mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-09 04:25:32 +00:00
feat(heap): Add feature to get peak heap usage
This feature keeps track of the per task peak memory usage. - Update the heap_task_tracking example to make use of the new feature Cleanup the implementation: - multi_heap_get_free_size() is never used, remove it. - Minor update in heap_caps_update_per_task_info_xx() funcitons. - Update settting on block owner in heap_caps.c to work with the get peak usage feature. - Update heap_caps_update_per_task_info_free() to detect when it is called to delete the memory allocated for a task TCB. Mark the corresponding task in the statistic list as deleted. - Add a Kconfig option dependant on HEAP_TASK_TRACKING being enabled that force the deletion of the statistics related to deleted task when set to true. - In task tracking feature, add a current and peak memory usage to the heap_stat_t structure to keep track of the current and peak memory usage of the given task across all heaps. - Fix missing block owner when allocating memory for heaps_array in heap_caps_init. - Keep the original implementation of the task tracking for backward compatibility reasons.
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD
|
||||
* SPDX-FileCopyrightText: 2018-2025 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
@@ -7,12 +7,878 @@
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <multi_heap.h>
|
||||
#include <string.h>
|
||||
#include "multi_heap_internal.h"
|
||||
#include "heap_private.h"
|
||||
#include "esp_heap_task_info.h"
|
||||
#include "esp_heap_task_info_internal.h"
|
||||
#include "heap_memory_layout.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#ifdef CONFIG_HEAP_TASK_TRACKING
|
||||
|
||||
const static char *TAG = "heap_task_tracking";
|
||||
|
||||
static SemaphoreHandle_t s_task_tracking_mutex = NULL;
|
||||
static StaticSemaphore_t s_task_tracking_mutex_buf;
|
||||
|
||||
|
||||
typedef struct alloc_stats {
|
||||
heap_task_block_t alloc_stat;
|
||||
STAILQ_ENTRY(alloc_stats) next_alloc_stat;
|
||||
} alloc_stats_t;
|
||||
|
||||
/**
|
||||
* @brief Internal singly linked list used to gather information of the heap used
|
||||
* by a given task.
|
||||
*/
|
||||
typedef struct heap_stats {
|
||||
multi_heap_handle_t heap;
|
||||
heap_stat_t heap_stat;
|
||||
STAILQ_HEAD(alloc_stats_ll, alloc_stats) allocs_stats;
|
||||
STAILQ_ENTRY(heap_stats) next_heap_stat;
|
||||
} heap_stats_t;
|
||||
|
||||
/** @brief Internal singly linked list used to gather information on all created
|
||||
* tasks since startup.
|
||||
*/
|
||||
typedef struct task_stats {
|
||||
task_stat_t task_stat;
|
||||
STAILQ_HEAD(heap_stats_ll, heap_stats) heaps_stats;
|
||||
SLIST_ENTRY(task_stats) next_task_info;
|
||||
} task_info_t;
|
||||
|
||||
|
||||
static SLIST_HEAD(task_stats_ll, task_stats) task_stats = SLIST_HEAD_INITIALIZER(task_stats);
|
||||
|
||||
FORCE_INLINE_ATTR heap_t* find_biggest_heap(void)
|
||||
{
|
||||
heap_t *heap = NULL;
|
||||
heap_t *biggest_heap = NULL;
|
||||
SLIST_FOREACH(heap, ®istered_heaps, next) {
|
||||
if (biggest_heap == NULL) {
|
||||
biggest_heap = heap;
|
||||
} else if ((biggest_heap->end - biggest_heap->start) < (heap->end - heap->start)) {
|
||||
biggest_heap = heap;
|
||||
} else {
|
||||
// nothing to do here
|
||||
}
|
||||
}
|
||||
return biggest_heap;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a new alloc stats entry object
|
||||
*
|
||||
* @param heap_stats The heap statistics of the heap used for the allocation
|
||||
* @param task_handle The task handler of the task which performed the allocation
|
||||
* @param ptr The address of the allocation
|
||||
* @param size The size of the allocation
|
||||
*/
|
||||
static HEAP_IRAM_ATTR void create_new_alloc_stats_entry(heap_stats_t *heap_stats, alloc_stats_t *alloc_stats, TaskHandle_t task_handle, void *ptr, size_t size)
|
||||
{
|
||||
// init the list of allocs with a new entry in heap_stats->allocs_stats. No need
|
||||
// to memset the memory since all field will be set later in the function.
