Merge branch 'bugfix/fix_adc_dac_driver_ut' into 'master'

Driver(adc): fix adc driver and UT

See merge request espressif/esp-idf!8482
This commit is contained in:
Michael (XIAO Xufeng)
2020-06-02 17:46:45 +08:00
18 changed files with 572 additions and 486 deletions

View File

@@ -17,13 +17,12 @@ void adc_hal_init(void);
void adc_hal_deinit(void);
/**
* Set adc sample cycle for digital controller.
* Set adc sample cycle.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
* @param sample_cycle The number of ADC sampling cycles. Range: 1 ~ 7.
*/
#define adc_hal_digi_set_sample_cycle(sample_cycle) adc_ll_digi_set_sample_cycle(sample_cycle)
#define adc_hal_set_sample_cycle(sample_cycle) adc_ll_set_sample_cycle(sample_cycle)
/**
* Set ADC module power management.

View File

@@ -13,7 +13,7 @@ typedef enum {
ADC_UNIT_1 = 1, /*!< SAR ADC 1. */
ADC_UNIT_2 = 2, /*!< SAR ADC 2. */
ADC_UNIT_BOTH = 3, /*!< SAR ADC 1 and 2. */
ADC_UNIT_ALTER = 7, /*!< SAR ADC 1 and 2 alternative mode, not supported yet */
ADC_UNIT_ALTER = 7, /*!< SAR ADC 1 and 2 alternative mode. */
ADC_UNIT_MAX,
} adc_unit_t;
@@ -75,29 +75,58 @@ typedef enum {
ADC_WIDTH_MAX,
} adc_bits_width_t;
/**
* @brief ADC digital controller (DMA mode) output data format option.
*/
typedef enum {
ADC_DIGI_FORMAT_12BIT, /*!<ADC to DMA data format, [15:12]-channel, [11: 0]-12 bits ADC data (`adc_digi_output_data_t`).
Note: In single convert mode. */
ADC_DIGI_FORMAT_11BIT, /*!<ADC to DMA data format, [15]-adc unit, [14:11]-channel, [10: 0]-11 bits ADC data (`adc_digi_output_data_t`).
Note: In multi or alter convert mode. */
ADC_DIGI_FORMAT_MAX,
} adc_digi_output_format_t;
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.
*
* @note ESP32S2:
* Member `channel` can be used to judge the validity of the ADC data, because the role of the arbiter may get invalid ADC data.
*/
typedef struct {
union {
struct {
uint16_t data: 12; /*!<ADC real output data info. Resolution: 12 bit. */
uint16_t channel: 4; /*!<ADC channel index info. For ESP32S2:
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
} type1; /*!<When the configured output format is 12bit. `ADC_DIGI_FORMAT_12BIT` */
struct {
uint16_t data: 11; /*!<ADC real output data info. Resolution: 11 bit. */
uint16_t channel: 4; /*!<ADC channel index info. For ESP32S2:
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
uint16_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
} type2; /*!<When the configured output format is 11bit. `ADC_DIGI_FORMAT_11BIT` */
uint16_t val;
};
} adc_digi_output_data_t;
#ifdef CONFIG_IDF_TARGET_ESP32S2
/**
* @brief ADC digital controller (DMA mode) clock system setting.
* Expression: controller_clk = (`APLL` or `APB`) * (div_num + div_b / div_a).
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*/
typedef struct {
bool use_apll; /*!<true: use APLL clock; false: use APB clock. */
uint32_t div_num; /*!<Division factor. Range: 1 ~ 255. */
uint32_t div_num; /*!<Division factor. Range: 0 ~ 255.
Note: When a higher frequency clock is used (the division factor is less than 9),
the ADC reading value will be slightly offset. */
uint32_t div_b; /*!<Division factor. Range: 1 ~ 63. */
uint32_t div_a; /*!<Division factor. Range: 1 ~ 63. */
uint32_t div_a; /*!<Division factor. Range: 0 ~ 63. */
