.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_ena.val = fade_end_intr_en ? (value | BIT(int_en_base + channel_num)) : (value & (~(BIT(int_en_base + channel_num))));
}
/**
* @brief Get fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param intr_status The fade end interrupt status
*
* @return None
*/
static inline void ledc_ll_get_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, uint32_t *intr_status)
{
uint32_t value = hw->int_st.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
*intr_status = (value >> int_en_base) & 0xff;
}
/**
* @brief Clear fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_clear_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num)
{
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_clr.val = BIT(int_en_base + channel_num);
}
/**
* @brief Set timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_bind_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t timer_sel)
{
hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel = timer_sel;
}
/**
* @brief Get timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel Pointer to accept the LEDC timer index
*
* @return None
*/
static inline void ledc_ll_get_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t *timer_sel)
{
*timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,564 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "soc/sensitive_reg.h"
#include "soc/cache_memory.h"
#include "hal/assert.h"
#ifdef __cplusplus
extern "C" {
#endif
/* ******************************************************************************************************
* *** GLOBALS ***
* NOTE: in this version, all the configurations apply only to WORLD_0
*/
#define IRAM_SRAM_START 0x4037C000
#define DRAM_SRAM_START 0x3FC7C000
/* ICache size is fixed to 16KB on ESP32-C2 */
#ifndef ICACHE_SIZE
#define ICACHE_SIZE 0x4000
#endif
#ifndef I_D_SRAM_SEGMENT_SIZE
#define I_D_SRAM_SEGMENT_SIZE 0x20000
#endif
#define I_D_SPLIT_LINE_SHIFT 0x9
#define I_D_FAULT_ADDR_SHIFT 0x2
static inline void memprot_ll_set_iram0_dram0_split_line_lock(void)
{
REG_WRITE(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_0_REG, 1);
}
static inline bool memprot_ll_get_iram0_dram0_split_line_lock(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_0_REG) == 1;
}
static inline void* memprot_ll_get_split_addr_from_reg(uint32_t regval, uint32_t base)
{
return (void*)
(base + ((regval & SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_M)
>> (SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_S - I_D_SPLIT_LINE_SHIFT)));
}
/* ******************************************************************************************************
* *** IRAM0 ***
*/
//16kB (CACHE)
#define IRAM0_SRAM_LEVEL_0_LOW IRAM_SRAM_START //0x40370000
#define IRAM0_SRAM_LEVEL_0_HIGH (IRAM0_SRAM_LEVEL_0_LOW + ICACHE_SIZE - 0x1) //0x4037FFFF
//128kB (LEVEL 1)
#define IRAM0_SRAM_LEVEL_1_LOW (IRAM0_SRAM_LEVEL_0_HIGH + 0x1) //0x40380000
#define IRAM0_SRAM_LEVEL_1_HIGH (IRAM0_SRAM_LEVEL_1_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x4039FFFF
//128kB (LEVEL 2)
#define IRAM0_SRAM_LEVEL_2_LOW (IRAM0_SRAM_LEVEL_1_HIGH + 0x1) //0x403A0000
#define IRAM0_SRAM_LEVEL_2_HIGH (IRAM0_SRAM_LEVEL_2_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x403BFFFF
//128kB (LEVEL 3)
#define IRAM0_SRAM_LEVEL_3_LOW (IRAM0_SRAM_LEVEL_2_HIGH + 0x1) //0x403C0000
#define IRAM0_SRAM_LEVEL_3_HIGH (IRAM0_SRAM_LEVEL_3_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x403DFFFF
//permission bits
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R 0x1
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W 0x2
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F 0x4
static inline uint32_t memprot_ll_iram0_get_intr_source_num(void)
{
return ETS_CORE0_IRAM0_PMS_INTR_SOURCE;
}
///////////////////////////////////
// IRAM0 - SPLIT LINES
///////////////////////////////////
static inline void memprot_ll_set_iram0_split_line(const void *line_addr, uint32_t sensitive_reg)
{
uint32_t addr = (uint32_t)line_addr;
HAL_ASSERT(addr >= IRAM0_SRAM_LEVEL_1_LOW && addr <= IRAM0_SRAM_LEVEL_3_HIGH);
uint32_t category[3] = {0};
if (addr <= IRAM0_SRAM_LEVEL_1_HIGH) {
category[0] = 0x2;
category[1] = category[2] = 0x3;
} else if (addr >= IRAM0_SRAM_LEVEL_2_LOW && addr <= IRAM0_SRAM_LEVEL_2_HIGH) {
category[1] = 0x2;
category[2] = 0x3;
} else {
category[2] = 0x2;
}
//NOTE: category & split line address bits are the same for all the areas
uint32_t category_bits =
(category[0] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_0_S) |
(category[1] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_1_S) |
(category[2] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_2_S);
uint32_t conf_addr = ((addr >> I_D_SPLIT_LINE_SHIFT) & SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_V) << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_S;
uint32_t reg_cfg = conf_addr | category_bits;
REG_WRITE(sensitive_reg, reg_cfg);
}
/* can be both IRAM0/DRAM0 address */
static inline void memprot_ll_set_iram0_split_line_main_I_D(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG);
}
static inline void memprot_ll_set_iram0_split_line_I_0(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG);
}
static inline void memprot_ll_set_iram0_split_line_I_1(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG);
}
static inline void* memprot_ll_get_iram0_split_line_main_I_D(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG), SOC_DIRAM_IRAM_LOW);
}
static inline void* memprot_ll_get_iram0_split_line_I_0(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG), SOC_DIRAM_IRAM_LOW);
}
static inline void* memprot_ll_get_iram0_split_line_I_1(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG), SOC_DIRAM_IRAM_LOW);
}
///////////////////////////////////
// IRAM0 - PMS CONFIGURATION
///////////////////////////////////
// lock
static inline void memprot_ll_iram0_set_pms_lock(void)
{
REG_WRITE(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_0_REG, 1);
}
static inline bool memprot_ll_iram0_get_pms_lock(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_0_REG) == 1;
}
// permission settings
static inline uint32_t memprot_ll_iram0_set_permissions(bool r, bool w, bool x)
{
uint32_t permissions = 0;
if ( r ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
}
if ( w ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
}
if ( x ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F;
}
return permissions;
}
static inline void memprot_ll_iram0_set_pms_area_0(bool r, bool w, bool x)
{
REG_SET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0, memprot_ll_iram0_set_permissions(r, w, x));
}
static inline void memprot_ll_iram0_set_pms_area_1(bool r, bool w, bool x)
{
REG_SET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1, memprot_ll_iram0_set_permissions(r, w, x));
}
static inline void memprot_ll_iram0_set_pms_area_2(bool r, bool w, bool x)
{
REG_SET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2, memprot_ll_iram0_set_permissions(r, w, x));
}
static inline void memprot_ll_iram0_set_pms_area_3(bool r, bool w, bool x)
{
REG_SET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3, memprot_ll_iram0_set_permissions(r, w, x));
}
static inline void memprot_ll_iram0_get_permissions(uint32_t perms, bool *r, bool *w, bool *x)
{
*r = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
*w = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
*x = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F;
}
static inline void memprot_ll_iram0_get_pms_area_0(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_1(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_2(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_3(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
}
///////////////////////////////////
// IRAM0 - MONITOR
///////////////////////////////////
// lock
static inline void memprot_ll_iram0_set_monitor_lock(void)
{
REG_WRITE(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_0_REG, 1);
}
static inline bool memprot_ll_iram0_get_monitor_lock(void)
{
return REG_READ(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_0_REG) == 1;
}
// interrupt enable/clear
static inline void memprot_ll_iram0_set_monitor_en(bool enable)
{
if ( enable ) {
REG_SET_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN );
} else {
REG_CLR_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN );
}
}
static inline bool memprot_ll_iram0_get_monitor_en(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN ) == 1;
}
static inline void memprot_ll_iram0_clear_monitor_intr(void)
{
REG_SET_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR );
}
static inline void memprot_ll_iram0_reset_clear_monitor_intr(void)
{
REG_CLR_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR );
}
static inline uint32_t memprot_ll_iram0_get_monitor_enable_register(void)
{
return REG_READ(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG);
}
// // permission violation status
static inline uint32_t memprot_ll_iram0_get_monitor_status_intr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR );
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_wr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WR );
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_loadstore(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_LOADSTORE );
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_world(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD );
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_addr(void)
{
uint32_t addr = REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR );
return addr > 0 ? (addr << I_D_FAULT_ADDR_SHIFT) + IRAM0_ADDRESS_LOW : 0;
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_register(void)
{
return REG_READ(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG);
}
/* ******************************************************************************************************
* *** DRAM0 ***
*/
//cache not available from DRAM (!)
