bootloader: Add fault injection resistance to Secure Boot bootloader verification

Goal is that multiple faults would be required to bypass a boot-time signature check.

- Also strengthens some address range checks for safe app memory addresses
- Change pre-enable logic to also check the bootloader signature before enabling SBV2 on ESP32

Add some additional checks for invalid sections:

- Sections only partially in DRAM or IRAM are invalid
- If a section is in D/IRAM, allow the possibility only some is in D/IRAM
- Only pass sections that are entirely in the same type of RTC memory region
This commit is contained in:
Angus Gratton
2020-02-16 16:51:42 +11:00
committed by Mahavir Jain
parent 0dacff4df4
commit d40c69375c
21 changed files with 712 additions and 119 deletions

View File

@@ -366,4 +366,4 @@ esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
flash_failed:
ESP_LOGE(TAG, "flash operation failed: 0x%x", err);
return err;
}
}

View File

@@ -263,7 +263,7 @@ static esp_err_t secure_boot_v2_digest_generate(uint32_t flash_offset, uint32_t
/* Validating Signature block */
ret = validate_signature_block(sig_block, image_digest);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "signature block validation failed %d", ret);
ESP_LOGE(TAG, "signature block (address 0x%x) validation failed %d", sig_block_addr, ret);
goto done;
}
@@ -329,7 +329,7 @@ esp_err_t esp_secure_boot_v2_permanently_enable(const esp_image_metadata_t *imag
&& REG_READ(EFUSE_BLK2_RDATA6_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA7_REG) == 0) {
/* Verifies the signature block appended to the image matches with the signature block of the app to be loaded */
ret = secure_boot_v2_digest_generate(bootloader_data.start_addr, bootloader_data.image_len, boot_pub_key_digest);
ret = secure_boot_v2_digest_generate(bootloader_data.start_addr, bootloader_data.image_len - SIG_BLOCK_PADDING, boot_pub_key_digest);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Public key digest generation failed");
return ret;

