mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-08 12:10:59 +00:00
esp32s2beta: dport_access simplify
Closes: IDF-755
This commit is contained in:

committed by
bot

parent
cbc153786d
commit
d4ca0e186d
@@ -12,302 +12,14 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/*
|
||||
* DPORT access is used for do protection when dual core access DPORT internal register and APB register via DPORT simultaneously
|
||||
* This function will be initialize after FreeRTOS startup.
|
||||
* When cpu0 want to access DPORT register, it should notify cpu1 enter in high-priority interrupt for be mute. When cpu1 already in high-priority interrupt,
|
||||
* cpu0 can access DPORT register. Currently, cpu1 will wait for cpu0 finish access and exit high-priority interrupt.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include "soc/dport_access.h"
|
||||
|
||||
#include <sdkconfig.h>
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp32s2beta/rom/ets_sys.h"
|
||||
#include "esp32s2beta/rom/uart.h"
|
||||
|
||||
#include "soc/cpu.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/spi_mem_reg.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "freertos/queue.h"
|
||||
#include "freertos/portmacro.h"
|
||||
|
||||
#include "xtensa/core-macros.h"
|
||||
|
||||
// TODO: dport_access: simplify for esp32s2beta - IDF-755
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
static portMUX_TYPE g_dport_mux = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
#define DPORT_CORE_STATE_IDLE 0
|
||||
#define DPORT_CORE_STATE_RUNNING 1
|
||||
static uint32_t volatile dport_core_state[portNUM_PROCESSORS]; //cpu is already run
|
||||
|
||||
/* these global variables are accessed from interrupt vector, hence not declared as static */
|
||||
uint32_t volatile dport_access_start[portNUM_PROCESSORS]; //dport register could be accessed
|
||||
uint32_t volatile dport_access_end[portNUM_PROCESSORS]; //dport register is accessed over
|
||||
|
||||
static uint32_t volatile dport_access_ref[portNUM_PROCESSORS]; //dport access reference
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
#define DPORT_ACCESS_BENCHMARK_STORE_NUM
|
||||
static uint32_t ccount_start[portNUM_PROCESSORS];
|
||||
static uint32_t ccount_end[portNUM_PROCESSORS];
|
||||
static uint32_t ccount_margin[portNUM_PROCESSORS][DPORT_ACCESS_BENCHMARK_STORE_NUM];
|
||||
static uint32_t ccount_margin_cnt;
|
||||
#endif
|
||||
|
||||
|
||||
static BaseType_t oldInterruptLevel[2];
|
||||
#endif // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
/* stall other cpu that this cpu is pending to access dport register start */
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_start(void)
|
||||
// Read a sequence of DPORT registers to the buffer.
|
||||
void esp_dport_access_read_buffer(uint32_t *buff_out, uint32_t address, uint32_t num_words)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
if (dport_core_state[0] == DPORT_CORE_STATE_IDLE
|
||||
|| dport_core_state[1] == DPORT_CORE_STATE_IDLE) {
|
||||
return;
|
||||
}
|
||||
|
||||
BaseType_t intLvl = portENTER_CRITICAL_NESTED();
|
||||
|
||||
int cpu_id = xPortGetCoreID();
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
ccount_start[cpu_id] = XTHAL_GET_CCOUNT();
|
||||
#endif
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
|
||||
oldInterruptLevel[cpu_id]=intLvl;
|
||||
|
||||
dport_access_start[cpu_id] = 0;
|
||||
dport_access_end[cpu_id] = 0;
|
||||
|
||||
if (cpu_id == 0) {
|
||||
_DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_3_REG, DPORT_CPU_INTR_FROM_CPU_3); //interrupt on cpu1
|
||||
} else {
|
||||
_DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_2_REG, DPORT_CPU_INTR_FROM_CPU_2); //interrupt on cpu0
|
||||
}
|
||||
|
||||
while (!dport_access_start[cpu_id]) {};
|
||||
|
||||
REG_READ(SPI_DATE_REG(3)); //just read a APB register sure that the APB-bus is idle
|
||||
}
|
||||
|
||||
dport_access_ref[cpu_id]++;
|
||||
|
||||