|
||||
if (!alloc_stats) {
|
||||
// find the heap with the most available free memory to store the statistics
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
|
||||
alloc_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(alloc_stats_t));
|
||||
if (!alloc_stats) {
|
||||
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
alloc_stats->alloc_stat.task = task_handle;
|
||||
alloc_stats->alloc_stat.address = ptr;
|
||||
alloc_stats->alloc_stat.size = size;
|
||||
|
||||
STAILQ_INSERT_TAIL(&heap_stats->allocs_stats, alloc_stats, next_alloc_stat);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a new heap stats entry object
|
||||
*
|
||||
* @param task_stats The task statistics of the task that triggered the allocation
|
||||
* @param used_heap Information about the heap used for the allocation
|
||||
* @param caps The caps of the heap used for the allocation
|
||||
* @param size The size of the allocation
|
||||
*/
|
||||
static HEAP_IRAM_ATTR void create_new_heap_stats_entry(task_info_t *task_stats, heap_t *used_heap, void *ptr, uint32_t caps, size_t size)
|
||||
{
|
||||
// find the heap with the most available free memory to store the statistics
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
|
||||
// init the list of heap with a new entry in task_stats->heaps_stats. No need
|
||||
// to memset the memory since all field will be set later in the function.
|
||||
heap_stats_t *heap_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(heap_stats_t));
|
||||
if (!heap_stats) {
|
||||
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
||||
return;
|
||||
}
|
||||
|
||||
// create the alloc stats for the new heap entry
|
||||
STAILQ_INIT(&heap_stats->allocs_stats);
|
||||
|
||||
task_stats->task_stat.heap_count += 1;
|
||||
|
||||
heap_stats->heap = used_heap->heap;
|
||||
heap_stats->heap_stat.name = used_heap->name;
|
||||
heap_stats->heap_stat.size = used_heap->end - used_heap->start;
|
||||
heap_stats->heap_stat.caps = caps;
|
||||
heap_stats->heap_stat.current_usage = size;
|
||||
heap_stats->heap_stat.peak_usage = size;
|
||||
heap_stats->heap_stat.alloc_count = 1;
|
||||
heap_stats->heap_stat.alloc_stat = NULL; // this will be used to point at the user defined array of alloc_stat
|
||||
|
||||
STAILQ_INSERT_TAIL(&task_stats->heaps_stats, heap_stats, next_heap_stat);
|
||||
|
||||
create_new_alloc_stats_entry(heap_stats, NULL, task_stats->task_stat.handle, ptr, size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a new task info entry in task_stats if the tasks allocating memory is not in task_stats already.
|
||||
*
|
||||
* @param heap The heap by the task to allocate memory
|
||||
* @param task_handle The task handle of the task allocating memory
|
||||
* @param task_stats The task entry in task_stats. If NULL, the task allocating memory is allocating for the first time
|
||||
* @param ptr The address of the allocation
|
||||
* @param size The size of the allocation
|
||||
* @param caps The ORED caps of the heap used for the allocation
|
||||
*/
|
||||
static HEAP_IRAM_ATTR void create_new_task_stats_entry(heap_t *used_heap, TaskHandle_t task_handle, task_info_t *task_info, void *ptr, size_t size, uint32_t caps)
|
||||
{
|
||||
// If task_info passed as parameter is NULL, it means the this task is doing
|
||||
// its first allocation. Add the task entry to task_info and add heap_stats
|
||||
// to this new task_info entry.