View File

@@ -20,8 +20,9 @@
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "esp_spi_flash.h"
#include "esp_fault.h"
#include "esp32/rom/sha.h"
#include "uECC.h"
#include "uECC_verify_antifault.h"
#include <sys/param.h>
#include <string.h>
@@ -38,10 +39,11 @@ extern const uint8_t signature_verification_key_end[] asm("_binary_signature_ver
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
uint8_t digest[DIGEST_LEN];
uint8_t verified_digest[DIGEST_LEN] = { 0 }; /* ignored in this function */
const esp_secure_boot_sig_block_t *sigblock;
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
esp_err_t err = bootloader_sha256_flash_contents(src_addr, length, digest);
if (err != ESP_OK) {
return err;
@@ -54,7 +56,7 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
return ESP_FAIL;
}
// Verify the signature
err = esp_secure_boot_verify_signature_block(sigblock, digest);
err = esp_secure_boot_verify_ecdsa_signature_block(sigblock, digest, verified_digest);
// Unmap
bootloader_munmap(sigblock);
@@ -62,6 +64,12 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
}
esp_err_t esp_secure_boot_verify_signature_block(const esp_secure_boot_sig_block_t *sig_block, const uint8_t *image_digest)
{
uint8_t verified_digest[DIGEST_LEN] = { 0 };
return esp_secure_boot_verify_ecdsa_signature_block(sig_block, image_digest, verified_digest);
}
esp_err_t esp_secure_boot_verify_ecdsa_signature_block(const esp_secure_boot_sig_block_t *sig_block, const uint8_t *image_digest, uint8_t *verified_digest)
{
ptrdiff_t keylen;
@@ -79,12 +87,14 @@ esp_err_t esp_secure_boot_verify_signature_block(const esp_secure_boot_sig_block
ESP_LOGD(TAG, "Verifying secure boot signature");
bool is_valid;
is_valid = uECC_verify(signature_verification_key_start,
is_valid = uECC_verify_antifault(signature_verification_key_start,
image_digest,
DIGEST_LEN,
sig_block->signature,
uECC_secp256r1());
uECC_secp256r1(),
verified_digest);
ESP_LOGD(TAG, "Verification result %d", is_valid);
return is_valid ? ESP_OK : ESP_ERR_IMAGE_INVALID;
}
@@ -94,6 +104,7 @@ esp_err_t esp_secure_boot_verify_signature_block(const esp_secure_boot_sig_block
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
uint8_t digest[DIGEST_LEN] = {0};
uint8_t verified_digest[DIGEST_LEN] = {0}; // ignored in this function
const uint8_t *data;
/* Padding to round off the input to the nearest 4k boundary */
@@ -115,7 +126,7 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
}
const ets_secure_boot_signature_t *sig_block = (const ets_secure_boot_signature_t *)(data + padded_length);
err = esp_secure_boot_verify_signature_block(sig_block, digest);
err = esp_secure_boot_verify_rsa_signature_block(sig_block, digest, verified_digest);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Secure Boot V2 verification failed.");
}
@@ -124,16 +135,16 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
return err;
}
esp_err_t esp_secure_boot_verify_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest)
esp_err_t esp_secure_boot_verify_rsa_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest, uint8_t *verified_digest)
{
uint8_t efuse_trusted_digest[DIGEST_LEN] = {0}, sig_block_trusted_digest[DIGEST_LEN] = {0}, verified_digest[DIGEST_LEN] = {0};
uint8_t efuse_trusted_digest[DIGEST_LEN] = {0}, sig_block_trusted_digest[DIGEST_LEN] = {0};
secure_boot_v2_status_t r;
memcpy(efuse_trusted_digest, (uint8_t *)EFUSE_BLK2_RDATA0_REG, DIGEST_LEN); /* EFUSE_BLK2_RDATA0_REG - Stores the Secure Boot Public Key Digest */
if (!ets_use_secure_boot_v2()) {
ESP_LOGI(TAG, "Secure Boot EFuse bit(ABS_DONE_1) not yet programmed.");
/* Generating the SHA of the public key components in the signature block */
bootloader_sha256_handle_t sig_block_sha;
sig_block_sha = bootloader_sha256_start();
@@ -155,4 +166,4 @@ esp_err_t esp_secure_boot_verify_signature_block(const ets_secure_boot_signature
return (r == SBV2_SUCCESS) ? ESP_OK : ESP_ERR_IMAGE_INVALID;
}
#endif
#endif

View File

@@ -27,6 +27,7 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
ets_secure_boot_key_digests_t trusted_keys = { 0 };
uint8_t digest[DIGEST_LEN];
uint8_t verified_digest[DIGEST_LEN] = { 0 }; /* Note: this function doesn't do any anti-FI checks on this buffer */
const uint8_t *data;
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
@@ -57,14 +58,14 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
if (r == ETS_OK) {
const ets_secure_boot_signature_t *sig = (const ets_secure_boot_signature_t *)(data + length);
// TODO: calling this function in IDF app context is unsafe
r = ets_secure_boot_verify_signature(sig, digest, &trusted_keys);
r = ets_secure_boot_verify_signature(sig, digest, &trusted_keys, verified_digest);
}
bootloader_munmap(data);
return (r == ETS_OK) ? ESP_OK : ESP_FAIL;
}
esp_err_t esp_secure_boot_verify_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest)
esp_err_t esp_secure_boot_verify_rsa_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest, uint8_t *verified_digest)
{
ets_secure_boot_key_digests_t trusted_keys;
@@ -74,7 +75,7 @@ esp_err_t esp_secure_boot_verify_signature_block(const ets_secure_boot_signature
} else {
ESP_LOGD(TAG, "Verifying with RSA-PSS...");
// TODO: calling this function in IDF app context is unsafe
r = ets_secure_boot_verify_signature(sig_block, image_digest, &trusted_keys);
r = ets_secure_boot_verify_signature(sig_block, image_digest, &trusted_keys, verified_digest);
}
return (r == 0) ? ESP_OK : ESP_ERR_IMAGE_INVALID;