} adc_digi_clk_t;
/**
* @brief ADC digital controller (DMA mode) clock system default setting.
*/
#define ADC_DIGITAL_CLK_DEFAULT() { \
.use_apll = 0, \
.div_num = 40, \
.div_b = 1, \
.div_a = 1, \
}
/**
* @brief ADC arbiter work mode option.
*
@@ -116,7 +145,7 @@ typedef enum {
* @note ESP32S2: Only ADC2 support arbiter.
*/
typedef struct {
adc_arbiter_mode_t mode; /*!<Refer to `adc_arbiter_mode_t`. Note: only support ADC2. */
adc_arbiter_mode_t mode; /*!<Refer to ``adc_arbiter_mode_t``. Note: only support ADC2. */
uint8_t rtc_pri; /*!<RTC controller priority. Range: 0 ~ 2. */
uint8_t dig_pri; /*!<Digital controller priority. Range: 0 ~ 2. */
uint8_t pwdet_pri; /*!<Wi-Fi controller priority. Range: 0 ~ 2. */
@@ -137,7 +166,11 @@ typedef struct {
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note Member `channel` can be used to judge the validity of the ADC data, because the role of the arbiter may get invalid ADC data.
* @note The conversion mode affects the sampling frequency:
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_CONV_SINGLE_UNIT_1 = 1, /*!< SAR ADC 1. */
@@ -147,42 +180,6 @@ typedef enum {
ADC_CONV_UNIT_MAX,
} adc_digi_convert_mode_t;
/**
* @brief ADC digital controller (DMA mode) output data format option.
*/
typedef enum {
ADC_DIGI_FORMAT_12BIT, /*!<ADC to DMA data format, [15:12]-channel, [11: 0]-12 bits ADC data (`adc_digi_output_data_t`).
Note: In single convert mode. */
ADC_DIGI_FORMAT_11BIT, /*!<ADC to DMA data format, [15]-adc unit, [14:11]-channel, [10: 0]-11 bits ADC data (`adc_digi_output_data_t`).
Note: In multi or alter convert mode. */
ADC_DIGI_FORMAT_MAX,
} adc_digi_output_format_t;
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.
*
* @note Member `channel` can be used to judge the validity of the ADC data, because the role of the arbiter may get invalid ADC data.
*/
typedef struct {
union {
struct {
uint16_t data: 12; /*!<ADC real output data info. Resolution: 12 bit. */
uint16_t channel: 4; /*!<ADC channel index info.
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
} type1; /*!<When the configured output format is 12bit. `ADC_DIGI_FORMAT_12BIT` */
struct {
uint16_t data: 11; /*!<ADC real output data info. Resolution: 11 bit. */
uint16_t channel: 4; /*!<ADC channel index info.
If (channel < ADC_CHANNEL_MAX), The data is valid.
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
uint16_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
} type2; /*!<When the configured output format is 11bit. `ADC_DIGI_FORMAT_11BIT` */
uint16_t val;
};
} adc_digi_output_data_t;
/**
* @brief ADC digital controller (DMA mode) conversion rules setting.
*/
@@ -212,26 +209,54 @@ typedef enum {
/**
* @brief ADC digital controller (DMA mode) configuration parameters.
*
* Example setting: Use ADC1 channel0 to measure voltage, the sampling rate is required to be 1KHz:
* +---------------------+--------+--------+--------+
* | sample rate | 1KHz | 1KHz | 1KHz |
* +---------------------+--------+--------+--------+
* | conv_mode | single | both | alter |
* | adc1_pattern_len | 1 | 1 | 1 |
* | dig_clk.use_apll | 0 | 0 | 0 |
* | dig_clk.div_num | 99 | 99 | 99 |
* | dig_clk.div_b | 0 | 0 | 0 |
* | dig_clk.div_a | 0 | 0 | 0 |
* | interval | 400 | 400 | 200 |