|
||||
// If task_info is not NULL, it means that the task already allocated memory
|
||||
// but now it is allocating in a new heap for the first time. Don't add a new
|
||||
// task entry to task_info but add a new heap_stats to the task_info
|
||||
if (!task_info) {
|
||||
// find the heap with the most available free memory to store the statistics
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
|
||||
// create the task_stats entry. No need to memset since all fields are set later
|
||||
task_info = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(task_info_t));
|
||||
if (!task_info) {
|
||||
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
||||
return;
|
||||
}
|
||||
|
||||
// create the heap stats for the new task entry
|
||||
STAILQ_INIT(&task_info->heaps_stats);
|
||||
|
||||
task_info->task_stat.handle = task_handle;
|
||||
task_info->task_stat.is_alive = true;
|
||||
task_info->task_stat.overall_peak_usage = size;
|
||||
task_info->task_stat.overall_current_usage = size;
|
||||
task_info->task_stat.heap_count = 0;
|
||||
task_info->task_stat.heap_stat = NULL; // this will be used to point at the user defined array of heap_stat
|
||||
if (task_handle == 0x00) {
|
||||
char task_name[] = "Pre-scheduler";
|
||||
strcpy(task_info->task_stat.name, task_name);
|
||||
} else {
|
||||
strcpy(task_info->task_stat.name, pcTaskGetName(task_handle));
|
||||
}
|
||||
|
||||
// Add the new / first task_info in the list (sorted by decreasing address).
|
||||
// The decreasing order is chosen because the task_handle 0x00000000 is used for pre-scheduler
|
||||
// operations and therefore need to appear last so it is not parsed when trying to find a suitable
|
||||
// task to update the stats from.
|
||||
if (SLIST_EMPTY(&task_stats) || task_info->task_stat.handle >= SLIST_FIRST(&task_stats)->task_stat.handle) {
|
||||
// the list is empty, or the new task handler is at a higher address than the one from the first item
|
||||
SLIST_INSERT_HEAD(&task_stats, task_info, next_task_info);
|
||||
} else {
|
||||
// the new task handle is at a lower address than the first item in the list, go through the list to
|
||||
// properly insert the new item
|
||||
task_info_t *cur_task_info = NULL;
|
||||
task_info_t *prev_task_info = NULL;
|
||||
SLIST_FOREACH(cur_task_info, &task_stats, next_task_info) {
|
||||
if (cur_task_info->task_stat.handle < task_info->task_stat.handle) {
|
||||
SLIST_INSERT_AFTER(prev_task_info, task_info, next_task_info);
|
||||
break;
|
||||
} else {
|
||||
prev_task_info = cur_task_info;
|
||||
}
|
||||
}
|
||||
// here should be a last case handling: new task info as a task handle address smaller than all existing
|
||||
// items in the list. But this is case is impossible given that the pre-scheduler allocations always
|
||||
// happen first and the task handle defaults to 0x00000000 for the pre-scheduler so it will always be
|
||||
// last in the list.
|
||||
}
|
||||
}
|
||||
|
||||
create_new_heap_stats_entry(task_info, used_heap, ptr, caps, size);
|
||||
}
|
||||
|
||||
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
/**
|
||||
* @brief Delete an entry from the list of task statistics
|
||||
*
|
||||
* @param task_info The task statistics to delete from the list of task statistics
|
||||
*/
|
||||
static HEAP_IRAM_ATTR void delete_task_info_entry(task_info_t *task_info)
|
||||
{
|
||||
if (task_info == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
heap_stats_t *current_heap_stat = STAILQ_FIRST(&task_info->heaps_stats);
|
||||
heap_stats_t *prev_heap_stat = NULL;
|
||||
|
||||
// pointer used to free the memory of the statistics
|
||||
heap_t *containing_heap = NULL;
|
||||
|
||||
// remove all entries from task_info->heaps_stats and free the memory
|
||||
while(current_heap_stat != NULL) {
|
||||
prev_heap_stat = current_heap_stat;
|
||||
current_heap_stat = STAILQ_NEXT(current_heap_stat, next_heap_stat);
|
||||
|
||||
/* remove all entries from heap_stats->allocs_stats */
|
||||
alloc_stats_t *alloc_stat = NULL;
|
||||
while ((alloc_stat = STAILQ_FIRST( &prev_heap_stat->allocs_stats)) != NULL) {
|
||||
STAILQ_REMOVE(&prev_heap_stat->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
||||
containing_heap = find_containing_heap(alloc_stat);
|
||||
// prev_heap_stat must be allocated somewhere
|
||||
if (containing_heap != NULL) {
|
||||
multi_heap_free(containing_heap->heap, alloc_stat);
|
||||
}
|
||||
}
|
||||
if (STAILQ_EMPTY(&prev_heap_stat->allocs_stats)) {
|
||||
STAILQ_REMOVE(&task_info->heaps_stats, prev_heap_stat, heap_stats, next_heap_stat);
|
||||