#define DRAM0_SRAM_LEVEL_0_LOW DRAM_SRAM_START //0x3FC7C000
#define DRAM0_SRAM_LEVEL_0_HIGH (DRAM0_SRAM_LEVEL_0_LOW + ICACHE_SIZE - 0x1) //0x3FC7FFFF
//128kB
#define DRAM0_SRAM_LEVEL_1_LOW (DRAM0_SRAM_LEVEL_0_HIGH + 0x1) //0x3FC80000
#define DRAM0_SRAM_LEVEL_1_HIGH (DRAM0_SRAM_LEVEL_1_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FC9FFFF
//128kB
#define DRAM0_SRAM_LEVEL_2_LOW (DRAM0_SRAM_LEVEL_1_HIGH + 0x1) //0x3FCA0000
#define DRAM0_SRAM_LEVEL_2_HIGH (DRAM0_SRAM_LEVEL_2_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FCBFFFF
//128kB
#define DRAM0_SRAM_LEVEL_3_LOW (DRAM0_SRAM_LEVEL_2_HIGH + 0x1) //0x3FCC0000
#define DRAM0_SRAM_LEVEL_3_HIGH (DRAM0_SRAM_LEVEL_3_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FCDFFFF
#define SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W 0x2
#define SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R 0x1
static inline uint32_t memprot_ll_dram0_get_intr_source_num(void)
{
return ETS_CORE0_DRAM0_PMS_INTR_SOURCE;
}
///////////////////////////////////
// DRAM0 - SPLIT LINES
///////////////////////////////////
static inline void memprot_ll_set_dram0_split_line(const void *line_addr, uint32_t sensitive_reg)
{
uint32_t addr = (uint32_t)line_addr;
HAL_ASSERT(addr >= DRAM0_SRAM_LEVEL_1_LOW && addr <= DRAM0_SRAM_LEVEL_3_HIGH);
uint32_t category[3] = {0};
if (addr <= DRAM0_SRAM_LEVEL_1_HIGH) {
category[0] = 0x2;
category[1] = category[2] = 0x3;
} else if (addr >= DRAM0_SRAM_LEVEL_2_LOW && addr <= DRAM0_SRAM_LEVEL_2_HIGH) {
category[1] = 0x2;
category[2] = 0x3;
} else {
category[2] = 0x2;
}
//NOTE: line address & category bits, shifts and masks are the same for all the areas
uint32_t category_bits =
(category[0] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_0_S) |
(category[1] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_1_S) |
(category[2] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_2_S);
uint32_t conf_addr = ((addr >> I_D_SPLIT_LINE_SHIFT) & SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_V) << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_S;
uint32_t reg_cfg = conf_addr | category_bits;
REG_WRITE(sensitive_reg, reg_cfg);
}
static inline void memprot_ll_set_dram0_split_line_D_0(const void *line_addr)
{
memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG);
}
static inline void memprot_ll_set_dram0_split_line_D_1(const void *line_addr)
{
memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG);
}
static inline void* memprot_ll_get_dram0_split_line_D_0(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG), SOC_DIRAM_DRAM_LOW);
}
static inline void* memprot_ll_get_dram0_split_line_D_1(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG), SOC_DIRAM_DRAM_LOW);
}
///////////////////////////////////
// DRAM0 - PMS CONFIGURATION
///////////////////////////////////
// lock
static inline void memprot_ll_dram0_set_pms_lock(void)
{
REG_WRITE(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_0_REG, 1);
}
static inline bool memprot_ll_dram0_get_pms_lock(void)
{
return REG_READ(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_0_REG) == 1;
}
// permission settings
static inline uint32_t memprot_ll_dram0_set_permissions(bool r, bool w)
{
uint32_t permissions = 0;
if ( r ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
}
if ( w ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
}
return permissions;
}
static inline void memprot_ll_dram0_set_pms_area_0(bool r, bool w)
{
REG_SET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0, memprot_ll_dram0_set_permissions(r, w));
}
static inline void memprot_ll_dram0_set_pms_area_1(bool r, bool w)
{
REG_SET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1, memprot_ll_dram0_set_permissions(r, w));
}
static inline void memprot_ll_dram0_set_pms_area_2(bool r, bool w)
{
REG_SET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2, memprot_ll_dram0_set_permissions(r, w));
}
static inline void memprot_ll_dram0_set_pms_area_3(bool r, bool w)
{
REG_SET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3, memprot_ll_dram0_set_permissions(r, w));
}
static inline void memprot_ll_dram0_get_permissions(uint32_t perms, bool *r, bool *w )
{
*r = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
*w = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
}
static inline void memprot_ll_dram0_get_pms_area_0(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0);
memprot_ll_dram0_get_permissions( permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_1(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1);
memprot_ll_dram0_get_permissions( permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_2(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2);
memprot_ll_dram0_get_permissions( permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_3(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3);
memprot_ll_dram0_get_permissions( permissions, r, w);
}
///////////////////////////////////
// DRAM0 - MONITOR
///////////////////////////////////
// lock
static inline void memprot_ll_dram0_set_monitor_lock(void)
{
REG_WRITE(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_0_REG, 1);
}
static inline bool memprot_ll_dram0_get_monitor_lock(void)
{
return REG_READ(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_0_REG) == 1;
}
// interrupt enable/clear
static inline void memprot_ll_dram0_set_monitor_en(bool enable)
{
if ( enable ) {
REG_SET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN );
} else {
REG_CLR_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN );
}
}
static inline bool memprot_ll_dram0_get_monitor_en(void)
{
return REG_GET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN ) == 1;
}
static inline void memprot_ll_dram0_clear_monitor_intr(void)
{
REG_SET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR );
}
static inline void memprot_ll_dram0_reset_clear_monitor_intr(void)
{
REG_CLR_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR );
}
static inline uint32_t memprot_ll_dram0_get_monitor_enable_register(void)
{
return REG_READ(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG);
}
// permission violation status
static inline uint32_t memprot_ll_dram0_get_monitor_status_intr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR );
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_lock(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_LOCK );
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_world(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD );
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_addr(void)
{
uint32_t addr = REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR );
return addr > 0 ? (addr << I_D_FAULT_ADDR_SHIFT) + DRAM0_ADDRESS_LOW : 0;
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_wr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_3_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WR );
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_byte_en(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_BYTEEN );
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_register_1(void)
{
return REG_READ(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_register_2(void)
{
return REG_READ(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_3_REG);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,45 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "soc/soc_caps.h"
#ifdef __cplusplus
extern "C" {
#endif
/* This LL is currently unused for ESP32-C2 - cleanup is TODO ESP32-C2 IDF-2375 */
static inline uint32_t mpu_ll_id_to_addr(unsigned id)
{
abort();
}
static inline void mpu_ll_set_region_rw(uint32_t addr)
{
abort();
}
static inline void mpu_ll_set_region_rwx(uint32_t addr)
{
abort();
}
static inline void mpu_ll_set_region_x(uint32_t addr)
{
abort();
}
static inline void mpu_ll_set_region_illegal(uint32_t addr)
{
abort();
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,251 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/timer_periph.h"
#include "soc/timer_group_struct.h"
#include "hal/wdt_types.h"
#include "esp_attr.h"
#include "hal/misc.h"
#include "hal/check.h"
//Type check wdt_stage_action_t
STATIC_HAL_REG_CHECK("mwdt", WDT_STAGE_ACTION_OFF, TIMG_WDT_STG_SEL_OFF);
STATIC_HAL_REG_CHECK("mwdt", WDT_STAGE_ACTION_INT, TIMG_WDT_STG_SEL_INT);
STATIC_HAL_REG_CHECK("mwdt", WDT_STAGE_ACTION_RESET_CPU, TIMG_WDT_STG_SEL_RESET_CPU);
STATIC_HAL_REG_CHECK("mwdt", WDT_STAGE_ACTION_RESET_SYSTEM, TIMG_WDT_STG_SEL_RESET_SYSTEM);
// //Type check wdt_reset_sig_length_t
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_100ns, TIMG_WDT_RESET_LENGTH_100_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_200ns, TIMG_WDT_RESET_LENGTH_200_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_300ns, TIMG_WDT_RESET_LENGTH_300_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_400ns, TIMG_WDT_RESET_LENGTH_400_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_500ns, TIMG_WDT_RESET_LENGTH_500_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_800ns, TIMG_WDT_RESET_LENGTH_800_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_1_6us, TIMG_WDT_RESET_LENGTH_1600_NS);
STATIC_HAL_REG_CHECK("mwdt", WDT_RESET_SIG_LENGTH_3_2us, TIMG_WDT_RESET_LENGTH_3200_NS);
/**
* @brief Enable the MWDT
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_enable(timg_dev_t *hw)
{
hw->wdtconfig0.wdt_en = 1;
}
/**
* @brief Disable the MWDT
*
* @param hw Start address of the peripheral registers.
* @note This function does not disable the flashboot mode. Therefore, given that
* the MWDT is disabled using this function, a timeout can still occur
* if the flashboot mode is simultaneously enabled.
*/
FORCE_INLINE_ATTR void mwdt_ll_disable(timg_dev_t *hw)
{
hw->wdtconfig0.wdt_en = 0;
}
/**
* Check if the MWDT is enabled
*
* @param hw Start address of the peripheral registers.
* @return True if the MWDT is enabled, false otherwise
*/
FORCE_INLINE_ATTR bool mwdt_ll_check_if_enabled(timg_dev_t *hw)
{
return (hw->wdtconfig0.wdt_en) ? true : false;
}
/**
* @brief Configure a particular stage of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to configure
* @param timeout Number of timer ticks for the stage to timeout
* @param behavior What action to take when the stage times out
*/
FORCE_INLINE_ATTR void mwdt_ll_config_stage(timg_dev_t *hw, wdt_stage_t stage, uint32_t timeout, wdt_stage_action_t behavior)
{
switch (stage) {
case WDT_STAGE0:
hw->wdtconfig0.wdt_stg0 = behavior;
hw->wdtconfig2.wdt_stg0_hold = timeout;
break;
case WDT_STAGE1:
hw->wdtconfig0.wdt_stg1 = behavior;
hw->wdtconfig3.wdt_stg1_hold = timeout;
break;
case WDT_STAGE2:
hw->wdtconfig0.wdt_stg2 = behavior;
hw->wdtconfig4.wdt_stg2_hold = timeout;
break;
case WDT_STAGE3:
hw->wdtconfig0.wdt_stg3 = behavior;
hw->wdtconfig5.wdt_stg3_hold = timeout;
break;
default:
break;
}
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Disable a particular stage of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to disable
*/
FORCE_INLINE_ATTR void mwdt_ll_disable_stage(timg_dev_t *hw, uint32_t stage)
{
switch (stage) {
case WDT_STAGE0:
hw->wdtconfig0.wdt_stg0 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE1:
hw->wdtconfig0.wdt_stg1 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE2:
hw->wdtconfig0.wdt_stg2 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE3:
hw->wdtconfig0.wdt_stg3 = WDT_STAGE_ACTION_OFF;
break;
default:
break;
}
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Set the length of the CPU reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of CPU reset signal
*/
FORCE_INLINE_ATTR void mwdt_ll_set_cpu_reset_length(timg_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdtconfig0.wdt_cpu_reset_length = length;
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Set the length of the system reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of system reset signal
*/
FORCE_INLINE_ATTR void mwdt_ll_set_sys_reset_length(timg_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdtconfig0.wdt_sys_reset_length = length;
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Enable/Disable the MWDT flashboot mode.
*
* @param hw Beginning address of the peripheral registers.
* @param enable True to enable WDT flashboot mode, false to disable WDT flashboot mode.
*
* @note Flashboot mode is independent and can trigger a WDT timeout event if the
* WDT's enable bit is set to 0. Flashboot mode for TG0 is automatically enabled
* on flashboot, and should be disabled by software when flashbooting completes.
*/
FORCE_INLINE_ATTR void mwdt_ll_set_flashboot_en(timg_dev_t *hw, bool enable)
{
hw->wdtconfig0.wdt_flashboot_mod_en = (enable) ? 1 : 0;
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Set the clock prescaler of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param prescaler Prescaler value between 1 to 65535
*/
FORCE_INLINE_ATTR void mwdt_ll_set_prescaler(timg_dev_t *hw, uint32_t prescaler)
{
// In case the compiler optimise a 32bit instruction (e.g. s32i) into 8/16bit instruction (e.g. s8i, which is not allowed to access a register)
// We take care of the "read-modify-write" procedure by ourselves.