View File

@@ -16,6 +16,7 @@
#include <soc/cpu.h>
#include <bootloader_utility.h>
#include <esp_secure_boot.h>
#include <esp_fault.h>
#include <esp_log.h>
#include <esp_spi_flash.h>
#include <bootloader_flash.h>
@@ -23,6 +24,7 @@
#include <bootloader_sha.h>
#include "bootloader_util.h"
#include "bootloader_common.h"
#include "soc/soc_memory_layout.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/rtc.h"
#include "esp32/rom/secure_boot.h"
@@ -37,11 +39,11 @@
*/
#ifdef BOOTLOADER_BUILD
#ifdef CONFIG_SECURE_SIGNED_ON_BOOT
#define SECURE_BOOT_CHECK_SIGNATURE
#define SECURE_BOOT_CHECK_SIGNATURE 1
#endif
#else /* !BOOTLOADER_BUILD */
#ifdef CONFIG_SECURE_SIGNED_ON_UPDATE
#define SECURE_BOOT_CHECK_SIGNATURE
#define SECURE_BOOT_CHECK_SIGNATURE 1
#endif
#endif
@@ -61,9 +63,6 @@ static const char *TAG = "esp_image";
*/
static uint32_t ram_obfs_value[2];
/* Range of IRAM used by the loader, defined in ld script */
extern int _loader_text_start;
extern int _loader_text_end;
#endif
/* Return true if load_addr is an address the bootloader should load into */
@@ -94,7 +93,7 @@ static esp_err_t verify_segment_header(int index, const esp_image_segment_header
static esp_err_t verify_checksum(bootloader_sha256_handle_t sha_handle, uint32_t checksum_word, esp_image_metadata_t *data);
static esp_err_t __attribute__((unused)) verify_secure_boot_signature(bootloader_sha256_handle_t sha_handle, esp_image_metadata_t *data);
static esp_err_t __attribute__((unused)) verify_secure_boot_signature(bootloader_sha256_handle_t sha_handle, esp_image_metadata_t *data, uint8_t *image_digest, uint8_t *verified_digest);
static esp_err_t __attribute__((unused)) verify_simple_hash(bootloader_sha256_handle_t sha_handle, esp_image_metadata_t *data);
static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_t *part, esp_image_metadata_t *data)
@@ -112,6 +111,11 @@ static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_
uint32_t checksum_word = ESP_ROM_CHECKSUM_INITIAL;
uint32_t *checksum = NULL;
bootloader_sha256_handle_t sha_handle = NULL;
#if SECURE_BOOT_CHECK_SIGNATURE
/* used for anti-FI checks */
uint8_t image_digest[HASH_LEN] = { [ 0 ... 31] = 0xEE };
uint8_t verified_digest[HASH_LEN] = { [ 0 ... 31 ] = 0x01 };
#endif
if (data == NULL || part == NULL) {
return ESP_ERR_INVALID_ARG;
@@ -169,6 +173,7 @@ static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_
for (int i = 0; i < data->image.segment_count; i++) {
esp_image_segment_header_t *header = &data->segments[i];
ESP_LOGV(TAG, "loading segment header %d at offset 0x%x", i, next_addr);
err = process_segment(i, next_addr, header, silent, do_load, sha_handle, checksum);
if (err != ESP_OK) {
goto err;
@@ -194,14 +199,14 @@ static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_
}
}
/* For secure boot on ESP32, we don't calculate SHA or verify signautre on bootloaders.
For ESP32S2, we do verify signature on bootloader which includes the SHA calculation.
/* For secure boot V1 on ESP32, we don't calculate SHA or verify signature on bootloaders.
For Secure Boot V2, we do verify signature on bootloader which includes the SHA calculation.
(For non-secure boot, we don't verify any SHA-256 hash appended to the bootloader because