containing_heap = find_containing_heap(prev_heap_stat);
|
||||
// prev_heap_stat must be allocated somewhere
|
||||
if (containing_heap != NULL) {
|
||||
multi_heap_free(containing_heap->heap, prev_heap_stat);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (STAILQ_EMPTY(&task_info->heaps_stats)) {
|
||||
// remove task_info from task_stats (and free the memory)
|
||||
SLIST_REMOVE(&task_stats, task_info, task_stats, next_task_info);
|
||||
containing_heap = find_containing_heap(task_info);
|
||||
if (containing_heap != NULL) {
|
||||
multi_heap_free(containing_heap->heap, task_info);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
|
||||
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_alloc(heap_t *heap, void *ptr, size_t size, uint32_t caps)
|
||||
{
|
||||
if (s_task_tracking_mutex == NULL) {
|
||||
s_task_tracking_mutex = xSemaphoreCreateMutexStatic(&s_task_tracking_mutex_buf);
|
||||
assert(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
/* find the task in the list and update the overall stats */
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
||||
task_info->task_stat.overall_current_usage += size;
|
||||
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
|
||||
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
|
||||
}
|
||||
|
||||
heap_stats_t *heap_stats = NULL;
|
||||
/* find the heap in the list and update the overall stats */
|
||||
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
||||
if (heap_stats->heap == heap->heap) {
|
||||
heap_stats->heap_stat.current_usage += size;
|
||||
heap_stats->heap_stat.alloc_count++;
|
||||
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
|
||||
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
|
||||
}
|
||||
|
||||
/* add the alloc info to the list */
|
||||
create_new_alloc_stats_entry(heap_stats, NULL, task_handle, ptr, size);
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// since the list of task info is sorted by decreasing size, if the current task info
|
||||
// has a smaller task handle address than the one we are checking against, we can be sure
|
||||
// the task handle will not be found in the list, and we can break the loop.
|
||||
if (task_info->task_stat.handle < task_handle) {
|
||||
task_info = NULL;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// No task entry was found OR no heap in the task entry was found.
|
||||
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
|
||||
create_new_task_stats_entry(heap, task_handle, task_info, ptr, size, caps);
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_realloc(heap_t *heap, void *old_ptr, void *new_ptr,
|
||||
size_t old_size, TaskHandle_t old_task,
|
||||
size_t new_size, uint32_t caps)
|
||||
{
|
||||
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
|
||||
bool task_in_list = false;
|
||||
task_info_t *task_info = NULL;
|
||||
alloc_stats_t *alloc_stat = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if (task_info->task_stat.handle == old_task) {
|
||||
heap_stats_t *heap_stats = NULL;
|
||||
task_info->task_stat.overall_current_usage -= old_size;
|
||||
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
||||
if (heap_stats->heap == heap->heap) {
|
||||
heap_stats->heap_stat.current_usage -= old_size;
|
||||
heap_stats->heap_stat.alloc_count--;
|
||||
|
||||
/* remove the alloc from the list. The updated alloc stats are added later
|
||||
* in the function */
|
||||
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
|
||||
if (alloc_stat->alloc_stat.address == old_ptr) {
|
||||
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
||||
/* keep the memory used to store alloc_stat since we will fill it with new alloc
|
||||
* info later in the function */
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
||||
heap_stats_t *heap_stats = NULL;
|
||||
task_info->task_stat.overall_current_usage += new_size;
|
||||
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
||||
if (heap_stats->heap == heap->heap) {
|
||||
heap_stats->heap_stat.current_usage += new_size;
|
||||
heap_stats->heap_stat.alloc_count++;
|
||||
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
|
||||
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
|
||||
}
|
||||
|
||||
create_new_alloc_stats_entry(heap_stats, alloc_stat, task_handle, new_ptr, new_size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
task_in_list = true;
|
||||
}
|
||||
|
||||
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
|
||||
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
|
||||
}
|
||||
}
|
||||
|
||||
if (!task_in_list) {
|
||||
// No task entry was found OR no heap in the task entry was found.