HAL_FORCE_MODIFY_U32_REG_FIELD(hw->wdtconfig1, wdt_clk_prescale, prescaler);
//Config registers are updated asynchronously
hw->wdtconfig0.wdt_conf_update_en = 1;
}
/**
* @brief Feed the MWDT
*
* Resets the current timer count and current stage.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_feed(timg_dev_t *hw)
{
hw->wdtfeed.wdt_feed = 1;
}
/**
* @brief Enable write protection of the MWDT registers
*
* Locking the MWDT will prevent any of the MWDT's registers from being modified
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_write_protect_enable(timg_dev_t *hw)
{
hw->wdtwprotect.wdt_wkey = 0;
}
/**
* @brief Disable write protection of the MWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_write_protect_disable(timg_dev_t *hw)
{
hw->wdtwprotect.wdt_wkey = TIMG_WDT_WKEY_VALUE;
}
/**
* @brief Clear the MWDT interrupt status.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_clear_intr_status(timg_dev_t *hw)
{
hw->int_clr_timers.wdt_int_clr = 1;
}
/**
* @brief Set the interrupt enable bit for the MWDT interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param enable Whether to enable the MWDT interrupt
*/
FORCE_INLINE_ATTR void mwdt_ll_set_intr_enable(timg_dev_t *hw, bool enable)
{
hw->int_ena_timers.wdt_int_ena = (enable) ? 1 : 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,59 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/syscon_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline void rtc_cntl_ll_set_wakeup_timer(uint64_t t)
{
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, t & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, t >> 32);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_MAIN_TIMER_INT_CLR_M);
SET_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, RTC_CNTL_MAIN_TIMER_ALARM_EN_M);
}
static inline uint32_t rtc_cntl_ll_gpio_get_wakeup_pins(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_GPIO_WAKEUP_REG, RTC_CNTL_GPIO_WAKEUP_STATUS);
}
static inline void rtc_cntl_ll_gpio_set_wakeup_pins(void)
{
REG_CLR_BIT(RTC_CNTL_GPIO_WAKEUP_REG, RTC_CNTL_GPIO_WAKEUP_STATUS_CLR);
}
static inline void rtc_cntl_ll_gpio_clear_wakeup_pins(void)
{
REG_SET_BIT(RTC_CNTL_GPIO_WAKEUP_REG, RTC_CNTL_GPIO_WAKEUP_STATUS_CLR);
}
static inline void rtc_cntl_ll_enable_cpu_retention(uint32_t addr)
{
/* write memory address to register */
REG_SET_FIELD(SYSCON_RETENTION_CTRL_REG, SYSCON_RETENTION_LINK_ADDR, (uint32_t)addr);
/* Enable clock */
REG_SET_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN);
/* Enable retention when cpu sleep enable */
REG_SET_BIT(RTC_CNTL_RETENTION_CTRL_REG, RTC_CNTL_RETENTION_EN);
}
static inline void rtc_cntl_ll_disable_cpu_retention(void)
{
REG_CLR_BIT(RTC_CNTL_RETENTION_CTRL_REG, RTC_CNTL_RETENTION_EN);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,292 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include <stdbool.h>
#include "hal/wdt_types.h"
#include "soc/rtc_cntl_periph.h"
#include "soc/efuse_reg.h"
#include "esp_attr.h"
//Type check wdt_stage_action_t
_Static_assert(WDT_STAGE_ACTION_OFF == RTC_WDT_STG_SEL_OFF, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_INT == RTC_WDT_STG_SEL_INT, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_CPU == RTC_WDT_STG_SEL_RESET_CPU, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_SYSTEM == RTC_WDT_STG_SEL_RESET_SYSTEM, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_RTC == RTC_WDT_STG_SEL_RESET_RTC, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
//Type check wdt_reset_sig_length_t
_Static_assert(WDT_RESET_SIG_LENGTH_100ns == RTC_WDT_RESET_LENGTH_100_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_200ns == RTC_WDT_RESET_LENGTH_200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_300ns == RTC_WDT_RESET_LENGTH_300_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_400ns == RTC_WDT_RESET_LENGTH_400_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_500ns == RTC_WDT_RESET_LENGTH_500_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_800ns == RTC_WDT_RESET_LENGTH_800_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_1_6us == RTC_WDT_RESET_LENGTH_1600_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_3_2us == RTC_WDT_RESET_LENGTH_3200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
/**
* @brief Enable the RWDT
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_enable(rtc_cntl_dev_t *hw)
{
hw->wdt_config0.en = 1;
}
/**
* @brief Disable the RWDT
*
* @param hw Start address of the peripheral registers.
* @note This function does not disable the flashboot mode. Therefore, given that
* the MWDT is disabled using this function, a timeout can still occur
* if the flashboot mode is simultaneously enabled.
*/
FORCE_INLINE_ATTR void rwdt_ll_disable(rtc_cntl_dev_t *hw)
{
hw->wdt_config0.en = 0;
}
/**
* @brief Check if the RWDT is enabled
*
* @param hw Start address of the peripheral registers.
* @return True if RTC WDT is enabled
*/
FORCE_INLINE_ATTR bool rwdt_ll_check_if_enabled(rtc_cntl_dev_t *hw)
{
return (hw->wdt_config0.en) ? true : false;
}
/**
* @brief Configure a particular stage of the RWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to configure
* @param timeout Number of timer ticks for the stage to timeout (see note).
* @param behavior What action to take when the stage times out
*
* @note The value of of RWDT stage 0 timeout register is special, in
* that an implicit multiplier is applied to that value to produce
* and effective timeout tick value. The multiplier is dependent
* on an EFuse value. Therefore, when configuring stage 0, the valid
* values for the timeout argument are:
* - If Efuse value is 0, any even number between [2,2*UINT32_MAX]
* - If Efuse value is 1, any multiple of 4 between [4,4*UINT32_MAX]
* - If Efuse value is 2, any multiple of 8 between [8,8*UINT32_MAX]
* - If Efuse value is 3, any multiple of 16 between [16,16*UINT32_MAX]
*/
FORCE_INLINE_ATTR void rwdt_ll_config_stage(rtc_cntl_dev_t *hw, wdt_stage_t stage, uint32_t timeout_ticks, wdt_stage_action_t behavior)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = behavior;
//Account of implicty multiplier applied to stage 0 timeout tick config value
hw->wdt_config1 = timeout_ticks >> (1 + REG_GET_FIELD(EFUSE_RD_REPEAT_DATA0_REG, EFUSE_WDT_DELAY_SEL));
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = behavior;
hw->wdt_config2 = timeout_ticks;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = behavior;
hw->wdt_config3 = timeout_ticks;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = behavior;
hw->wdt_config4 = timeout_ticks;
break;
default:
abort();
}
}
/**
* @brief Disable a particular stage of the RWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to disable
*/
FORCE_INLINE_ATTR void rwdt_ll_disable_stage(rtc_cntl_dev_t *hw, wdt_stage_t stage)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = WDT_STAGE_ACTION_OFF;
break;
default:
abort();
}
}
/**
* @brief Set the length of the CPU reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of CPU reset signal
*/
FORCE_INLINE_ATTR void rwdt_ll_set_cpu_reset_length(rtc_cntl_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.cpu_reset_length = length;
}
/**
* @brief Set the length of the system reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of system reset signal
*/
FORCE_INLINE_ATTR void rwdt_ll_set_sys_reset_length(rtc_cntl_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.sys_reset_length = length;
}
/**
* @brief Enable/Disable the RWDT flashboot mode.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable RWDT flashboot mode, false to disable RWDT flashboot mode.
*
* @note Flashboot mode is independent and can trigger a WDT timeout event if the
* WDT's enable bit is set to 0. Flashboot mode for RWDT is automatically enabled
* on flashboot, and should be disabled by software when flashbooting completes.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_flashboot_en(rtc_cntl_dev_t *hw, bool enable)
{
hw->wdt_config0.flashboot_mod_en = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable the CPU0 to be reset on WDT_STAGE_ACTION_RESET_CPU
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable CPU0 to be reset, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_procpu_reset_en(rtc_cntl_dev_t *hw, bool enable)
{
hw->wdt_config0.procpu_reset_en = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable the RWDT pause during sleep functionality
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_pause_in_sleep_en(rtc_cntl_dev_t *hw, bool enable)
{
hw->wdt_config0.pause_in_slp = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable chip reset on RWDT timeout.
*
* A chip reset also resets the analog portion of the chip. It will appear as a
* POWERON reset rather than an RTC reset.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_chip_reset_en(rtc_cntl_dev_t *hw, bool enable)
{
hw->wdt_config0.chip_reset_en = (enable) ? 1 : 0;
}
/**
* @brief Set width of chip reset signal
*
* @param hw Start address of the peripheral registers.
* @param width Width of chip reset signal in terms of number of RTC_SLOW_CLK cycles
*/
FORCE_INLINE_ATTR void rwdt_ll_set_chip_reset_width(rtc_cntl_dev_t *hw, uint32_t width)
{
hw->wdt_config0.chip_reset_width = width;
}
/**
* @brief Feed the RWDT
*
* Resets the current timer count and current stage.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_feed(rtc_cntl_dev_t *hw)
{
hw->wdt_feed.feed = 1;
}
/**
* @brief Enable write protection of the RWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_write_protect_enable(rtc_cntl_dev_t *hw)
{
hw->wdt_wprotect = 0;
}
/**
* @brief Disable write protection of the RWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_write_protect_disable(rtc_cntl_dev_t *hw)
{
hw->wdt_wprotect = RTC_CNTL_WDT_WKEY_VALUE;
}
/**
* @brief Enable the RWDT interrupt.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable RWDT interrupt, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_intr_enable(rtc_cntl_dev_t *hw, bool enable)
{
hw->int_ena.rtc_wdt = (enable) ? 1 : 0;
}
/**
* @brief Check if the RWDT interrupt has been triggered
*
* @param hw Start address of the peripheral registers.