esptool.py may have rewritten the header - rely on esptool.py having verified the bootloader at flashing time, instead.)
*/
bool verify_sha;
#if CONFIG_SECURE_BOOT_V2_ENABLED && CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_SECURE_BOOT_V2_ENABLED
verify_sha = true;
#else // ESP32, or ESP32S2 without secure boot enabled
verify_sha = (data->start_addr != ESP_BOOTLOADER_OFFSET);
@@ -214,7 +219,7 @@ static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_
#ifdef SECURE_BOOT_CHECK_SIGNATURE
// secure boot images have a signature appended
err = verify_secure_boot_signature(sha_handle, data);
err = verify_secure_boot_signature(sha_handle, data, image_digest, verified_digest);
#else
// No secure boot, but SHA-256 can be appended for basic corruption detection
if (sha_handle != NULL && !esp_cpu_in_ocd_debug_mode()) {
@@ -247,7 +252,28 @@ static esp_err_t image_load(esp_image_load_mode_t mode, const esp_partition_pos_
}
#ifdef BOOTLOADER_BUILD
if (do_load && ram_obfs_value[0] != 0 && ram_obfs_value[1] != 0) { // Need to deobfuscate RAM
#ifdef SECURE_BOOT_CHECK_SIGNATURE
/* If signature was checked in bootloader build, verified_digest should equal image_digest
This is to detect any fault injection that caused signature verification to not complete normally.
Any attack which bypasses this check should be of limited use as the RAM contents are still obfuscated, therefore we do the check
immediately before we deobfuscate.
Note: the conditions for making this check are the same as for setting verify_sha above, but on ESP32 SB V1 we move the test for
"only verify signature in bootloader" into the macro so it's tested multiple times.
*/
#if CONFIG_SECURE_BOOT_V2_ENABLED
ESP_FAULT_ASSERT(memcmp(image_digest, verified_digest, HASH_LEN) == 0);
#else // Secure Boot V1 on ESP32, only verify signatures for apps not bootloaders
ESP_FAULT_ASSERT(data->start_addr == ESP_BOOTLOADER_OFFSET || memcmp(image_digest, verified_digest, HASH_LEN) == 0);
#endif
#endif // SECURE_BOOT_CHECK_SIGNATURE
// Deobfuscate RAM
if (do_load && ram_obfs_value[0] != 0 && ram_obfs_value[1] != 0) {
for (int i = 0; i < data->image.segment_count; i++) {
uint32_t load_addr = data->segments[i].load_addr;
if (should_load(load_addr)) {
@@ -333,6 +359,127 @@ static esp_err_t verify_image_header(uint32_t src_addr, const esp_image_header_t
return err;
}
#ifdef BOOTLOADER_BUILD
/* Check the region load_addr - load_end doesn't overlap any memory used by the bootloader, registers, or other invalid memory
*/
static bool verify_load_addresses(int segment_index, intptr_t load_addr, intptr_t load_end, bool print_error, bool no_recurse)
{
/* Addresses of static data and the "loader" section of bootloader IRAM, all defined in ld script */
const char *reason = NULL;
extern int _dram_start, _dram_end, _loader_text_start, _loader_text_end;
void *load_addr_p = (void *)load_addr;
void *load_end_p = (void *)load_end;
if (load_end == load_addr) {
return true; // zero-length segments are fine
}
assert(load_end > load_addr); // data_len<16MB is checked in verify_segment_header() which is called before this, so this should always be true
if (esp_ptr_in_dram(load_addr_p) && esp_ptr_in_dram(load_end_p)) { /* Writing to DRAM */
/* Check if we're clobbering the stack */
intptr_t sp = (intptr_t)get_sp();