if (dport_access_ref[cpu_id] > 1) {
|
||||
/* Interrupts are already disabled by the parent, we're nested here. */
|
||||
portEXIT_CRITICAL_NESTED(intLvl);
|
||||
}
|
||||
#endif /* CONFIG_FREERTOS_UNICORE */
|
||||
}
|
||||
|
||||
/* stall other cpu that this cpu is pending to access dport register end */
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_end(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
int cpu_id = xPortGetCoreID();
|
||||
if (dport_core_state[0] == DPORT_CORE_STATE_IDLE
|
||||
|| dport_core_state[1] == DPORT_CORE_STATE_IDLE) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
dport_access_ref[cpu_id]--;
|
||||
|
||||
if (dport_access_ref[cpu_id] == 0) {
|
||||
dport_access_end[cpu_id] = 1;
|
||||
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
|
||||
portEXIT_CRITICAL_NESTED(oldInterruptLevel[cpu_id]);
|
||||
}
|
||||
|
||||
#ifdef DPORT_ACCESS_BENCHMARK
|
||||
ccount_end[cpu_id] = XTHAL_GET_CCOUNT();
|
||||
ccount_margin[cpu_id][ccount_margin_cnt] = ccount_end[cpu_id] - ccount_start[cpu_id];
|
||||
ccount_margin_cnt = (ccount_margin_cnt + 1)&(DPORT_ACCESS_BENCHMARK_STORE_NUM - 1);
|
||||
#endif
|
||||
#endif /* CONFIG_FREERTOS_UNICORE */
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_start_wrap(void)
|
||||
{
|
||||
DPORT_STALL_OTHER_CPU_START();
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_stall_other_cpu_end_wrap(void)
|
||||
{
|
||||
DPORT_STALL_OTHER_CPU_END();
|
||||
}
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
static void dport_access_init_core(void *arg)
|
||||
{
|
||||
int core_id = 0;
|
||||
uint32_t intr_source = ETS_FROM_CPU_INTR2_SOURCE;
|
||||
|
||||
|
||||
core_id = xPortGetCoreID();
|
||||
if (core_id == 1) {
|
||||
intr_source = ETS_FROM_CPU_INTR3_SOURCE;
|
||||
}
|
||||
|
||||
ESP_INTR_DISABLE(ETS_DPORT_INUM);
|
||||
intr_matrix_set(core_id, intr_source, ETS_DPORT_INUM);
|
||||
ESP_INTR_ENABLE(ETS_DPORT_INUM);
|
||||
|
||||
dport_access_ref[core_id] = 0;
|
||||
dport_access_start[core_id] = 0;
|
||||
dport_access_end[core_id] = 0;
|
||||
dport_core_state[core_id] = DPORT_CORE_STATE_RUNNING;
|
||||
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Defer initialisation until after scheduler is running */
|
||||
void esp_dport_access_int_init(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portBASE_TYPE res = xTaskCreatePinnedToCore(&dport_access_init_core, "dport", configMINIMAL_STACK_SIZE, NULL, 5, NULL, xPortGetCoreID());
|
||||
assert(res == pdTRUE);
|
||||
#endif
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_int_pause(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
dport_core_state[0] = DPORT_CORE_STATE_IDLE;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_IDLE;
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
#endif
|
||||
}
|
||||
|
||||
//Used in panic code: the enter_critical stuff may be messed up so we just stop everything without checking the mux.
|
||||
void IRAM_ATTR esp_dport_access_int_abort(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
dport_core_state[0] = DPORT_CORE_STATE_IDLE;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_IDLE;
|
||||
#endif
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_dport_access_int_resume(void)
|
||||
{
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
portENTER_CRITICAL_ISR(&g_dport_mux);
|
||||
dport_core_state[0] = DPORT_CORE_STATE_RUNNING;
|
||||
dport_core_state[1] = DPORT_CORE_STATE_RUNNING;
|
||||
portEXIT_CRITICAL_ISR(&g_dport_mux);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read a sequence of DPORT registers to the buffer, SMP-safe version.
|
||||
*
|
||||
* This implementation uses a method of the pre-reading of the APB register
|
||||
* before reading the register of the DPORT, without stall other CPU.
|
||||
* There is disable/enable interrupt.
|
||||
*
|
||||
* @param[out] buff_out Contains the read data.
|
||||
* @param[in] address Initial address for reading registers.