|
||||
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
|
||||
create_new_task_stats_entry(heap, task_handle, task_info, new_ptr, new_size, caps);
|
||||
}
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_free(heap_t *heap, void *ptr)
|
||||
{
|
||||
void *block_owner_ptr = MULTI_HEAP_REMOVE_BLOCK_OWNER_OFFSET(ptr);
|
||||
TaskHandle_t task_handle = MULTI_HEAP_GET_BLOCK_OWNER(block_owner_ptr);
|
||||
if (!task_handle) {
|
||||
return;
|
||||
}
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
task_info_t *task_info_to_delete = NULL;
|
||||
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
/* find the matching task */
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
/* check all tasks (alive and deleted) since the free can come from any tasks,
|
||||
* not necessarily the one which allocated the memory. */
|
||||
if (task_info->task_stat.handle == task_handle) {
|
||||
heap_stats_t *heap_stats = NULL;
|
||||
alloc_stats_t *alloc_stat = NULL;
|
||||
/* find the matching heap */
|
||||
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
||||
if(heap_stats->heap == heap->heap) {
|
||||
/* find the matching allocation and remove it from the list*/
|
||||
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
|
||||
if (alloc_stat->alloc_stat.address == ptr) {
|
||||
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
||||
/* keep the memory used to store alloc_stat since we will fill it with new alloc
|
||||
* info later in the function */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (alloc_stat != NULL) {
|
||||
heap_stats->heap_stat.alloc_count--;
|
||||
heap_stats->heap_stat.current_usage -= alloc_stat->alloc_stat.size;
|
||||
task_info->task_stat.overall_current_usage -= alloc_stat->alloc_stat.size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* free the memory used to store alloc_stat */
|
||||
heap_t *containing_heap = find_containing_heap(alloc_stat);
|
||||
// task_stats must be allocated somewhere
|
||||
if (containing_heap != NULL) {
|
||||
multi_heap_free(containing_heap->heap, alloc_stat);
|
||||
}
|
||||
}
|
||||
|
||||
// when a task is deleted, esp_caps_free is called to delete the TCB of the task from vTaskDelete.
|
||||
// Try to make a TaskHandle out of ptr and compare it to the list of tasks in task_stats.
|
||||
// If one task_info contains the newly made TaskHandle from ptr it means that esp_caps_free
|
||||
// was indeed called from vTaskDelete. We can then update the task_stats by marking the corresponding
|
||||
// task as deleted.
|
||||
if (task_info->task_stat.handle == ptr) {
|
||||
// we found the task info from the task that is being deleted.
|
||||
task_info->task_stat.is_alive = false;
|
||||
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
task_info_to_delete = task_info;
|
||||
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
}
|
||||
}
|
||||
|
||||
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
// remove the entry related to the task that was just deleted.
|
||||
if (task_info_to_delete != NULL) {
|
||||
delete_task_info_entry(task_info_to_delete);
|
||||
}
|
||||
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
esp_err_t heap_caps_get_all_task_stat(heap_all_tasks_stat_t *tasks_stat)
|
||||
{
|
||||
if (tasks_stat == NULL ||
|
||||
(tasks_stat->stat_arr == NULL && tasks_stat->task_count != 0) ||
|
||||
(tasks_stat->heap_stat_start == NULL && tasks_stat->heap_count != 0) ||
|
||||
(tasks_stat->alloc_stat_start == NULL && tasks_stat->alloc_count != 0)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
size_t task_index = 0;
|
||||
size_t heap_index = 0;
|
||||
size_t alloc_index = 0;
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
// If there is no more task stat entries available in tasks_stat->stat_arr
|
||||
// break the loop and return the function.
|
||||
if (task_index >= tasks_stat->task_count) {
|
||||
break;
|
||||
}
|
||||
memcpy(tasks_stat->stat_arr + task_index, &task_info->task_stat, sizeof(task_stat_t));
|
||||
task_stat_t *current_task_stat = tasks_stat->stat_arr + task_index;
|
||||
task_index++;
|
||||
|
||||
// If no more heap stat entries in the array are available, just proceed
|
||||
// with filling task stats but skip filling info on heap stat and alloc stat.
|
||||
if (heap_index + task_info->task_stat.heap_count > tasks_stat->heap_count) {
|
||||
current_task_stat->heap_stat = NULL;
|
||||
continue;
|
||||
}
|
||||
|
||||
// set the pointer where the heap info for the given task will
|
||||
// be in the user array
|
||||
current_task_stat->heap_stat = tasks_stat->heap_stat_start + heap_index;
|
||||
heap_index += task_info->task_stat.heap_count;
|
||||
|
||||
|
||||
// copy the stats of the different heaps the task has used and the different allocs
|
||||
// allocated in those heaps. If the number of entries remaining for alloc stats is
|
||||
// inferior to the number of allocs allocated on the current heap no alloc stat will
|
||||
// be copied at all.