* @return True if the RWDT interrupt was triggered
*/
FORCE_INLINE_ATTR bool rwdt_ll_check_intr_status(rtc_cntl_dev_t *hw)
{
return (hw->int_st.rtc_wdt) ? true : false;
}
/**
* @brief Clear the RWDT interrupt status.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_clear_intr_status(rtc_cntl_dev_t *hw)
{
hw->int_clr.rtc_wdt = 1;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,149 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include "soc/hwcrypto_reg.h"
#include "hal/sha_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Start a new SHA block conversions (no initial hash in HW)
*
* @param sha_type The SHA algorithm type
*/
static inline void sha_ll_start_block(esp_sha_type sha_type)
{
REG_WRITE(SHA_MODE_REG, sha_type);
REG_WRITE(SHA_START_REG, 1);
}
/**
* @brief Continue a SHA block conversion (initial hash in HW)
*
* @param sha_type The SHA algorithm type
*/
static inline void sha_ll_continue_block(esp_sha_type sha_type)
{
REG_WRITE(SHA_MODE_REG, sha_type);
REG_WRITE(SHA_CONTINUE_REG, 1);
}
/**
* @brief Start a new SHA message conversion using DMA (no initial hash in HW)
*
* @param sha_type The SHA algorithm type
*/
static inline void sha_ll_start_dma(esp_sha_type sha_type)
{
REG_WRITE(SHA_MODE_REG, sha_type);
REG_WRITE(SHA_DMA_START_REG, 1);
}
/**
* @brief Continue a SHA message conversion using DMA (initial hash in HW)
*
* @param sha_type The SHA algorithm type
*/
static inline void sha_ll_continue_dma(esp_sha_type sha_type)
{
REG_WRITE(SHA_MODE_REG, sha_type);
REG_WRITE(SHA_DMA_CONTINUE_REG, 1);
}
/**
* @brief Load the current hash digest to digest register
*
* @note Happens automatically on ESP32S3
*
* @param sha_type The SHA algorithm type
*/
static inline void sha_ll_load(esp_sha_type sha_type)
{
}
/**
* @brief Sets the number of message blocks to be hashed
*
* @note DMA operation only
*
* @param num_blocks Number of message blocks to process
*/
static inline void sha_ll_set_block_num(size_t num_blocks)
{
REG_WRITE(SHA_BLOCK_NUM_REG, num_blocks);
}
/**
* @brief Checks if the SHA engine is currently busy hashing a block
*
* @return true SHA engine busy
* @return false SHA engine idle
*/
static inline bool sha_ll_busy(void)
{
return REG_READ(SHA_BUSY_REG);
}
/**
* @brief Write a text (message) block to the SHA engine
*
* @param input_text Input buffer to be written to the SHA engine
* @param block_word_len Number of words in block
*/
static inline void sha_ll_fill_text_block(const void *input_text, size_t block_word_len)
{
uint32_t *data_words = (uint32_t *)input_text;
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
for (int i = 0; i < block_word_len; i++) {
REG_WRITE(&reg_addr_buf[i], data_words[i]);
}
}
/**
* @brief Read the message digest from the SHA engine
*
* @param sha_type The SHA algorithm type
* @param digest_state Buffer that message digest will be written to
* @param digest_word_len Length of the message digest
*/
static inline void sha_ll_read_digest(esp_sha_type sha_type, void *digest_state, size_t digest_word_len)
{
uint32_t *digest_state_words = (uint32_t *)digest_state;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < digest_word_len; i++) {
digest_state_words[i] = REG_READ(SHA_H_BASE + (i * REG_WIDTH));
}
}
/**
* @brief Write the message digest to the SHA engine
*
* @param sha_type The SHA algorithm type
* @param digest_state Message digest to be written to SHA engine
* @param digest_word_len Length of the message digest
*/
static inline void sha_ll_write_digest(esp_sha_type sha_type, void *digest_state, size_t digest_word_len)
{
uint32_t *digest_state_words = (uint32_t *)digest_state;
uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE);
for (int i = 0; i < digest_word_len; i++) {
REG_WRITE(&reg_addr_buf[i], digest_state_words[i]);
}
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,44 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc_caps.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline void soc_ll_stall_core(int core)
{
const int rtc_cntl_c1_m[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C1_M};
const int rtc_cntl_c1_s[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C1_S};
const int rtc_cntl_c0_m[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C0_M};
const int rtc_cntl_c0_s[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C0_S};
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m[core]);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21 << rtc_cntl_c1_s[core]);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m[core]);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2 << rtc_cntl_c0_s[core]);
}
static inline void soc_ll_unstall_core(int core)
{
const int rtc_cntl_c1_m[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C1_M};
const int rtc_cntl_c0_m[SOC_CPU_CORES_NUM] = {RTC_CNTL_SW_STALL_PROCPU_C0_M};
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m[core]);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m[core]);
}
static inline void soc_ll_reset_core(int core)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_PROCPU_RST_M);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,139 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in hal/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash Encryption.
#include <stdbool.h>
#include <string.h>
#include "soc/system_reg.h"
#include "soc/hwcrypto_reg.h"
#include "soc/soc.h"
#include "hal/assert.h"
#ifdef __cplusplus
extern "C" {
#endif
/// Choose type of chip you want to encrypt manully
typedef enum
{
FLASH_ENCRYPTION_MANU = 0, ///!< Manually encrypt the flash chip.
PSRAM_ENCRYPTION_MANU = 1 ///!< Manually encrypt the psram chip.
} flash_encrypt_ll_type_t;
/**
* Enable the flash encryption function under spi boot mode and download boot mode.
*/
static inline void spi_flash_encrypt_ll_enable(void)
{
abort();
}
/*
* Disable the flash encryption mode.
*/
static inline void spi_flash_encrypt_ll_disable(void)
{
abort();
}
/**
* Choose type of chip you want to encrypt manully
*
* @param type The type of chip to be encrypted
*
* @note The hardware currently support flash encryption.
*/
static inline void spi_flash_encrypt_ll_type(flash_encrypt_ll_type_t type)
{
abort();
}
/**
* Configure the data size of a single encryption.
*
* @param block_size Size of the desired block.
*/
static inline void spi_flash_encrypt_ll_buffer_length(uint32_t size)
{
abort();
}
/**
* Save 32-bit piece of plaintext.
*
* @param address the address of written flash partition.
* @param buffer Buffer to store the input data.
* @param size Buffer size.
*
*/
static inline void spi_flash_encrypt_ll_plaintext_save(uint32_t address, const uint32_t* buffer, uint32_t size)
{
abort();
}
/**
* Copy the flash address to XTS_AES physical address
*
* @param flash_addr flash address to write.
*/
static inline void spi_flash_encrypt_ll_address_save(uint32_t flash_addr)
{
abort();
}
/**
* Start flash encryption
*/
static inline void spi_flash_encrypt_ll_calculate_start(void)
{
abort();
}
/**
* Wait for flash encryption termination
*/
static inline void spi_flash_encrypt_ll_calculate_wait_idle(void)
{
abort();
}
/**
* Finish the flash encryption and make encrypted result accessible to SPI.
*/
static inline void spi_flash_encrypt_ll_done(void)
{
abort();
}
/**
* Set to destroy encrypted result
*/
static inline void spi_flash_encrypt_ll_destroy(void)
{
abort();
}
/**
* Check if is qualified to encrypt the buffer
*
* @param address the address of written flash partition.
* @param length Buffer size.
*/
static inline bool spi_flash_encrypt_ll_check(uint32_t address, uint32_t length)
{
abort();
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,103 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include "gpspi_flash_ll.h"
#include "spimem_flash_ll.h"
#ifdef __cplusplus
extern "C" {
#endif
// For esp32s2, spimem is equivalent to traditional spi peripherals found
// in esp32. Let the spi flash clock reg definitions reflect this.
#define SPI_FLASH_LL_CLKREG_VAL_5MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_10MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_20MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_26MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_40MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_80MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ}
#define spi_flash_ll_get_hw(host_id) (((host_id)<=SPI1_HOST ? (spi_dev_t*) spimem_flash_ll_get_hw(host_id) \
: gpspi_flash_ll_get_hw(host_id)))
#define spi_flash_ll_hw_get_id(dev) ({int dev_id = spimem_flash_ll_hw_get_id(dev); \
if (dev_id < 0) {\
dev_id = gpspi_flash_ll_hw_get_id(dev);\
}\
dev_id; \
})
typedef union {
gpspi_flash_ll_clock_reg_t gpspi;
spimem_flash_ll_clock_reg_t spimem;
} spi_flash_ll_clock_reg_t;
#ifdef GPSPI_BUILD
#define spi_flash_ll_reset(dev) gpspi_flash_ll_reset((spi_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) gpspi_flash_ll_cmd_is_done((spi_dev_t*)dev)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) gpspi_flash_ll_get_buffer_data((spi_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) gpspi_flash_ll_set_buffer_data((spi_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) gpspi_flash_ll_user_start((spi_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) gpspi_flash_ll_host_idle((spi_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) gpspi_flash_ll_read_phase((spi_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) gpspi_flash_ll_set_cs_pin((spi_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) gpspi_flash_ll_set_read_mode((spi_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) gpspi_flash_ll_set_clock((spi_dev_t*)dev, (gpspi_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) gpspi_flash_ll_set_miso_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) gpspi_flash_ll_set_mosi_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command(dev, cmd, bitlen) gpspi_flash_ll_set_command((spi_dev_t*)dev, cmd, bitlen)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) gpspi_flash_ll_set_addr_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) gpspi_flash_ll_get_addr_bitlen((spi_dev_t*)dev)
#define spi_flash_ll_set_address(dev, addr) gpspi_flash_ll_set_address((spi_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) gpspi_flash_ll_set_usr_address((spi_dev_t*)dev, addr, bitlen)
#define spi_flash_ll_set_dummy(dev, dummy) gpspi_flash_ll_set_dummy((spi_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) gpspi_flash_ll_set_dummy_out((spi_dev_t*)dev, en, lev)
#define spi_flash_ll_set_hold(dev, hold_n) gpspi_flash_ll_set_hold((spi_dev_t*)dev, hold_n)
#define spi_flash_ll_set_cs_setup(dev, cs_setup_time) gpspi_flash_ll_set_cs_setup((spi_dev_t*)dev, cs_setup_time)
#else
#define spi_flash_ll_reset(dev) spimem_flash_ll_reset((spi_mem_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) spimem_flash_ll_cmd_is_done((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_chip(dev) spimem_flash_ll_erase_chip((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_sector(dev) spimem_flash_ll_erase_sector((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_block(dev) spimem_flash_ll_erase_block((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_write_protect(dev, wp) spimem_flash_ll_set_write_protect((spi_mem_dev_t*)dev, wp)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) spimem_flash_ll_get_buffer_data((spi_mem_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) spimem_flash_ll_set_buffer_data((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_program_page(dev, buffer, len) spimem_flash_ll_program_page((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) spimem_flash_ll_user_start((spi_mem_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) spimem_flash_ll_host_idle((spi_mem_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) spimem_flash_ll_read_phase((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) spimem_flash_ll_set_cs_pin((spi_mem_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) spimem_flash_ll_set_read_mode((spi_mem_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) spimem_flash_ll_set_clock((spi_mem_dev_t*)dev, (spimem_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) spimem_flash_ll_set_miso_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) spimem_flash_ll_set_mosi_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command(dev, cmd, bitlen) spimem_flash_ll_set_command((spi_mem_dev_t*)dev, cmd, bitlen)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) spimem_flash_ll_set_addr_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) spimem_flash_ll_get_addr_bitlen((spi_mem_dev_t*) dev)
#define spi_flash_ll_set_address(dev, addr) spimem_flash_ll_set_address((spi_mem_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) spimem_flash_ll_set_usr_address((spi_mem_dev_t*)dev, addr, bitlen)
#define spi_flash_ll_set_dummy(dev, dummy) spimem_flash_ll_set_dummy((spi_mem_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) spimem_flash_ll_set_dummy_out((spi_mem_dev_t*)dev, en, lev)
#define spi_flash_ll_set_hold(dev, hold_n) spimem_flash_ll_set_hold((spi_mem_dev_t*)dev, hold_n)
#define spi_flash_ll_set_cs_setup(dev, cs_setup_time) spimem_flash_ll_set_cs_setup((spi_mem_dev_t*)dev, cs_setup_time)
#endif
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,552 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define spimem_flash_ll_get_hw(host_id) (((host_id)==SPI1_HOST ? &SPIMEM1 : NULL ))
#define spimem_flash_ll_hw_get_id(dev) ((dev) == (void*)&SPIMEM1? SPI1_HOST: -1)
typedef typeof(SPIMEM1.clock) spimem_flash_ll_clock_reg_t;
//Supported clock register values
#define SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ ((spimem_flash_ll_clock_reg_t){.val=0x000F070F}) ///< Clock set to 5 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00070307}) ///< Clock set to 10 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00030103}) ///< Clock set to 20 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00020002}) ///< Clock set to 26 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00010001}) ///< Clock set to 40 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ ((spimem_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_reset(spi_mem_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool spimem_flash_ll_cmd_is_done(const spi_mem_dev_t *dev)
{
return (dev->cmd.val == 0);
}
/**
* Erase the flash chip.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_chip(spi_mem_dev_t *dev)
{
dev->cmd.flash_ce = 1;
}
/**
* Erase the sector, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_sector(spi_mem_dev_t *dev)
{
dev->ctrl.val = 0;
dev->cmd.flash_se = 1;
}
/**
* Erase the block, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_block(spi_mem_dev_t *dev)
{
dev->cmd.flash_be = 1;
}
/**
* Suspend erase/program operation.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_suspend(spi_mem_dev_t *dev)
{
dev->flash_sus_ctrl.flash_pes = 1;
}
/**
* Resume suspended erase/program operation.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_resume(spi_mem_dev_t *dev)
{
dev->flash_sus_ctrl.flash_per = 1;
}
/**
* Initialize auto suspend mode, and esp32c2 doesn't support disable auto-suspend.