* +---------------------+--------+--------+--------+
* | `trigger_meas_freq` | 1KHz | 1KHz | 2KHz |
* +---------------------+--------+--------+--------+
*
* Explain the relationship between `conv_limit_num`, `dma_eof_num` and the number of DMA output:
* +---------------------+--------+--------+--------+
* | conv_mode | single | both | alter |
* +---------------------+--------+--------+--------+
* | trigger meas times | 1 | 1 | 1 |
* +---------------------+--------+--------+--------+
* | conv_limit_num | +1 | +1 | +1 |
* | dma_eof_num | +1 | +2 | +1 |
* | dma output (byte) | +2 | +4 | +2 |
* +---------------------+--------+--------+--------+
*/
typedef struct {
bool conv_limit_en; /*!<Enable max conversion number detection for digital controller.
If the number of ADC conversion is equal to the `limit_num`, the conversion is stopped. */
uint32_t conv_limit_num; /*!<ADC max conversion number for digital controller. */
uint32_t adc1_pattern_len; /*!<Pattern table length for digital controller. Range: 0 ~ 16.
bool conv_limit_en; /*!<Enable the function of limiting ADC conversion times.
If the number of ADC conversion trigger count is equal to the `limit_num`, the conversion is stopped. */
uint32_t conv_limit_num; /*!<Set the upper limit of the number of ADC conversion triggers. Range: 1 ~ 255. */
uint32_t adc1_pattern_len; /*!<Pattern table length for digital controller. Range: 0 ~ 16 (0: Don't change the pattern table setting).
The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself. */
uint32_t adc2_pattern_len; /*!<Refer to `adc1_pattern_len` */
uint32_t adc2_pattern_len; /*!<Refer to ``adc1_pattern_len`` */
adc_digi_pattern_table_t *adc1_pattern; /*!<Pointer to pattern table for digital controller. The table size defined by `adc1_pattern_len`. */
adc_digi_pattern_table_t *adc2_pattern; /*!<Refer to `adc1_pattern` */
adc_digi_convert_mode_t conv_mode; /*!<ADC conversion mode for digital controller. */
adc_digi_output_format_t format; /*!<ADC output data format for digital controller. */
adc_digi_pattern_table_t *adc2_pattern; /*!<Refer to ``adc1_pattern`` */
adc_digi_convert_mode_t conv_mode; /*!<ADC conversion mode for digital controller. See ``adc_digi_convert_mode_t``. */
adc_digi_output_format_t format; /*!<ADC output data format for digital controller. See ``adc_digi_output_format_t``. */
uint32_t interval; /*!<The number of interval clock cycles for the digital controller to trigger the measurement.
The unit is the divided clock. Range: 40 ~ 4095. */
adc_digi_clk_t dig_clk; /*!<Refer to `adc_digi_clk_t` */
The unit is the divided clock. Range: 40 ~ 4095.
Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
Note: The sampling rate of each channel is also related to the conversion mode (See ``adc_digi_convert_mode_t``) and pattern table settings. */
adc_digi_clk_t dig_clk; /*!<ADC digital controller clock divider settings. Refer to ``adc_digi_clk_t`` */
uint32_t dma_eof_num; /*!<DMA eof num of adc digital controller.
If the number of measurements reaches `dma_eof_num`,
then `dma_in_suc_eof` signal is generated. */
If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated in DMA.
Note: The converted data in the DMA in link buffer will be multiple of two bytes. */
} adc_digi_config_t;
/**