|
||||
size_t h_index = 0;
|
||||
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
|
||||
while(h_index < task_info->task_stat.heap_count || heap_info != NULL) {
|
||||
// increase alloc_index before filling the alloc info of the given heap
|
||||
// to avoid running out of alloc stat entry while doing it.
|
||||
if (alloc_index + heap_info->heap_stat.alloc_count > tasks_stat->alloc_count) {
|
||||
heap_info->heap_stat.alloc_stat = NULL;
|
||||
} else {
|
||||
// set the pointer where the alloc info for the given heap will
|
||||
// be in the user array
|
||||
heap_info->heap_stat.alloc_stat = tasks_stat->alloc_stat_start + alloc_index;
|
||||
// fill the alloc array in heap_info by running through all blocks of a given heap
|
||||
// and storing info about the blocks allocated by the given task
|
||||
alloc_stats_t *alloc_stats = NULL;
|
||||
size_t a_index = 0;
|
||||
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
||||
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
|
||||
a_index++;
|
||||
}
|
||||
|
||||
alloc_index += heap_info->heap_stat.alloc_count;
|
||||
}
|
||||
|
||||
memcpy(current_task_stat->heap_stat + h_index, &heap_info->heap_stat, sizeof(heap_stat_t));
|
||||
h_index++;
|
||||
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
|
||||
}
|
||||
}
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
|
||||
tasks_stat->task_count = task_index;
|
||||
tasks_stat->heap_count = heap_index;
|
||||
tasks_stat->alloc_count = alloc_index;
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t heap_caps_get_single_task_stat(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
|
||||
{
|
||||
if (task_stat == NULL ||
|
||||
(task_stat->heap_stat_start == NULL && task_stat->heap_count != 0) ||
|
||||
(task_stat->alloc_stat_start == NULL && task_stat->alloc_count != 0)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
if (task_handle == NULL) {
|
||||
task_handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if(task_info->task_stat.handle == task_handle) {
|
||||
// copy the task_stat of the task itself
|
||||
memcpy(&task_stat->stat, &task_info->task_stat, sizeof(task_stat_t));
|
||||
break;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
|
||||
if (task_info == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
task_stat->stat.heap_stat = task_stat->heap_stat_start;
|
||||
|
||||
// copy the stats of the different heaps the task has used and the different blocks
|
||||
// allocated in those heaps. If the number of entries remaining for block stats is
|
||||
// inferior to the number of blocks allocated on the current heap no block stat will
|
||||
// be copied at all.
|
||||
size_t heap_index = 0;
|
||||
size_t alloc_index = 0;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
|
||||
while(heap_index < task_info->task_stat.heap_count || heap_info != NULL) {
|
||||
// check that there is enough heap_stat entry left to add another one to the user defined
|
||||
// array of heap_stat
|
||||
if (heap_index >= task_stat->heap_count) {
|
||||
break;
|
||||
}
|
||||
|
||||
// increase alloc_index before filling the block info of the given heap
|
||||
// to avoid running out of block stat entry while doing it.