if (bootloader_util_regions_overlap(sp - STACK_LOAD_HEADROOM, SOC_ROM_STACK_START,
load_addr, load_end)) {
reason = "overlaps bootloader stack";
goto invalid;
}
/* Check if we're clobbering static data
(_dram_start.._dram_end includes bss, data, rodata sections in DRAM)
*/
if (bootloader_util_regions_overlap((intptr_t)&_dram_start, (intptr_t)&_dram_end, load_addr, load_end)) {
reason = "overlaps bootloader data";
goto invalid;
}
/* LAST DRAM CHECK (recursive): for D/IRAM, check the equivalent IRAM addresses if needed
Allow for the possibility that even though both pointers are IRAM, only part of the region is in a D/IRAM
section. In which case we recurse to check the part which falls in D/IRAM.
Note: We start with SOC_DIRAM_DRAM_LOW/HIGH and convert that address to IRAM to account for any reversing of word order
(chip-specific).
*/
if (!no_recurse && bootloader_util_regions_overlap(SOC_DIRAM_DRAM_LOW, SOC_DIRAM_DRAM_HIGH, load_addr, load_end)) {
intptr_t iram_load_addr, iram_load_end;
if (esp_ptr_in_diram_dram(load_addr_p)) {
iram_load_addr = (intptr_t)esp_ptr_diram_dram_to_iram(load_addr_p);
} else {
iram_load_addr = (intptr_t)esp_ptr_diram_dram_to_iram((void *)SOC_DIRAM_DRAM_LOW);
}
if (esp_ptr_in_diram_dram(load_end_p)) {
iram_load_end = (intptr_t)esp_ptr_diram_dram_to_iram(load_end_p);
} else {
iram_load_end = (intptr_t)esp_ptr_diram_dram_to_iram((void *)SOC_DIRAM_DRAM_HIGH);
}
if (iram_load_end < iram_load_addr) {
return verify_load_addresses(segment_index, iram_load_end, iram_load_addr, print_error, true);
} else {
return verify_load_addresses(segment_index, iram_load_addr, iram_load_end, print_error, true);
}
}
}
else if (esp_ptr_in_iram(load_addr_p) && esp_ptr_in_iram(load_end_p)) { /* Writing to IRAM */
/* Check for overlap of 'loader' section of IRAM */
if (bootloader_util_regions_overlap((intptr_t)&_loader_text_start, (intptr_t)&_loader_text_end,
load_addr, load_end)) {
reason = "overlaps loader IRAM";
goto invalid;
}
/* LAST IRAM CHECK (recursive): for D/IRAM, check the equivalent DRAM address if needed
Allow for the possibility that even though both pointers are IRAM, only part of the region is in a D/IRAM
section. In which case we recurse to check the part which falls in D/IRAM.
Note: We start with SOC_DIRAM_IRAM_LOW/HIGH and convert that address to DRAM to account for any reversing of word order
(chip-specific).
*/
if (!no_recurse && bootloader_util_regions_overlap(SOC_DIRAM_IRAM_LOW, SOC_DIRAM_IRAM_HIGH, load_addr, load_end)) {
intptr_t dram_load_addr, dram_load_end;
if (esp_ptr_in_diram_iram(load_addr_p)) {
dram_load_addr = (intptr_t)esp_ptr_diram_iram_to_dram(load_addr_p);
} else {
dram_load_addr = (intptr_t)esp_ptr_diram_iram_to_dram((void *)SOC_DIRAM_IRAM_LOW);
}
if (esp_ptr_in_diram_iram(load_end_p)) {
dram_load_end = (intptr_t)esp_ptr_diram_iram_to_dram(load_end_p);
} else {
dram_load_end = (intptr_t)esp_ptr_diram_iram_to_dram((void *)SOC_DIRAM_IRAM_HIGH);
}
if (dram_load_end < dram_load_addr) {
return verify_load_addresses(segment_index, dram_load_end, dram_load_addr, print_error, true);
} else {
return verify_load_addresses(segment_index, dram_load_addr, dram_load_end, print_error, true);
}
}
/* Sections entirely in RTC memory won't overlap with a vanilla bootloader but are valid load addresses, thus skipping them from the check */