|
||||
* @param[in] num_words The number of words.
|
||||
*/
|
||||
void IRAM_ATTR esp_dport_access_read_buffer(uint32_t *buff_out, uint32_t address, uint32_t num_words)
|
||||
{
|
||||
DPORT_INTERRUPT_DISABLE();
|
||||
for (uint32_t i = 0; i < num_words; ++i) {
|
||||
buff_out[i] = DPORT_SEQUENCE_REG_READ(address + i * 4);
|
||||
}
|
||||
DPORT_INTERRUPT_RESTORE();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read value from register, SMP-safe version.
|
||||
*
|
||||
* This method uses the pre-reading of the APB register before reading the register of the DPORT.
|
||||
* This implementation is useful for reading DORT registers for single reading without stall other CPU.
|
||||
* There is disable/enable interrupt.
|
||||
*
|
||||
* @param reg Register address
|
||||
* @return Value
|
||||
*/
|
||||
uint32_t IRAM_ATTR esp_dport_access_reg_read(uint32_t reg)
|
||||
{
|
||||
#if defined(BOOTLOADER_BUILD) || defined(CONFIG_FREERTOS_UNICORE) || !defined(ESP_PLATFORM)
|
||||
return _DPORT_REG_READ(reg);
|
||||
#else
|
||||
uint32_t apb;
|
||||
unsigned int intLvl;
|
||||
__asm__ __volatile__ (\
|
||||
"movi %[APB], "XTSTR(0x3f400078)"\n"\
|
||||
"rsil %[LVL], "XTSTR(3)"\n"\
|
||||
"l32i %[APB], %[APB], 0\n"\
|
||||
"l32i %[REG], %[REG], 0\n"\
|
||||
"wsr %[LVL], "XTSTR(PS)"\n"\
|
||||
"rsync\n"\
|
||||
: [APB]"=a"(apb), [REG]"+a"(reg), [LVL]"=a"(intLvl)\
|
||||
: \
|
||||
: "memory" \
|
||||
);
|
||||
return reg;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read value from register, NOT SMP-safe version.
|
||||
*
|
||||
* This method uses the pre-reading of the APB register before reading the register of the DPORT.
|
||||
* There is not disable/enable interrupt.
|
||||
* The difference from DPORT_REG_READ() is that the user himself must disable interrupts while DPORT reading.
|
||||
* This implementation is useful for reading DORT registers in loop without stall other CPU. Note the usage example.
|
||||
* The recommended way to read registers sequentially without stall other CPU
|
||||
* is to use the method esp_dport_read_buffer(buff_out, address, num_words). It allows you to read registers in the buffer.
|
||||
*
|
||||
* \code{c}
|
||||
* // This example shows how to use it.
|
||||
* { // Use curly brackets to limit the visibility of variables in macros DPORT_INTERRUPT_DISABLE/RESTORE.
|
||||
* DPORT_INTERRUPT_DISABLE(); // Disable interrupt only on current CPU.
|
||||
* for (i = 0; i < max; ++i) {
|
||||
* array[i] = esp_dport_access_sequence_reg_read(Address + i * 4); // reading DPORT registers
|
||||
* }
|
||||
* DPORT_INTERRUPT_RESTORE(); // restore the previous interrupt level
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* @param reg Register address
|
||||
* @return Value
|
||||
*/
|
||||
uint32_t IRAM_ATTR esp_dport_access_sequence_reg_read(uint32_t reg)
|
||||
{
|
||||
#if defined(BOOTLOADER_BUILD) || defined(CONFIG_FREERTOS_UNICORE) || !defined(ESP_PLATFORM)
|
||||
return _DPORT_REG_READ(reg);
|
||||
#else
|
||||
uint32_t apb;
|
||||
__asm__ __volatile__ (\
|
||||
"movi %[APB], "XTSTR(0x3f400078)"\n"\
|
||||
"l32i %[APB], %[APB], 0\n"\
|
||||
"l32i %[REG], %[REG], 0\n"\
|
||||
: [APB]"=a"(apb), [REG]"+a"(reg)\
|
||||
: \
|
||||
: "memory" \
|
||||
);
|
||||
return reg;
|
||||
#endif
|
||||
}
|
||||
|
Reference in New Issue
Block a user