|
||||
if (alloc_index + heap_info->heap_stat.alloc_count > task_stat->alloc_count) {
|
||||
heap_info->heap_stat.alloc_stat = NULL;
|
||||
} else {
|
||||
// set the pointer where the block info for the given heap will
|
||||
// be in the user array
|
||||
heap_info->heap_stat.alloc_stat = task_stat->alloc_stat_start + alloc_index;
|
||||
|
||||
// fill the alloc array in heap_info by running through all blocks of a given heap
|
||||
// and storing info about the blocks allocated by the given task
|
||||
alloc_stats_t *alloc_stats = NULL;
|
||||
size_t a_index = 0;
|
||||
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
||||
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
|
||||
a_index++;
|
||||
}
|
||||
|
||||
alloc_index += heap_info->heap_stat.alloc_count;
|
||||
}
|
||||
|
||||
memcpy(task_stat->stat.heap_stat + heap_index, &heap_info->heap_stat, sizeof(heap_stat_t));
|
||||
heap_index++;
|
||||
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
|
||||
task_stat->heap_count = heap_index;
|
||||
task_stat->alloc_count = alloc_index;
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void heap_caps_print_task_info(task_info_t *task_info, bool is_last_task_info)
|
||||
{
|
||||
const char *task_info_visual = is_last_task_info ? " " : "│";
|
||||
const char *task_info_visual_start = is_last_task_info ? "└" : "├";
|
||||
esp_rom_printf("%s %s: %s, CURRENT MEMORY USAGE %d, PEAK MEMORY USAGE %d, TOTAL HEAP USED %d:\n", task_info_visual_start,
|
||||
task_info->task_stat.is_alive ? "ALIVE" : "DELETED",
|
||||
task_info->task_stat.name,
|
||||
task_info->task_stat.overall_current_usage,
|
||||
task_info->task_stat.overall_peak_usage,
|
||||
task_info->task_stat.heap_count);
|
||||
|
||||
heap_stats_t *heap_info = NULL;
|
||||
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
||||
char *next_heap_visual = !STAILQ_NEXT(heap_info, next_heap_stat) ? " " : "│";
|
||||
char *next_heap_visual_start = !STAILQ_NEXT(heap_info, next_heap_stat) ? "└" : "├";
|
||||
esp_rom_printf("%s %s HEAP: %s, CAPS: 0x%08lx, SIZE: %d, USAGE: CURRENT %d (%d%%), PEAK %d (%d%%), ALLOC COUNT: %d\n",
|
||||
task_info_visual,
|
||||
next_heap_visual_start,
|
||||
heap_info->heap_stat.name,
|
||||
heap_info->heap_stat.caps,
|
||||
heap_info->heap_stat.size,
|
||||
heap_info->heap_stat.current_usage,
|
||||
(heap_info->heap_stat.current_usage * 100) / heap_info->heap_stat.size,
|
||||
heap_info->heap_stat.peak_usage,
|
||||
(heap_info->heap_stat.peak_usage * 100) / heap_info->heap_stat.size,
|
||||
heap_info->heap_stat.alloc_count);
|
||||
|
||||
alloc_stats_t *alloc_stats = NULL;
|
||||
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
||||
esp_rom_printf("%s %s ├ ALLOC %p, SIZE %d\n", task_info_visual,
|
||||
next_heap_visual,
|
||||
alloc_stats->alloc_stat.address,
|
||||
alloc_stats->alloc_stat.size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void heap_caps_print_task_overview(task_info_t *task_info, bool is_first_task_info, bool is_last_task_info)
|
||||
{
|
||||
if (is_first_task_info) {
|
||||
esp_rom_printf("┌────────────────────┬─────────┬──────────────────────┬───────────────────┬─────────────────┐\n");
|
||||
esp_rom_printf("│ TASK │ STATUS │ CURRENT MEMORY USAGE │ PEAK MEMORY USAGE │ TOTAL HEAP USED │\n");
|
||||
esp_rom_printf("├────────────────────┼─────────┼──────────────────────┼───────────────────┼─────────────────┤\n");
|
||||
}
|
||||
|
||||
task_stat_t task_stat = task_info->task_stat;
|
||||
esp_rom_printf("│ %18s │ %7s │ %20d │ %17d │ %15d │\n",
|
||||
task_stat.name,
|
||||
task_stat.is_alive ? "ALIVE " : "DELETED",
|
||||
task_stat.overall_current_usage,
|
||||
task_stat.overall_peak_usage,
|
||||
task_stat.heap_count);
|
||||
|
||||
if (is_last_task_info) {
|
||||
esp_rom_printf("└────────────────────┴─────────┴──────────────────────┴───────────────────┴─────────────────┘\n");
|
||||
}
|
||||
}
|
||||
|
||||
void heap_caps_print_single_task_stat(TaskHandle_t task_handle)
|
||||
{
|
||||
if (task_handle == NULL) {
|
||||
task_handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if (task_info->task_stat.handle == task_handle) {
|
||||
heap_caps_print_task_info(stream, task_info, true);
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
return;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
void heap_caps_print_all_task_stat(void)
|
||||
{
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
|
||||
heap_caps_print_task_info(stream, task_info, last_task_info);
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
void heap_caps_print_single_task_stat_overview(TaskHandle_t task_handle)
|
||||
{
|
||||
if (task_handle == NULL) {
|
||||
task_handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if (task_info->task_stat.handle == task_handle) {