} else if (esp_ptr_in_rtc_iram_fast(load_addr_p) && esp_ptr_in_rtc_iram_fast(load_end_p)){
return true;
} else if (esp_ptr_in_rtc_dram_fast(load_addr_p) && esp_ptr_in_rtc_dram_fast(load_end_p)){
return true;
} else if (esp_ptr_in_rtc_slow(load_addr_p) && esp_ptr_in_rtc_slow(load_end_p)) {
return true;
} else { /* Not a DRAM or an IRAM or RTC Fast IRAM, RTC Fast DRAM or RTC Slow address */
reason = "bad load address range";
goto invalid;
}
return true;
invalid:
if (print_error) {
ESP_LOGE(TAG, "Segment %d 0x%08x-0x%08x invalid: %s", segment_index, load_addr, load_end, reason);
}
return false;
}
#endif // BOOTLOADER_BUILD
static esp_err_t process_segment(int index, uint32_t flash_addr, esp_image_segment_header_t *header, bool silent, bool do_load, bootloader_sha256_handle_t sha_handle, uint32_t *checksum)
{
esp_err_t err;
@@ -376,33 +523,8 @@ static esp_err_t process_segment(int index, uint32_t flash_addr, esp_image_segme
#ifdef BOOTLOADER_BUILD
/* Before loading segment, check it doesn't clobber bootloader RAM. */
if (do_load && data_len > 0) {
const intptr_t load_end = load_addr + data_len;
if (load_end < (intptr_t) SOC_DRAM_HIGH) {
/* Writing to DRAM */
intptr_t sp = (intptr_t)get_sp();
if (load_end > sp - STACK_LOAD_HEADROOM) {
/* Bootloader .data/.rodata/.bss is above the stack, so this
* also checks that we aren't overwriting these segments.
*
* TODO: This assumes specific arrangement of sections we have
* in the ESP32. Rewrite this in a generic way to support other
* layouts.
*/
ESP_LOGE(TAG, "Segment %d end address 0x%08x too high (bootloader stack 0x%08x limit 0x%08x)",
index, load_end, sp, sp - STACK_LOAD_HEADROOM);
return ESP_ERR_IMAGE_INVALID;
}
} else {
/* Writing to IRAM */
const intptr_t loader_iram_start = (intptr_t) &_loader_text_start;
const intptr_t loader_iram_end = (intptr_t) &_loader_text_end;
if (bootloader_util_regions_overlap(loader_iram_start, loader_iram_end,
load_addr, load_end)) {
ESP_LOGE(TAG, "Segment %d (0x%08x-0x%08x) overlaps bootloader IRAM (0x%08x-0x%08x)",
index, load_addr, load_end, loader_iram_start, loader_iram_end);
return ESP_ERR_IMAGE_INVALID;
}
if (!verify_load_addresses(index, load_addr, load_addr + data_len, true, false)) {
return ESP_ERR_IMAGE_INVALID;
}
}
#endif // BOOTLOADER_BUILD
@@ -412,6 +534,10 @@ static esp_err_t process_segment(int index, uint32_t flash_addr, esp_image_segme
int32_t data_len_remain = data_len;
while (data_len_remain > 0) {
#if SECURE_BOOT_CHECK_SIGNATURE && defined(BOOTLOADER_BUILD)
/* Double check the address verification done above */
ESP_FAULT_ASSERT(!do_load || verify_load_addresses(0, load_addr, load_addr + data_len_remain, false, false));
#endif
uint32_t offset_page = ((data_addr & MMAP_ALIGNED_MASK) != 0) ? 1 : 0;
/* Data we could map in case we are not aligned to PAGE boundary is one page size lesser. */
data_len = MIN(data_len_remain, ((free_page_count - offset_page) * SPI_FLASH_MMU_PAGE_SIZE));
@@ -437,7 +563,7 @@ static esp_err_t process_segment_data(intptr_t load_addr, uint32_t data_addr, ui
{
// If we are not loading, and the checksum is empty, skip processing this
// segment for data
if(!do_load && checksum == NULL) {
if (!do_load && checksum == NULL) {