*
* @param dev Beginning address of the peripheral registers.
* @param auto_sus Enable/disable Flash Auto-Suspend.
*/
static inline void spimem_flash_ll_auto_suspend_init(spi_mem_dev_t *dev, bool auto_sus)
{
dev->flash_sus_ctrl.flash_pes_en = auto_sus;
}
/**
* Initialize auto resume mode
*
* @param dev Beginning address of the peripheral registers.
* @param auto_res Enable/Disable Flash Auto-Resume.
*
*/
static inline void spimem_flash_ll_auto_resume_init(spi_mem_dev_t *dev, bool auto_res)
{
dev->flash_sus_ctrl.pes_per_en = auto_res;
}
/**
* Setup the flash suspend command, may vary from chips to chips.
*
* @param dev Beginning address of the peripheral registers.
* @param sus_cmd Flash suspend command.
*
*/
static inline void spimem_flash_ll_suspend_cmd_setup(spi_mem_dev_t *dev, uint32_t sus_cmd)
{
dev->flash_sus_cmd.flash_pes_command = sus_cmd;
}
/**
* Setup the flash resume command, may vary from chips to chips.
*
* @param dev Beginning address of the peripheral registers.
* @param res_cmd Flash resume command.
*
*/
static inline void spimem_flash_ll_resume_cmd_setup(spi_mem_dev_t *dev, uint32_t res_cmd)
{
dev->flash_sus_cmd.flash_per_command = res_cmd;
}
/**
* Setup the flash read suspend status command, may vary from chips to chips.
*
* @param dev Beginning address of the peripheral registers.
* @param pesr_cmd Flash read suspend status command.
*
*/
static inline void spimem_flash_ll_rd_sus_cmd_setup(spi_mem_dev_t *dev, uint32_t pesr_cmd)
{
dev->flash_sus_cmd.wait_pesr_command = pesr_cmd;
}
/**
* Setup to check SUS/SUS1/SUS2 to ensure the suspend status of flashs.
*
* @param dev Beginning address of the peripheral registers.
* @param sus_check_sus_en 1: enable, 0: disable.
*
*/
static inline void spimem_flash_ll_sus_check_sus_setup(spi_mem_dev_t *dev, bool sus_check_sus_en)
{
dev->flash_sus_ctrl.sus_timeout_cnt = 5;
dev->flash_sus_ctrl.pes_end_en = sus_check_sus_en;
}
/**
* Setup to check SUS/SUS1/SUS2 to ensure the resume status of flashs.
*
* @param dev Beginning address of the peripheral registers.
* @param sus_check_sus_en 1: enable, 0: disable.
*
*/
static inline void spimem_flash_ll_res_check_sus_setup(spi_mem_dev_t *dev, bool res_check_sus_en)
{
dev->flash_sus_ctrl.sus_timeout_cnt = 5;
dev->flash_sus_ctrl.per_end_en = res_check_sus_en;
}
/**
* Set 8 bit command to read suspend status
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_set_read_sus_status(spi_mem_dev_t *dev, uint32_t sus_conf)
{
dev->flash_sus_ctrl.frd_sus_2b = 0;
dev->flash_sus_ctrl.pesr_end_msk = sus_conf;
}
/**
* Initialize auto wait idle mode
*
* @param dev Beginning address of the peripheral registers.
* @param auto_waiti Enable/disable auto wait-idle function
*/
static inline void spimem_flash_ll_auto_wait_idle_init(spi_mem_dev_t *dev, bool auto_waiti)
{
dev->flash_waiti_ctrl.waiti_cmd = 0x05;
dev->flash_sus_ctrl.flash_per_wait_en = auto_waiti;
dev->flash_sus_ctrl.flash_pes_wait_en = auto_waiti;
}
/**
* Return the suspend status of erase or program operations.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if suspended, otherwise false.
*/
static inline bool spimem_flash_ll_sus_status(spi_mem_dev_t *dev)
{
return dev->sus_status.flash_sus;
}
/**
* Enable/disable write protection for the flash chip.
*
* @param dev Beginning address of the peripheral registers.
* @param wp true to enable the protection, false to disable (write enable).
*/
static inline void spimem_flash_ll_set_write_protect(spi_mem_dev_t *dev, bool wp)
{
if (wp) {
dev->cmd.flash_wrdi = 1;
} else {
dev->cmd.flash_wren = 1;
}
}
/**
* Get the read data from the buffer after ``spimem_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void spimem_flash_ll_get_buffer_data(spi_mem_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void spimem_flash_ll_set_buffer_data(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Program a page of the flash chip. Call ``spimem_flash_ll_set_address`` before
* this to set the address to program.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data to program
* @param length Length to program.
*/
static inline void spimem_flash_ll_program_page(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
dev->user.usr_dummy = 0;
spimem_flash_ll_set_buffer_data(dev, buffer, length);
dev->cmd.flash_pp = 1;
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_user_start(spi_mem_dev_t *dev)
{
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool spimem_flash_ll_host_idle(const spi_mem_dev_t *dev)
{
return dev->fsm.spi0_mst_st == 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_read_phase(spi_mem_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-2. Set to other values to disable all the CS pins.
*/
static inline void spimem_flash_ll_set_cs_pin(spi_mem_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin == 0) ? 0 : 1;
dev->misc.cs1_dis = (pin == 1) ? 0 : 1;
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void spimem_flash_ll_set_read_mode(spi_mem_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
ctrl.val &= ~(SPI_MEM_FREAD_QIO_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M);
ctrl.val |= SPI_MEM_FASTRD_MODE_M;
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
break;
case SPI_FLASH_QIO:
ctrl.fread_qio = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dio = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
break;
case SPI_FLASH_SLOWRD:
ctrl.fastrd_mode = 0;
break;
default:
abort();
}
dev->ctrl = ctrl;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void spimem_flash_ll_set_clock(spi_mem_dev_t *dev, spimem_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void spimem_flash_ll_set_miso_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
dev->miso_dlen.usr_miso_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void spimem_flash_ll_set_mosi_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
dev->mosi_dlen.usr_mosi_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the command.
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
* @param bitlen Length of the command
*/
static inline void spimem_flash_ll_set_command(spi_mem_dev_t *dev, uint32_t command, uint32_t bitlen)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (bitlen - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int spimem_flash_ll_get_addr_bitlen(spi_mem_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void spimem_flash_ll_set_addr_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void spimem_flash_ll_set_address(spi_mem_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the address to send in user mode. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void spimem_flash_ll_set_usr_address(spi_mem_dev_t *dev, uint32_t addr, uint32_t bitlen)
{
(void)bitlen;
spimem_flash_ll_set_address(dev, addr);
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void spimem_flash_ll_set_dummy(spi_mem_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void spimem_flash_ll_set_dummy_out(spi_mem_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.fdummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}
/**
* Set CS hold time.
*
* @param dev Beginning address of the peripheral registers.
* @param hold_n CS hold time config used by the host.