View File

@@ -265,7 +265,7 @@ typedef struct touch_filter_config {
uint32_t hysteresis_thr; /*!<Hysteresis threshold coefficient. hysteresis = hysteresis coefficient * touch threshold.
If (raw data - baseline) > (touch threshold + hysteresis), the touch channel be touched.
If (raw data - baseline) < (touch threshold - hysteresis), the touch channel be released.
Range: 0 ~ 3. The coefficient is 0: 4/32; 1: 3/32; 2: 2/32; 3: OFF */
Range: 0 ~ 3. The coefficient is 0: 4/32; 1: 3/32; 2: 1/32; 3: OFF */
uint32_t noise_thr; /*!<Noise threshold coefficient. noise = noise coefficient * touch threshold.
If (raw data - baseline) > (noise), the baseline stop updating.
If (raw data - baseline) < (noise), the baseline start updating.

View File

@@ -14,7 +14,7 @@
#define SOC_ADC_FSM_RSTB_WAIT_DEFAULT (8)
#define SOC_ADC_FSM_START_WAIT_DEFAULT (5)
#define SOC_ADC_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_FSM_SAMPLE_CYCLE_DEFAULT (3)
/**
* Check if adc support digital controller (DMA) mode.

View File

@@ -43,7 +43,7 @@ typedef struct {
adc_hal_digi_pattern_table_t *adc1_pattern; /*!<Pointer to pattern table for digital controller. The table size defined by `adc1_pattern_len`. */
adc_hal_digi_pattern_table_t *adc2_pattern; /*!<Refer to `adc1_pattern` */
adc_hal_digi_convert_mode_t conv_mode; /*!<ADC conversion mode for digital controller. ESP32 only support ADC1 single mode. */
adc_hal_digi_output_format_t format; /*!<ADC output data format for digital controller. */
adc_digi_output_format_t format; /*!<ADC output data format for digital controller. */
uint32_t clk_div; /*!< ADC module clock division factor. ADC clock divided from APB clock.*/
} adc_hal_digi_config_t;

View File

@@ -8,14 +8,6 @@
extern "C" {
#endif
typedef enum {
ADC_DIGI_FORMAT_12BIT, /*!< ADC to I2S data format, [15:12]-channel [11:0]-12 bits ADC data.
Note: In single convert mode. */
ADC_DIGI_FORMAT_11BIT, /*!< ADC to I2S data format, [15]-adc unit [14:11]-channel [10:0]-11 bits ADC data.
Note: In multi convert mode. */
ADC_DIGI_FORMAT_MAX,
} adc_hal_digi_output_format_t;
typedef enum {
ADC_CONV_SINGLE_UNIT_1 = 1, /*!< SAR ADC 1*/
ADC_CONV_SINGLE_UNIT_2 = 2, /*!< SAR ADC 2, not supported yet*/
@@ -94,13 +86,12 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
}
/**
* Set adc sample cycle for digital controller.
* Set adc sample cycle.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
* @param sample_cycle The number of ADC sampling cycles. Range: 1 ~ 7.
*/
static inline void adc_ll_digi_set_sample_cycle(uint32_t sample_cycle)
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
SYSCON.saradc_fsm.sample_cycle = sample_cycle;
}
@@ -119,9 +110,9 @@ static inline void adc_ll_digi_set_clk_div(uint32_t div)
/**
* Set adc output data format for digital controller.
*
* @param format Output data format, see ``adc_hal_digi_output_format_t``.
* @param format Output data format, see ``adc_digi_output_format_t``.
*/
static inline void adc_ll_digi_set_output_format(adc_hal_digi_output_format_t format)
static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format)
{
SYSCON.saradc_ctrl.data_sar_sel = format;
}

View File

@@ -94,9 +94,9 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @param clk Refer to `adc_digi_clk_t`.
* @param clk Refer to ``adc_digi_clk_t``.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk)
{
@@ -127,7 +127,7 @@ void adc_hal_digi_disable(void)
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to `adc_digi_monitor_t`.
* @param config Refer to ``adc_digi_monitor_t``.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
{
@@ -148,7 +148,7 @@ void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to `adc_arbiter_t`.
* @param config Refer to ``adc_arbiter_t``.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config)
{

View File

@@ -61,6 +61,7 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg);
/**
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
*
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
@@ -80,9 +81,9 @@ void adc_hal_digi_disable(void);
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @param clk Refer to `adc_digi_clk_t`.
* @param clk Refer to ``adc_digi_clk_t``.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
@@ -133,7 +134,7 @@ void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to `adc_digi_monitor_t`.
* @param config Refer to ``adc_digi_monitor_t``.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config);
@@ -223,7 +224,7 @@ void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to `adc_arbiter_t`.
* @param config Refer to ``adc_arbiter_t``.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config);