ESP_LOGD(TAG, "skipping checksum for segment");
return ESP_OK;
}
@@ -620,9 +746,9 @@ static esp_err_t verify_checksum(bootloader_sha256_handle_t sha_handle, uint32_t
return ESP_OK;
}
static esp_err_t verify_secure_boot_signature(bootloader_sha256_handle_t sha_handle, esp_image_metadata_t *data)
static esp_err_t verify_secure_boot_signature(bootloader_sha256_handle_t sha_handle, esp_image_metadata_t *data, uint8_t *image_digest, uint8_t *verified_digest)
{
uint8_t image_hash[HASH_LEN] = { 0 };
#ifdef SECURE_BOOT_CHECK_SIGNATURE
uint32_t end = data->start_addr + data->image_len;
ESP_LOGI(TAG, "Verifying image signature...");
@@ -634,21 +760,37 @@ static esp_err_t verify_secure_boot_signature(bootloader_sha256_handle_t sha_han
bootloader_sha256_data(sha_handle, simple_hash, HASH_LEN);
bootloader_munmap(simple_hash);
}
bootloader_sha256_finish(sha_handle, image_hash);
#if CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME
// End of the image needs to be padded all the way to a 4KB boundary, after the simple hash
// (for apps they are usually already padded due to --secure-pad-v2, only a problem if this option was not used.)
uint32_t padded_end = (end + FLASH_SECTOR_SIZE - 1) & ~(FLASH_SECTOR_SIZE-1);
if (padded_end > end) {
const void *padding = bootloader_mmap(end, padded_end - end);
bootloader_sha256_data(sha_handle, padding, padded_end - end);
bootloader_munmap(padding);
end = padded_end;
}
#endif
bootloader_sha256_finish(sha_handle, image_digest);
// Log the hash for debugging
bootloader_debug_buffer(image_hash, HASH_LEN, "Calculated secure boot hash");
bootloader_debug_buffer(image_digest, HASH_LEN, "Calculated secure boot hash");
#ifdef SECURE_BOOT_CHECK_SIGNATURE
// Use hash to verify signature block
esp_err_t err = ESP_ERR_IMAGE_INVALID;
const void *sig_block;
#ifdef CONFIG_SECURE_SIGNED_APPS_ECDSA_SCHEME
#ifdef CONFIG_SECURE_SIGNED_APPS_ECDSA_SCHEME
ESP_FAULT_ASSERT(memcmp(image_digest, verified_digest, HASH_LEN) != 0); /* sanity check that these values start differently */
sig_block = bootloader_mmap(data->start_addr + data->image_len, sizeof(esp_secure_boot_sig_block_t));
#elif CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME
err = esp_secure_boot_verify_ecdsa_signature_block(sig_block, image_digest, verified_digest);
#elif CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME
ESP_FAULT_ASSERT(memcmp(image_digest, verified_digest, HASH_LEN) != 0); /* sanity check that these values start differently */
sig_block = bootloader_mmap(end, sizeof(ets_secure_boot_signature_t));
#endif
err = esp_secure_boot_verify_signature_block(sig_block, image_hash);
err = esp_secure_boot_verify_rsa_signature_block(sig_block, image_digest, verified_digest);
#endif
bootloader_munmap(sig_block);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Secure boot signature verification failed");
@@ -668,13 +810,13 @@ static esp_err_t verify_secure_boot_signature(bootloader_sha256_handle_t sha_han
}
return ESP_ERR_IMAGE_INVALID;
}
#endif
#if CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME
// Adjust image length result to include the appended signature
data->image_len = end - data->start_addr + sizeof(ets_secure_boot_signature_t);
#endif
#endif // SECURE_BOOT_CHECK_SIGNATURE
return ESP_OK;
}