*/
static inline void spimem_flash_ll_set_hold(spi_mem_dev_t *dev, uint32_t hold_n)
{
dev->ctrl2.cs_hold_time = hold_n - 1;
dev->user.cs_hold = (hold_n > 0? 1: 0);
}
static inline void spimem_flash_ll_set_cs_setup(spi_mem_dev_t *dev, uint32_t cs_setup_time)
{
dev->user.cs_setup = (cs_setup_time > 0 ? 1 : 0);
dev->ctrl2.cs_setup_time = cs_setup_time - 1;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,161 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/systimer_struct.h"
#include "hal/assert.h"
#define SYSTIMER_LL_COUNTER_CLOCK (0) // Counter used for "wallclock" time
#define SYSTIMER_LL_COUNTER_OS_TICK (1) // Counter used for OS tick
#define SYSTIMER_LL_ALARM_OS_TICK_CORE0 (0) // Alarm used for OS tick of CPU core 0
#define SYSTIMER_LL_ALARM_CLOCK (2) // Alarm used for "wallclock" time
#define SYSTIMER_LL_TICKS_PER_US (16) // 16 systimer ticks == 1us
#ifdef __cplusplus
extern "C" {
#endif
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/******************* Clock *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(systimer_dev_t *dev, bool en)
{
dev->conf.clk_en = en;
}
/******************* Counter *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(systimer_dev_t *dev, uint32_t counter_id, bool en)
{
if (en) {
dev->conf.val |= 1 << (30 - counter_id);
} else {
dev->conf.val &= ~(1 << (30 - counter_id));
}
}
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(systimer_dev_t *dev, uint32_t counter_id, uint32_t cpu_id, bool can)
{
if (can) {
dev->conf.val |= 1 << ((28 - counter_id * 2) - cpu_id);
} else {
dev->conf.val &= ~(1 << ((28 - counter_id * 2) - cpu_id));
}
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(systimer_dev_t *dev, uint32_t counter_id)
{
dev->unit_op[counter_id].timer_unit_update = 1;
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(systimer_dev_t *dev, uint32_t counter_id)
{
return dev->unit_op[counter_id].timer_unit_value_valid;
}
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(systimer_dev_t *dev, uint32_t counter_id, uint64_t value)
{
dev->unit_load_val[counter_id].hi.timer_unit_load_hi = value >> 32;
dev->unit_load_val[counter_id].lo.timer_unit_load_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(systimer_dev_t *dev, uint32_t counter_id)
{
return dev->unit_val[counter_id].lo.timer_unit_value_lo;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(systimer_dev_t *dev, uint32_t counter_id)
{
return dev->unit_val[counter_id].hi.timer_unit_value_hi;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(systimer_dev_t *dev, uint32_t counter_id)
{
dev->unit_load[counter_id].val = 0x01;
}
/******************* Alarm *************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(systimer_dev_t *dev, uint32_t alarm_id, uint64_t value)
{
dev->target_val[alarm_id].hi.timer_target_hi = value >> 32;
dev->target_val[alarm_id].lo.timer_target_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(systimer_dev_t *dev, uint32_t alarm_id)
{
return ((uint64_t)(dev->target_val[alarm_id].hi.timer_target_hi) << 32) | dev->target_val[alarm_id].lo.timer_target_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(systimer_dev_t *dev, uint32_t alarm_id, uint32_t counter_id)
{
dev->target_conf[alarm_id].target_timer_unit_sel = counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->target_conf[alarm_id].target_period_mode = 0;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->target_conf[alarm_id].target_period_mode = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(systimer_dev_t *dev, uint32_t alarm_id, uint32_t period)
{
HAL_ASSERT(period < (1 << 26));
dev->target_conf[alarm_id].target_period = period;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
return dev->target_conf[alarm_id].target_period;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->comp_load[alarm_id].val = 0x01;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
if (en) {
dev->conf.val |= 1 << (24 - alarm_id);
} else {
dev->conf.val &= ~(1 << (24 - alarm_id));
}
}
/******************* Interrupt *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
if (en) {
dev->int_ena.val |= 1 << alarm_id;
} else {
dev->int_ena.val &= ~(1 << alarm_id);
}
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(systimer_dev_t *dev, uint32_t alarm_id)
{
return dev->int_st.val & (1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->int_clr.val |= 1 << alarm_id;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,255 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include <stdbool.h>
#include "hal/assert.h"
#include "hal/misc.h"
#include "hal/timer_types.h"
#include "soc/timer_group_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get timer group register base address with giving group number
#define TIMER_LL_GET_HW(group_id) (&TIMERG0)
#define TIMER_LL_EVENT_ALARM(timer_id) (1 << (timer_id))
/**
* @brief Set clock source for timer
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param clk_src Clock source
*/
static inline void timer_ll_set_clock_source(timg_dev_t *hw, uint32_t timer_num, gptimer_clock_source_t clk_src)
{
switch (clk_src) {
case GPTIMER_CLK_SRC_APB:
hw->hw_timer[timer_num].config.tx_use_xtal = 0;
break;
case GPTIMER_CLK_SRC_XTAL:
hw->hw_timer[timer_num].config.tx_use_xtal = 1;
break;
default:
HAL_ASSERT(false && "unsupported clock source");
break;
}
}
/**
* @brief Enable alarm event
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param en True: enable alarm
* False: disable alarm
*/
__attribute__((always_inline))
static inline void timer_ll_enable_alarm(timg_dev_t *hw, uint32_t timer_num, bool en)
{
hw->hw_timer[timer_num].config.tx_alarm_en = en;
}
/**
* @brief Set clock prescale for timer
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param divider Prescale value (0 and 1 are not valid)
*/
static inline void timer_ll_set_clock_prescale(timg_dev_t *hw, uint32_t timer_num, uint32_t divider)
{
HAL_ASSERT(divider >= 2 && divider <= 65536);
if (divider >= 65536) {
divider = 0;
}
HAL_FORCE_MODIFY_U32_REG_FIELD(hw->hw_timer[timer_num].config, tx_divider, divider);
hw->hw_timer[timer_num].config.tx_divcnt_rst = 1;
}
/**
* @brief Enable auto-reload mode
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param en True: enable auto reload mode
* False: disable auto reload mode
*/
static inline void timer_ll_enable_auto_reload(timg_dev_t *hw, uint32_t timer_num, bool en)
{
hw->hw_timer[timer_num].config.tx_autoreload = en;
}
/**
* @brief Set count direction
*
* @param hw Timer peripheral register base address
* @param timer_num Timer number in the group
* @param direction Count direction
*/
static inline void timer_ll_set_count_direction(timg_dev_t *hw, uint32_t timer_num, gptimer_count_direction_t direction)
{
hw->hw_timer[timer_num].config.tx_increase = direction == GPTIMER_COUNT_UP;
}
/**
* @brief Enable timer, start couting
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param en True: enable the counter
* False: disable the counter
*/
__attribute__((always_inline))
static inline void timer_ll_enable_counter(timg_dev_t *hw, uint32_t timer_num, bool en)
{
hw->hw_timer[timer_num].config.tx_en = en;
}
/**
* @brief Get counter value
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
*
* @return counter value
*/
__attribute__((always_inline))
static inline uint64_t timer_ll_get_counter_value(timg_dev_t *hw, uint32_t timer_num)
{
hw->hw_timer[timer_num].update.tx_update = 1;
// Timer register is in a different clock domain from Timer hardware logic
// We need to wait for the update to take effect before fetching the count value
while (hw->hw_timer[timer_num].update.tx_update) {
}
return ((uint64_t) hw->hw_timer[timer_num].hi.tx_hi << 32) | (hw->hw_timer[timer_num].lo.tx_lo);
}
/**
* @brief Set alarm value
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param alarm_value When counter reaches alarm value, alarm event will be triggered
*/
__attribute__((always_inline))
static inline void timer_ll_set_alarm_value(timg_dev_t *hw, uint32_t timer_num, uint64_t alarm_value)
{
hw->hw_timer[timer_num].alarmhi.tx_alarm_hi = (uint32_t) (alarm_value >> 32);
hw->hw_timer[timer_num].alarmlo.tx_alarm_lo = (uint32_t) alarm_value;
}
/**
* @brief Set reload value
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @param reload_val Reload counter value
*/
static inline void timer_ll_set_reload_value(timg_dev_t *hw, uint32_t timer_num, uint64_t load_val)
{
hw->hw_timer[timer_num].loadhi.tx_load_hi = (uint32_t) (load_val >> 32);
hw->hw_timer[timer_num].loadlo.tx_load_lo = (uint32_t) load_val;
}
/**
* @brief Get reload value
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
* @return reload count value
*/
static inline uint64_t timer_ll_get_reload_value(timg_dev_t *hw, uint32_t timer_num)
{
return ((uint64_t)hw->hw_timer[timer_num].loadhi.tx_load_hi << 32) | (hw->hw_timer[timer_num].loadlo.tx_load_lo);
}
/**
* @brief Trigger software reload, value set by `timer_ll_set_reload_value()` will be reflected into counter immediately
*
* @param hw Timer Group register base address
* @param timer_num Timer number in the group
*/
static inline void timer_ll_trigger_soft_reload(timg_dev_t *hw, uint32_t timer_num)
{
hw->hw_timer[timer_num].load.tx_load = 1;
}
/**
* @brief Enable timer interrupt by mask
*
* @param hw Timer Group register base address
* @param mask Mask of interrupt events
* @param en True: enable interrupt
* False: disable interrupt
*/
__attribute__((always_inline))
static inline void timer_ll_enable_intr(timg_dev_t *hw, uint32_t mask, bool en)
{
if (en) {
hw->int_ena_timers.val |= mask;
} else {
hw->int_ena_timers.val &= ~mask;
}
}
/**
* @brief Get interrupt status
*
* @param hw Timer Group register base address
*
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t timer_ll_get_intr_status(timg_dev_t *hw)
{
return hw->int_st_timers.val & 0x01;
}
/**
* @brief Clear interrupt status by mask
*
* @param hw Timer Group register base address
* @param mask Interrupt events mask
*/
__attribute__((always_inline))
static inline void timer_ll_clear_intr_status(timg_dev_t *hw, uint32_t mask)
{
hw->int_clr_timers.val = mask;
}
/**
* @brief Enable the register clock forever
*
* @param hw Timer Group register base address
* @param en True: Enable the register clock forever
* False: Register clock is enabled only when register operation happens
*/
static inline void timer_ll_enable_register_clock_always_on(timg_dev_t *hw, bool en)
{
hw->regclk.clk_en = en;
}
/**
* @brief Get interrupt status register address
*
* @param hw Timer Group register base address
*
* @return Interrupt status register address
*/
static inline volatile void *timer_ll_get_intr_status_reg(timg_dev_t *hw)
{
return &hw->int_st_timers.val;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,929 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for UART register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/uart_types.h"
#include "soc/uart_periph.h"
#ifdef __cplusplus
extern "C" {
#endif
// The default fifo depth
#define UART_LL_FIFO_DEF_LEN (SOC_UART_FIFO_LEN)
// Get UART hardware instance with giving uart num
#define UART_LL_GET_HW(num) (((num) == 0) ? (&UART0) : (&UART1))
#define UART_LL_MIN_WAKEUP_THRESH (2)
#define UART_LL_INTR_MASK (0x7ffff) //All interrupt mask
#define UART_LL_FSM_IDLE (0x0)
#define UART_LL_FSM_TX_WAIT_SEND (0xf)
// Define UART interrupts
typedef enum {
UART_INTR_RXFIFO_FULL = (0x1 << 0),
UART_INTR_TXFIFO_EMPTY = (0x1 << 1),
UART_INTR_PARITY_ERR = (0x1 << 2),
UART_INTR_FRAM_ERR = (0x1 << 3),
UART_INTR_RXFIFO_OVF = (0x1 << 4),
UART_INTR_DSR_CHG = (0x1 << 5),
UART_INTR_CTS_CHG = (0x1 << 6),
UART_INTR_BRK_DET = (0x1 << 7),
UART_INTR_RXFIFO_TOUT = (0x1 << 8),
UART_INTR_SW_XON = (0x1 << 9),
UART_INTR_SW_XOFF = (0x1 << 10),
UART_INTR_GLITCH_DET = (0x1 << 11),
UART_INTR_TX_BRK_DONE = (0x1 << 12),
UART_INTR_TX_BRK_IDLE = (0x1 << 13),
UART_INTR_TX_DONE = (0x1 << 14),
UART_INTR_RS485_PARITY_ERR = (0x1 << 15),
UART_INTR_RS485_FRM_ERR = (0x1 << 16),
UART_INTR_RS485_CLASH = (0x1 << 17),
UART_INTR_CMD_CHAR_DET = (0x1 << 18),
} uart_intr_t;
static inline void uart_ll_reset_core(uart_dev_t *hw) {
hw->clk_conf.rst_core = 1;
hw->clk_conf.rst_core = 0;
}
static inline void uart_ll_sclk_enable(uart_dev_t *hw) {
hw->clk_conf.sclk_en = 1;
hw->clk_conf.rx_sclk_en = 1;
hw->clk_conf.tx_sclk_en = 1;
}
static inline void uart_ll_sclk_disable(uart_dev_t *hw) {
hw->clk_conf.sclk_en = 0;
hw->clk_conf.rx_sclk_en = 0;
hw->clk_conf.tx_sclk_en = 0;
}
/**
* @brief Set the UART source clock.
*
* @param hw Beginning address of the peripheral registers.
