mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-09 12:35:28 +00:00
system: reset dma when soft reset
This commit is contained in:

committed by
bot

parent
d35173c147
commit
d7d1dee208
@@ -31,6 +31,7 @@
|
||||
#include "hal/adc_types.h"
|
||||
#include "hal/adc_hal.h"
|
||||
#include "hal/dma_types.h"
|
||||
#include "esp32c3/esp_efuse_rtc_calib.h"
|
||||
|
||||
#define ADC_CHECK_RET(fun_ret) ({ \
|
||||
if (fun_ret != ESP_OK) { \
|
||||
@@ -89,13 +90,17 @@ typedef struct adc_digi_context_t {
|
||||
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
|
||||
bool ringbuf_overflow_flag; //1: ringbuffer overflow
|
||||
bool driver_start_flag; //1: driver is started; 0: driver is stoped
|
||||
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
|
||||
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
|
||||
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
|
||||
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
|
||||
adc_digi_config_t digi_controller_config; //Digital Controller Configuration
|
||||
} adc_digi_context_t;
|
||||
|
||||
static const char* ADC_DMA_TAG = "ADC_DMA:";
|
||||
static adc_digi_context_t *s_adc_digi_ctx = NULL;
|
||||
|
||||
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
ADC Continuous Read Mode (via DMA)
|
||||
@@ -265,6 +270,16 @@ esp_err_t adc_digi_start(void)
|
||||
|
||||
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
||||
adc_hal_init();
|
||||
|
||||
if (s_adc_digi_ctx->use_adc1) {
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
||||
}
|
||||
if (s_adc_digi_ctx->use_adc2) {
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
||||
}
|
||||
|
||||
adc_hal_arbiter_config(&config);
|
||||
adc_hal_digi_init(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config);
|
||||
@@ -365,6 +380,7 @@ esp_err_t adc_digi_deinitialize(void)
|
||||
s_adc_digi_ctx->ringbuf_hdl = NULL;
|
||||
}
|
||||
|
||||
free(s_adc_digi_ctx->rx_dma_buf);
|
||||
free(s_adc_digi_ctx->hal_dma_config.rx_desc);
|
||||
free(s_adc_digi_ctx->digi_controller_config.adc_pattern);
|
||||
free(s_adc_digi_ctx);
|
||||
@@ -420,11 +436,16 @@ int adc1_get_raw(adc1_channel_t channel)
|
||||
ADC_DIGI_LOCK_ACQUIRE();
|
||||
|
||||
periph_module_enable(PERIPH_SARADC_MODULE);
|
||||
|
||||
adc_atten_t atten = s_atten1_single[channel];
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
||||
|
||||
adc_hal_digi_controller_config(&dig_cfg);
|
||||
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
|
||||
adc_hal_onetime_channel(ADC_NUM_1, channel);
|
||||
adc_hal_set_onetime_atten(s_atten1_single[channel]);
|
||||
adc_hal_set_onetime_atten(atten);
|
||||
|
||||
//Trigger single read.
|
||||
adc_hal_adc1_onetime_sample_enable(true);
|
||||
@@ -475,13 +496,17 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
|
||||
|
||||
SAC_ADC2_LOCK_ACQUIRE();
|
||||
ADC_DIGI_LOCK_ACQUIRE();
|
||||
|
||||
periph_module_enable(PERIPH_SARADC_MODULE);
|
||||
|
||||
adc_atten_t atten = s_atten2_single[channel];
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
||||
|
||||
adc_hal_digi_controller_config(&dig_cfg);
|
||||
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
|
||||
adc_hal_onetime_channel(ADC_NUM_2, channel);
|
||||
adc_hal_set_onetime_atten(s_atten2_single[channel]);
|
||||
adc_hal_set_onetime_atten(atten);
|
||||
|
||||
//Trigger single read.
|
||||
adc_hal_adc2_onetime_sample_enable(true);
|
||||
@@ -523,10 +548,26 @@ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
|
||||
memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t));
|
||||
|
||||
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
|
||||
s_adc_digi_ctx->adc1_atten = ADC_ATTEN_MAX;
|
||||
s_adc_digi_ctx->adc2_atten = ADC_ATTEN_MAX;
|
||||
s_adc_digi_ctx->use_adc1 = 0;
|
||||
s_adc_digi_ctx->use_adc2 = 0;
|
||||
for (int i = 0; i < config->adc_pattern_len; i++) {
|
||||
if (config->adc_pattern->unit == ADC_NUM_2) {
|
||||
const adc_digi_pattern_table_t* pat = &config->adc_pattern[i];
|
||||
if (pat->unit == ADC_NUM_1) {
|
||||
s_adc_digi_ctx->use_adc1 = 1;
|
||||
if (s_adc_digi_ctx->adc1_atten == ADC_ATTEN_MAX) {
|
||||
s_adc_digi_ctx->adc1_atten = pat->atten;
|
||||
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
} else if (pat->unit == ADC_NUM_2) {
|
||||
s_adc_digi_ctx->use_adc2 = 1;
|
||||
if (s_adc_digi_ctx->adc2_atten == ADC_ATTEN_MAX) {
|
||||
s_adc_digi_ctx->adc2_atten = pat->atten;
|
||||
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -802,3 +843,40 @@ esp_err_t adc_digi_isr_deregister(void)
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
static uint16_t s_adc_cali_param[ADC_ATTEN_MAX] = {};
|
||||
|
||||
//NOTE: according to calibration version, different types of lock may be taken during the process:
|
||||
// 1. Semaphore when reading efuse
|
||||
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
|
||||
//This function shoudn't be called inside critical section or ISR
|
||||
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
const bool no_cal = false;
|
||||
if (s_adc_cali_param[atten]) {
|
||||
return (uint32_t)s_adc_cali_param[atten];
|
||||
}
|
||||
|
||||
if (no_cal) {
|
||||
return 0; //indicating failure
|
||||
}
|
||||
|
||||
// check if we can fetch the values from eFuse.
|
||||
int version = esp_efuse_rtc_calib_get_ver();
|
||||
assert(version == 1);
|
||||
uint32_t init_code = esp_efuse_rtc_calib_get_init_code(version, atten);
|
||||
|
||||
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
|
||||
s_adc_cali_param[atten] = init_code;
|
||||
return init_code;
|
||||
}
|
||||
|
||||
// Internal function to calibrate PWDET for WiFi
|
||||
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_set_calibration_param(adc_n, cal_val);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
Reference in New Issue
Block a user