View File

@@ -41,6 +41,7 @@ extern const uint8_t signature_verification_key_end[] asm("_binary_signature_ver
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
uint8_t digest[DIGEST_LEN];
uint8_t verified_digest[DIGEST_LEN];
const esp_secure_boot_sig_block_t *sigblock;
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
@@ -57,12 +58,12 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", src_addr + length, sizeof(esp_secure_boot_sig_block_t));
return ESP_FAIL;
}
err = esp_secure_boot_verify_signature_block(sigblock, digest);
err = esp_secure_boot_verify_ecdsa_signature_block(sigblock, digest, verified_digest);
bootloader_munmap(sigblock);
return err;
}
esp_err_t esp_secure_boot_verify_signature_block(const esp_secure_boot_sig_block_t *sig_block, const uint8_t *image_digest)
esp_err_t esp_secure_boot_verify_ecdsa_signature_block(const esp_secure_boot_sig_block_t *sig_block, const uint8_t *image_digest, uint8_t *verified_digest)
{
#if !(defined(CONFIG_MBEDTLS_ECDSA_C) && defined(CONFIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED))
ESP_LOGE(TAG, "Signature verification requires ECDSA & SECP256R1 curve enabled");
@@ -70,6 +71,9 @@ esp_err_t esp_secure_boot_verify_signature_block(const esp_secure_boot_sig_block
#else
ptrdiff_t keylen;
/* Note: in IDF app image verification we don't add any fault injection resistance, boot-time checks only */
memset(verified_digest, 0, DIGEST_LEN);
keylen = signature_verification_key_end - signature_verification_key_start;
if (keylen != SIGNATURE_VERIFICATION_KEYLEN) {
ESP_LOGE(TAG, "Embedded public verification key has wrong length %d", keylen);
@@ -141,9 +145,10 @@ static const char *TAG = "secure_boot_v2";
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
uint8_t digest[DIGEST_LEN] = {0};
uint8_t verified_digest[DIGEST_LEN] = {0};
/* Rounding off length to the upper 4k boundary */
int padded_length = ALIGN_UP(length, FLASH_SECTOR_SIZE);
uint32_t padded_length = ALIGN_UP(length, FLASH_SECTOR_SIZE);
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
esp_err_t err = bootloader_sha256_flash_contents(src_addr, padded_length, digest);
@@ -158,7 +163,7 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
return ESP_FAIL;
}
err = esp_secure_boot_verify_signature_block(sig_block, digest);
err = esp_secure_boot_verify_rsa_signature_block(sig_block, digest, verified_digest);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Secure Boot V2 verification failed.");
}
@@ -166,11 +171,15 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
return err;
}
esp_err_t esp_secure_boot_verify_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest)
esp_err_t esp_secure_boot_verify_rsa_signature_block(const ets_secure_boot_signature_t *sig_block, const uint8_t *image_digest, uint8_t *verified_digest)
{
uint8_t i = 0, efuse_trusted_digest[DIGEST_LEN] = {0}, sig_block_trusted_digest[DIGEST_LEN] = {0};
memcpy(efuse_trusted_digest, (uint8_t *) EFUSE_BLK2_RDATA0_REG, sizeof(efuse_trusted_digest));
/* Note: in IDF verification we don't add any fault injection resistance, as we don't expect this to be called
during boot-time verification. */
memset(verified_digest, 0, DIGEST_LEN);
/* Generating the SHA of the public key components in the signature block */
bootloader_sha256_handle_t sig_block_sha;
sig_block_sha = bootloader_sha256_start();