* @param source_clk The UART source clock. The source clock can be APB clock, RTC clock or XTAL clock.
* If the source clock is RTC/XTAL, the UART can still work when the APB changes.
*
* @return None.
*/
static inline void uart_ll_set_sclk(uart_dev_t *hw, uart_sclk_t source_clk)
{
switch (source_clk) {
default:
case UART_SCLK_APB:
hw->clk_conf.sclk_sel = 1;
break;
case UART_SCLK_RTC:
hw->clk_conf.sclk_sel = 2;
break;
case UART_SCLK_XTAL:
hw->clk_conf.sclk_sel = 3;
break;
}
}
/**
* @brief Get the UART source clock type.
*
* @param hw Beginning address of the peripheral registers.
* @param source_clk The pointer to accept the UART source clock type.
*
* @return None.
*/
static inline void uart_ll_get_sclk(uart_dev_t *hw, uart_sclk_t *source_clk)
{
switch (hw->clk_conf.sclk_sel) {
default:
case 1:
*source_clk = UART_SCLK_APB;
break;
case 2:
*source_clk = UART_SCLK_RTC;
break;
case 3:
*source_clk = UART_SCLK_XTAL;
break;
}
}
/**
* @brief Get the UART source clock frequency.
*
* @param hw Beginning address of the peripheral registers.
*
* @return Current source clock frequency
*/
static inline uint32_t uart_ll_get_sclk_freq(uart_dev_t *hw)
{
switch (hw->clk_conf.sclk_sel) {
default:
case 1:
return APB_CLK_FREQ;
case 2:
return RTC_CLK_FREQ;
case 3:
return XTAL_CLK_FREQ;
}
}
/**
* @brief Configure the baud-rate.
*
* @param hw Beginning address of the peripheral registers.
* @param baud The baud rate to be set.
*
* @return None
*/
static inline void uart_ll_set_baudrate(uart_dev_t *hw, uint32_t baud)
{
#define DIV_UP(a, b) (((a) + (b) - 1) / (b))
uint32_t sclk_freq = uart_ll_get_sclk_freq(hw);
const uint32_t max_div = BIT(12) - 1; // UART divider integer part only has 12 bits
int sclk_div = DIV_UP(sclk_freq, max_div * baud);
uint32_t clk_div = ((sclk_freq) << 4) / (baud * sclk_div);
// The baud rate configuration register is divided into
// an integer part and a fractional part.
hw->clk_div.div_int = clk_div >> 4;
hw->clk_div.div_frag = clk_div & 0xf;
hw->clk_conf.sclk_div_num = sclk_div - 1;
#undef DIV_UP
}
/**
* @brief Get the current baud-rate.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The current baudrate
*/
static inline uint32_t uart_ll_get_baudrate(uart_dev_t *hw)
{
uint32_t sclk_freq = uart_ll_get_sclk_freq(hw);
typeof(hw->clk_div) div_reg = hw->clk_div;
return ((sclk_freq << 4)) / (((div_reg.div_int << 4) | div_reg.div_frag) * (hw->clk_conf.sclk_div_num + 1));
}
/**
* @brief Enable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be enabled.
*
* @return None
*/
static inline void uart_ll_ena_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val |= mask;
}
/**
* @brief Disable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be disabled.
*
* @return None
*/
static inline void uart_ll_disable_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val &= (~mask);
}
/**
* @brief Get the UART interrupt status.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART interrupt status.
*/
static inline uint32_t uart_ll_get_intsts_mask(uart_dev_t *hw)
{
return hw->int_st.val;
}
/**
* @brief Clear the UART interrupt status based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be cleared.
*
* @return None
*/
static inline void uart_ll_clr_intsts_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_clr.val = mask;
}
/**
* @brief Get status of enabled interrupt.
*
* @param hw Beginning address of the peripheral registers.
*
* @return interrupt enable value
*/
static inline uint32_t uart_ll_get_intr_ena_status(uart_dev_t *hw)
{
return hw->int_ena.val;
}
/**
* @brief Read the UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer. The buffer size should be large than 128 byts.
* @param rd_len The data length needs to be read.
*
* @return None.
*/
static inline void uart_ll_read_rxfifo(uart_dev_t *hw, uint8_t *buf, uint32_t rd_len)
{
for (int i = 0; i < (int)rd_len; i++) {
buf[i] = hw->ahb_fifo.rw_byte;
}
}
/**
* @brief Write byte to the UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer.
* @param wr_len The data length needs to be writen.
*
* @return None
*/
static inline void uart_ll_write_txfifo(uart_dev_t *hw, const uint8_t *buf, uint32_t wr_len)
{
for (int i = 0; i < (int)wr_len; i++) {
hw->ahb_fifo.rw_byte = buf[i];
}
}
/**
* @brief Reset the UART hw rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_rxfifo_rst(uart_dev_t *hw)
{
hw->conf0.rxfifo_rst = 1;
hw->conf0.rxfifo_rst = 0;
}
/**
* @brief Reset the UART hw txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_txfifo_rst(uart_dev_t *hw)
{
hw->conf0.txfifo_rst = 1;
hw->conf0.txfifo_rst = 0;
}
/**
* @brief Get the length of readable data in UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The readable data length in rxfifo.
*/
static inline uint32_t uart_ll_get_rxfifo_len(uart_dev_t *hw)
{
return hw->status.rxfifo_cnt;
}
/**
* @brief Get the writable data length of UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The data length of txfifo can be written.
*/
static inline uint32_t uart_ll_get_txfifo_len(uart_dev_t *hw)
{
return UART_LL_FIFO_DEF_LEN - hw->status.txfifo_cnt;
}
/**
* @brief Configure the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The stop bit number to be set.
*
* @return None.
*/
static inline void uart_ll_set_stop_bits(uart_dev_t *hw, uart_stop_bits_t stop_bit)
{
hw->conf0.stop_bit_num = stop_bit;
}
/**
* @brief Get the configuration of the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The pointer to accept the stop bit configuration
*
* @return None.
*/
static inline void uart_ll_get_stop_bits(uart_dev_t *hw, uart_stop_bits_t *stop_bit)
{
*stop_bit = hw->conf0.stop_bit_num;
}
/**
* @brief Configure the UART parity check mode.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The parity check mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_parity(uart_dev_t *hw, uart_parity_t parity_mode)
{
if (parity_mode != UART_PARITY_DISABLE) {
hw->conf0.parity = parity_mode & 0x1;
}
hw->conf0.parity_en = (parity_mode >> 1) & 0x1;
}
/**
* @brief Get the UART parity check mode configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The pointer to accept the parity check mode configuration.
*
* @return None.
*/
static inline void uart_ll_get_parity(uart_dev_t *hw, uart_parity_t *parity_mode)
{
if (hw->conf0.parity_en) {
*parity_mode = 0X2 | hw->conf0.parity;
} else {
*parity_mode = UART_PARITY_DISABLE;
}
}
/**
* @brief Set the UART rxfifo full threshold value. When the data in rxfifo is more than the threshold value,
* it will produce rxfifo_full_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param full_thrhd The full threshold value of the rxfifo. `full_thrhd` should be less than `UART_LL_FIFO_DEF_LEN`.
*
* @return None.
*/
static inline void uart_ll_set_rxfifo_full_thr(uart_dev_t *hw, uint16_t full_thrhd)
{
hw->conf1.rxfifo_full_thrhd = full_thrhd;
}
/**
* @brief Set the txfifo empty threshold. when the data length in txfifo is less than threshold value,
* it will produce txfifo_empty_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param empty_thrhd The empty threshold of txfifo.
*
* @return None.
*/
static inline void uart_ll_set_txfifo_empty_thr(uart_dev_t *hw, uint16_t empty_thrhd)
{
hw->conf1.txfifo_empty_thrhd = empty_thrhd;
}
/**
* @brief Set the UART rx-idle threshold value. when receiver takes more time than rx_idle_thrhd to receive a byte data,
* it will produce frame end signal for uhci to stop receiving data.
*
* @param hw Beginning address of the peripheral registers.
* @param rx_idle_thr The rx-idle threshold to be set.
*
* @return None.
*/
static inline void uart_ll_set_rx_idle_thr(uart_dev_t *hw, uint32_t rx_idle_thr)
{
hw->idle_conf.rx_idle_thrhd = rx_idle_thr;
}
/**
* @brief Configure the duration time between transfers.
*
* @param hw Beginning address of the peripheral registers.
* @param idle_num the duration time between transfers.
*
* @return None.
*/
static inline void uart_ll_set_tx_idle_num(uart_dev_t *hw, uint32_t idle_num)
{
hw->idle_conf.tx_idle_num = idle_num;
}
/**
* @brief Configure the transmiter to send break chars.
*
* @param hw Beginning address of the peripheral registers.
* @param break_num The number of the break chars need to be send.
*
* @return None.
*/
static inline void uart_ll_tx_break(uart_dev_t *hw, uint32_t break_num)
{
if (break_num > 0) {
hw->txbrk_conf.tx_brk_num = break_num;
hw->conf0.txd_brk = 1;
} else {
hw->conf0.txd_brk = 0;
}
}
/**
* @brief Configure the UART hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The hw flow control configuration.
* @param rx_thrs The rx flow control signal will be active if the data length in rxfifo is more than this value.
*
* @return None.
*/
static inline void uart_ll_set_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t flow_ctrl, uint32_t rx_thrs)
{
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
hw->mem_conf.rx_flow_thrhd = rx_thrs;
hw->conf1.rx_flow_en = 1;
} else {
hw->conf1.rx_flow_en = 0;
}
if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
hw->conf0.tx_flow_en = 1;
} else {
hw->conf0.tx_flow_en = 0;
}
}
/**
* @brief Configure the hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl A pointer to accept the hw flow control configuration.
*
* @return None.
*/
static inline void uart_ll_get_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t *flow_ctrl)
{
*flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
if (hw->conf1.rx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_RTS;
}
if (hw->conf0.tx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_CTS;
}
}
/**
* @brief Configure the software flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The UART sofware flow control settings.
* @param sw_flow_ctrl_en Set true to enable software flow control, otherwise set it false.
*
* @return None.
*/
static inline void uart_ll_set_sw_flow_ctrl(uart_dev_t *hw, uart_sw_flowctrl_t *flow_ctrl, bool sw_flow_ctrl_en)
{
if (sw_flow_ctrl_en) {
hw->flow_conf.xonoff_del = 1;
hw->flow_conf.sw_flow_con_en = 1;
hw->swfc_conf1.xon_threshold = flow_ctrl->xon_thrd;
hw->swfc_conf0.xoff_threshold = flow_ctrl->xoff_thrd;
hw->swfc_conf1.xon_char = flow_ctrl->xon_char;
hw->swfc_conf0.xoff_char = flow_ctrl->xoff_char;
} else {
hw->flow_conf.sw_flow_con_en = 0;
hw->flow_conf.xonoff_del = 0;
}
}
/**
* @brief Configure the AT cmd char. When the receiver receives a continuous AT cmd char, it will produce at_cmd_char_det interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The AT cmd char configuration.The configuration member is:
* - cmd_char The AT cmd character
* - char_num The number of received AT cmd char must be equal to or greater than this value
* - gap_tout The interval between each AT cmd char, when the duration is less than this value, it will not take this data as AT cmd char
* - pre_idle The idle time before the first AT cmd char, when the duration is less than this value, it will not take the previous data as the last AT cmd char
* - post_idle The idle time after the last AT cmd char, when the duration is less than this value, it will not take this data as the first AT cmd char
*
* @return None.