View File

@@ -1,11 +1,13 @@
#pragma once
#include <stdbool.h>
#include "soc/adc_periph.h"
#include "hal/adc_types.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include <stdbool.h>
#include "soc/rtc_cntl_reg.h"
#include "i2c_rtc_clk.h"
#ifdef __cplusplus
extern "C" {
@@ -51,7 +53,7 @@ typedef struct {
/**
* @brief ADC controller type selection.
*
*
* @note For ADC2, use the force option with care. The system power consumption detection will use ADC2.
* If it is forced to switch to another controller, it may cause the system to obtain incorrect values.
* @note Normally, there is no need to switch the controller manually.
@@ -67,6 +69,49 @@ typedef enum {
ADC2_CTRL_FORCE_DIG = 6, /*!<For ADC2. Arbiter in shield mode. Force select digital controller work. */
} adc_controller_t;
/* ADC calibration defines. */
#define ADC_LL_I2C_ADC 0X69
#define ADC_LL_I2C_ADC_HOSTID 0
#define ADC_LL_ANA_CONFIG2_REG 0x6000E048
#define ADC_LL_SAR1_ENCAL_GND_ADDR 0x7
#define ADC_LL_SAR1_ENCAL_GND_ADDR_MSB 5
#define ADC_LL_SAR1_ENCAL_GND_ADDR_LSB 5
#define ADC_LL_SAR2_ENCAL_GND_ADDR 0x7
#define ADC_LL_SAR2_ENCAL_GND_ADDR_MSB 7
#define ADC_LL_SAR2_ENCAL_GND_ADDR_LSB 7
#define ADC_LL_SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define ADC_LL_SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_LL_SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_LL_SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define ADC_LL_SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_LL_SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define ADC_LL_SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define ADC_LL_SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_LL_SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_LL_SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define ADC_LL_SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_LL_SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define ADC_LL_SAR1_DREF_ADDR 0x2
#define ADC_LL_SAR1_DREF_ADDR_MSB 0x6
#define ADC_LL_SAR1_DREF_ADDR_LSB 0x4
#define ADC_LL_SAR2_DREF_ADDR 0x5
#define ADC_LL_SAR2_DREF_ADDR_MSB 0x6
#define ADC_LL_SAR2_DREF_ADDR_LSB 0x4
#define ADC_LL_SAR1_SAMPLE_CYCLE_ADDR 0x2
#define ADC_LL_SAR1_SAMPLE_CYCLE_ADDR_MSB 0x2
#define ADC_LL_SAR1_SAMPLE_CYCLE_ADDR_LSB 0x0
/* ADC calibration defines end. */
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
@@ -89,15 +134,21 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
}
/**
* Set adc sample cycle for digital controller.
* Set adc sample cycle.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
* @param sample_cycle The number of ADC sampling cycles. Range: 1 ~ 7.
*/
static inline void adc_ll_digi_set_sample_cycle(uint32_t sample_cycle)
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
APB_SARADC.fsm.sample_cycle = sample_cycle;
/* Should be called before writing I2C registers. */
void phy_get_romfunc_addr(void);
phy_get_romfunc_addr();
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
SET_PERI_REG_MASK(ADC_LL_ANA_CONFIG2_REG, BIT(16));
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
@@ -263,6 +314,7 @@ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
/**
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
*
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
@@ -292,11 +344,11 @@ static inline void adc_ll_digi_trigger_disable(void)
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 1 ~ 255.
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
@@ -1027,7 +1079,7 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ct
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
*
* @param mode Refer to `adc_arbiter_mode_t`.
* @param mode Refer to ``adc_arbiter_mode_t``.
*/
static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
{
@@ -1092,7 +1144,7 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
* In sleep mode, the arbiter is in power-down mode.
* Need to switch the controller to RTC to shield the control of the arbiter.
* After waking up, it needs to switch to arbiter control.
*
*
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
* @note Only support ADC2.
*/
@@ -1116,47 +1168,6 @@ static inline void adc_ll_disable_sleep_controller(void)
}
/* ADC calibration code. */
#include "soc/rtc_cntl_reg.h"
#include "i2c_rtc_clk.h"
#define I2C_ADC 0X69
#define I2C_ADC_HOSTID 0
#define ANA_CONFIG2_REG 0x6000E048
#define ANA_CONFIG2_M (BIT(18))
#define SAR1_ENCAL_GND_ADDR 0x7
#define SAR1_ENCAL_GND_ADDR_MSB 5
#define SAR1_ENCAL_GND_ADDR_LSB 5
#define SAR2_ENCAL_GND_ADDR 0x7
#define SAR2_ENCAL_GND_ADDR_MSB 7
#define SAR2_ENCAL_GND_ADDR_LSB 7
#define SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define SAR1_DREF_ADDR 0x2
#define SAR1_DREF_ADDR_MSB 0x6
#define SAR1_DREF_ADDR_LSB 0x4
#define SAR2_DREF_ADDR 0x5
#define SAR2_DREF_ADDR_MSB 0x6
#define SAR2_DREF_ADDR_LSB 0x4
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
@@ -1169,28 +1180,28 @@ static inline void adc_ll_disable_sleep_controller(void)
*/
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
{
/* Enable i2s_write_reg function. */
/* Should be called before writing I2C registers. */
void phy_get_romfunc_addr(void);
phy_get_romfunc_addr();
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
SET_PERI_REG_MASK(ADC_LL_ANA_CONFIG2_REG, BIT(16));
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_NUM_1) {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_DREF_ADDR, 4);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_DREF_ADDR, 4);
if (internal_gnd) {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_ENCAL_GND_ADDR, 1);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 1);
} else {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 0);
}
} else {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_DREF_ADDR, 4);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_DREF_ADDR, 4);
if (internal_gnd) {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_ENCAL_GND_ADDR, 1);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 1);
} else {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 0);
}
}
}
@@ -1203,9 +1214,9 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
{
if (adc_n == ADC_NUM_1) {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_ENCAL_GND_ADDR, 0);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 0);
} else {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_ENCAL_GND_ADDR, 0);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 0);
}
}
@@ -1220,19 +1231,19 @@ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t par
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
/* Enable i2s_write_reg function. */
/* Should be called before writing I2C registers. */
void phy_get_romfunc_addr(void);
phy_get_romfunc_addr();
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18));
SET_PERI_REG_MASK(ANA_CONFIG2_REG, BIT(16));
SET_PERI_REG_MASK(ADC_LL_ANA_CONFIG2_REG, BIT(16));
if (adc_n == ADC_NUM_1) {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_INITIAL_CODE_HIGH_ADDR, msb);
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR1_INITIAL_CODE_LOW_ADDR, lsb);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_INITIAL_CODE_HIGH_ADDR, msb);
I2C_WRITEREG_MASK_RTC(I2C_ADC, SAR2_INITIAL_CODE_LOW_ADDR, lsb);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
}
}
/* Temp code end. */

View File

@@ -202,14 +202,14 @@ void touch_hal_filter_get_config(touch_filter_config_t *filter_info);
* Set filter mode. The input to the filter is raw data and the output is the baseline value.
* Larger filter coefficients increase the stability of the baseline.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
#define touch_hal_filter_set_filter_mode(mode) touch_ll_filter_set_filter_mode(mode)
/**
* Get filter mode. The input to the filter is raw data and the output is the baseline value.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
#define touch_hal_filter_get_filter_mode(mode) touch_ll_filter_get_filter_mode(mode)
@@ -566,7 +566,7 @@ void touch_hal_sleep_channel_get_config(touch_pad_sleep_channel_t *slp_config);
* After the sleep channel is configured, users should query the channel reading using a specific function.
*
* @note ESP32S2 only support one channel to be set sleep channel.
*
*
* @param pad_num touch sleep pad number.
* @param enable Enable/disable sleep pad function.
*/

View File

@@ -669,7 +669,7 @@ static inline void touch_ll_filter_reset_baseline(touch_pad_t touch_num)
* Set filter mode. The input to the filter is raw data and the output is the baseline value.
* Larger filter coefficients increase the stability of the baseline.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
static inline void touch_ll_filter_set_filter_mode(touch_filter_mode_t mode)
{
@@ -679,7 +679,7 @@ static inline void touch_ll_filter_set_filter_mode(touch_filter_mode_t mode)
/**
* Get filter mode. The input to the filter is raw data and the output is the baseline value.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
static inline void touch_ll_filter_get_filter_mode(touch_filter_mode_t *mode)
{
@@ -690,7 +690,7 @@ static inline void touch_ll_filter_get_filter_mode(touch_filter_mode_t *mode)
* Set filter mode. The input to the filter is raw data and the output is the smooth data.
* The smooth data is used to determine the touch status.
*
* @param mode Filter mode type. Refer to `touch_smooth_mode_t`.
* @param mode Filter mode type. Refer to ``touch_smooth_mode_t``.
*/
static inline void touch_ll_filter_set_smooth_mode(touch_smooth_mode_t mode)
{
@@ -700,7 +700,7 @@ static inline void touch_ll_filter_set_smooth_mode(touch_smooth_mode_t mode)
/**
* Get filter mode. The smooth data is used to determine the touch status.
*
* @param mode Filter mode type. Refer to `touch_smooth_mode_t`.
* @param mode Filter mode type. Refer to ``touch_smooth_mode_t``.
*/
static inline void touch_ll_filter_get_smooth_mode(touch_smooth_mode_t *mode)
{

View File

@@ -19,7 +19,7 @@ void adc_hal_init(void)
// Set internal FSM wait time, fixed value.
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_digi_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));