*/
static inline void uart_ll_set_at_cmd_char(uart_dev_t *hw, uart_at_cmd_t *cmd_char)
{
hw->at_cmd_char.data = cmd_char->cmd_char;
hw->at_cmd_char.char_num = cmd_char->char_num;
hw->at_cmd_postcnt.post_idle_num = cmd_char->post_idle;
hw->at_cmd_precnt.pre_idle_num = cmd_char->pre_idle;
hw->at_cmd_gaptout.rx_gap_tout = cmd_char->gap_tout;
}
/**
* @brief Set the UART data bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The data bit mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_data_bit_num(uart_dev_t *hw, uart_word_length_t data_bit)
{
hw->conf0.bit_num = data_bit;
}
/**
* @brief Set the rts active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The rts active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_rts_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_rts = level & 0x1;
}
/**
* @brief Set the dtr active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The dtr active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_dtr_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_dtr = level & 0x1;
}
/**
* @brief Set the UART wakeup threshold.
*
* @param hw Beginning address of the peripheral registers.
* @param wakeup_thrd The wakeup threshold value to be set. When the input rx edge changes more than this value,
* the UART will active from light sleeping mode.
*
* @return None.
*/
static inline void uart_ll_set_wakeup_thrd(uart_dev_t *hw, uint32_t wakeup_thrd)
{
hw->sleep_conf.active_threshold = wakeup_thrd - UART_LL_MIN_WAKEUP_THRESH;
}
/**
* @brief Configure the UART work in normal mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_normal(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.irda_en = 0;
}
/**
* @brief Configure the UART work in rs485_app_ctrl mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_app_ctrl(uart_dev_t *hw)
{
// Application software control, remove echo
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.irda_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 0;
hw->rs485_conf.dl0_en = 1;
hw->rs485_conf.dl1_en = 1;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in rs485_half_duplex mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_half_duplex(uart_dev_t *hw)
{
// Enable receiver, sw_rts = 1 generates low level on RTS pin
hw->conf0.sw_rts = 1;
// Half duplex mode
hw->rs485_conf.tx_rx_en = 0;
// Setting this bit will allow data to be transmitted while receiving data(full-duplex mode).
// But note that this full-duplex mode has no conflict detection function
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.irda_en = 0;
hw->rs485_conf.dl0_en = 1;
hw->rs485_conf.dl1_en = 1;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in collision_detect mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_collision_detect(uart_dev_t *hw)
{
hw->conf0.irda_en = 0;
// Enable full-duplex mode
hw->rs485_conf.tx_rx_en = 1;
// Transmitter should send data when the receiver is busy,
hw->rs485_conf.rx_busy_tx_en = 1;
hw->rs485_conf.dl0_en = 1;
hw->rs485_conf.dl1_en = 1;
hw->conf0.sw_rts = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in irda mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_irda(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 1;
}
/**
* @brief Set uart mode.
*
* @param hw Beginning address of the peripheral registers.
* @param mode The UART mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_mode(uart_dev_t *hw, uart_mode_t mode)
{
switch (mode) {
default:
case UART_MODE_UART:
uart_ll_set_mode_normal(hw);
break;
case UART_MODE_RS485_COLLISION_DETECT:
uart_ll_set_mode_collision_detect(hw);
break;
case UART_MODE_RS485_APP_CTRL:
uart_ll_set_mode_rs485_app_ctrl(hw);
break;
case UART_MODE_RS485_HALF_DUPLEX:
uart_ll_set_mode_rs485_half_duplex(hw);
break;
case UART_MODE_IRDA:
uart_ll_set_mode_irda(hw);
break;
}
}
/**
* @brief Get the UART AT cmd char configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The Pointer to accept value of UART AT cmd char.
* @param char_num Pointer to accept the repeat number of UART AT cmd char.
*
* @return None.
*/
static inline void uart_ll_get_at_cmd_char(uart_dev_t *hw, uint8_t *cmd_char, uint8_t *char_num)
{
*cmd_char = hw->at_cmd_char.data;
*char_num = hw->at_cmd_char.char_num;
}
/**
* @brief Get the UART wakeup threshold value.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART wakeup threshold value.
*/
static inline uint32_t uart_ll_get_wakeup_thrd(uart_dev_t *hw)
{
return hw->sleep_conf.active_threshold + UART_LL_MIN_WAKEUP_THRESH;
}
/**
* @brief Get the UART data bit configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The pointer to accept the UART data bit configuration.
*
* @return The bit mode.
*/
static inline void uart_ll_get_data_bit_num(uart_dev_t *hw, uart_word_length_t *data_bit)
{
*data_bit = hw->conf0.bit_num;
}
/**
* @brief Check if the UART sending state machine is in the IDLE state.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if the state machine is in the IDLE state, otherwise false is returned.
*/
static inline bool uart_ll_is_tx_idle(uart_dev_t *hw)
{
return ((hw->status.txfifo_cnt == 0) && (hw->fsm_status.st_utx_out == 0));
}
/**
* @brief Check if the UART rts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw rts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_rts_en(uart_dev_t *hw)
{
return hw->conf1.rx_flow_en;
}
/**
* @brief Check if the UART cts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw cts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_cts_en(uart_dev_t *hw)
{
return hw->conf0.tx_flow_en;
}
/**
* @brief Configure TX signal loop back to RX module, just for the testing purposes
*
* @param hw Beginning address of the peripheral registers.
* @param loop_back_en Set ture to enable the loop back function, else set it false.
*
* @return None
*/
static inline void uart_ll_set_loop_back(uart_dev_t *hw, bool loop_back_en)
{
hw->conf0.loopback = loop_back_en;
}
static inline void uart_ll_xon_force_on(uart_dev_t *hw, bool always_on)
{
hw->flow_conf.force_xon = 1;
if(!always_on) {
hw->flow_conf.force_xon = 0;
}
}
/**
* @brief Inverse the UART signal with the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param inv_mask The UART signal bitmap needs to be inversed.
* Use the ORred mask of `uart_signal_inv_t`;
*
* @return None.
*/
static inline void uart_ll_inverse_signal(uart_dev_t *hw, uint32_t inv_mask)
{
typeof(hw->conf0) conf0_reg = hw->conf0;
conf0_reg.irda_tx_inv = (inv_mask & UART_SIGNAL_IRDA_TX_INV) ? 1 : 0;
conf0_reg.irda_rx_inv = (inv_mask & UART_SIGNAL_IRDA_RX_INV) ? 1 : 0;
conf0_reg.rxd_inv = (inv_mask & UART_SIGNAL_RXD_INV) ? 1 : 0;
conf0_reg.cts_inv = (inv_mask & UART_SIGNAL_CTS_INV) ? 1 : 0;
conf0_reg.dsr_inv = (inv_mask & UART_SIGNAL_DSR_INV) ? 1 : 0;
conf0_reg.txd_inv = (inv_mask & UART_SIGNAL_TXD_INV) ? 1 : 0;
conf0_reg.rts_inv = (inv_mask & UART_SIGNAL_RTS_INV) ? 1 : 0;
conf0_reg.dtr_inv = (inv_mask & UART_SIGNAL_DTR_INV) ? 1 : 0;
hw->conf0.val = conf0_reg.val;
}
/**
* @brief Configure the timeout value for receiver receiving a byte, and enable rx timeout function.
*
* @param hw Beginning address of the peripheral registers.
* @param tout_thrd The timeout value as UART bit time. The rx timeout function will be disabled if `tout_thrd == 0`.
*
* @return None.
*/
static inline void uart_ll_set_rx_tout(uart_dev_t *hw, uint16_t tout_thrd)
{
uint16_t tout_val = tout_thrd;
if(tout_thrd > 0) {
hw->mem_conf.rx_tout_thrhd = tout_val;
hw->conf1.rx_tout_en = 1;
} else {
hw->conf1.rx_tout_en = 0;
}
}
/**
* @brief Get the timeout value for receiver receiving a byte.
*
* @param hw Beginning address of the peripheral registers.
*
* @return tout_thr The timeout threshold value. If timeout feature is disabled returns 0.
*/
static inline uint16_t uart_ll_get_rx_tout_thr(uart_dev_t *hw)
{
uint16_t tout_thrd = 0;
if(hw->conf1.rx_tout_en > 0) {
tout_thrd = hw->mem_conf.rx_tout_thrhd;
}
return tout_thrd;
}
/**
* @brief Get UART maximum timeout threshold.
*
* @param hw Beginning address of the peripheral registers.
*
* @return maximum timeout threshold.
*/
static inline uint16_t uart_ll_max_tout_thrd(uart_dev_t *hw)
{
return UART_RX_TOUT_THRHD_V;
}
/**
* @brief Force UART xoff.
*
* @param uart_num UART port number, the max port number is (UART_NUM_MAX -1).
*
* @return None.
*/
static inline void uart_ll_force_xoff(uart_port_t uart_num)
{
REG_CLR_BIT(UART_FLOW_CONF_REG(uart_num), UART_FORCE_XON);
REG_SET_BIT(UART_FLOW_CONF_REG(uart_num), UART_SW_FLOW_CON_EN | UART_FORCE_XOFF);
REG_SET_BIT(UART_ID_REG(uart_num), UART_UPDATE);
}
/**
* @brief Force UART xon.
*
* @param uart_num UART port number, the max port number is (UART_NUM_MAX -1).
*
* @return None.
*/
static inline void uart_ll_force_xon(uart_port_t uart_num)
{
REG_CLR_BIT(UART_FLOW_CONF_REG(uart_num), UART_FORCE_XOFF);
REG_SET_BIT(UART_FLOW_CONF_REG(uart_num), UART_FORCE_XON);
REG_CLR_BIT(UART_FLOW_CONF_REG(uart_num), UART_SW_FLOW_CON_EN | UART_FORCE_XON);
REG_SET_BIT(UART_ID_REG(uart_num), UART_UPDATE);
}
/**
* @brief Get UART finite-state machine status.
*
* @param uart_num UART port number, the max port number is (UART_NUM_MAX -1).
*
* @return UART module FSM status.
*/
static inline uint32_t uart_ll_get_fsm_status(uart_port_t uart_num)
{
return REG_GET_FIELD(UART_FSM_STATUS_REG(uart_num), UART_ST_UTX_OUT);
}
#ifdef __cplusplus
}
#endif