|
||||
heap_caps_print_task_overview(stream, task_info, true, true);
|
||||
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
return;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
void heap_caps_print_all_task_stat_overview(void)
|
||||
{
|
||||
task_info_t *task_info = NULL;
|
||||
bool is_first_task_info = true;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
|
||||
heap_caps_print_task_overview(stream, task_info, is_first_task_info, last_task_info);
|
||||
is_first_task_info = false;
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
}
|
||||
|
||||
esp_err_t heap_caps_alloc_single_task_stat_arrays(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
|
||||
{
|
||||
if (task_handle == NULL) {
|
||||
task_handle = xTaskGetCurrentTaskHandle();
|
||||
}
|
||||
|
||||
task_stat->heap_stat_start = NULL;
|
||||
task_stat->alloc_stat_start = NULL;
|
||||
task_stat->heap_count = 0;
|
||||
task_stat->alloc_count = 0;
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
if(task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
||||
task_stat->heap_count = task_info->task_stat.heap_count;
|
||||
heap_stats_t *heap_info = NULL;
|
||||
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
||||
task_stat->alloc_count += heap_info->heap_stat.alloc_count;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
|
||||
// allocate the memory used to store the statistics of allocs, heaps
|
||||
if (task_stat->heap_count != 0) {
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
task_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->heap_count * sizeof(heap_stat_t));
|
||||
if (task_stat->heap_stat_start == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
if (task_stat->alloc_count != 0) {
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
task_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->alloc_count * sizeof(heap_task_block_t));
|
||||
if (task_stat->alloc_stat_start == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
void heap_caps_free_single_task_stat_arrays(heap_single_task_stat_t *task_stat)
|
||||
{
|
||||
if (task_stat->heap_stat_start != NULL) {
|
||||
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->heap_stat_start);
|
||||
assert(heap_used_for_alloc != NULL);
|
||||
multi_heap_free(heap_used_for_alloc->heap, task_stat->heap_stat_start);
|
||||
task_stat->heap_stat_start = NULL;
|
||||
task_stat->heap_count = 0;
|
||||
}
|
||||
if (task_stat->alloc_stat_start != NULL) {
|
||||
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->alloc_stat_start);
|
||||
assert(heap_used_for_alloc != NULL);
|
||||
multi_heap_free(heap_used_for_alloc->heap, task_stat->alloc_stat_start);
|
||||
task_stat->alloc_stat_start = NULL;
|
||||
task_stat->alloc_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t heap_caps_alloc_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
|
||||
{
|
||||
tasks_stat->stat_arr = NULL;
|
||||
tasks_stat->heap_stat_start = NULL;
|
||||
tasks_stat->alloc_stat_start = NULL;
|
||||
tasks_stat->task_count = 0;
|
||||
tasks_stat->heap_count = 0;
|
||||
tasks_stat->alloc_count = 0;
|
||||
|
||||
task_info_t *task_info = NULL;
|
||||
|
||||
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
||||
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
||||
tasks_stat->task_count += 1;
|
||||
|
||||
tasks_stat->heap_count += task_info->task_stat.heap_count;
|
||||
heap_stats_t *heap_info = NULL;
|
||||
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
||||
tasks_stat->alloc_count += heap_info->heap_stat.alloc_count;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(s_task_tracking_mutex);
|
||||
|
||||
// allocate the memory used to store the statistics of allocs, heaps and tasks
|
||||
if (tasks_stat->task_count != 0) {
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
tasks_stat->stat_arr = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->task_count * sizeof(task_stat_t));
|
||||
if (tasks_stat->stat_arr == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
if (tasks_stat->heap_count != 0) {
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
tasks_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->heap_count * sizeof(heap_stat_t));
|
||||
if (tasks_stat->heap_stat_start == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
if (tasks_stat->alloc_count != 0) {
|
||||
heap_t *heap_used_for_alloc = find_biggest_heap();
|
||||
tasks_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->alloc_count * sizeof(heap_task_block_t));
|
||||
if (tasks_stat->alloc_stat_start == NULL) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
void heap_caps_free_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
|
||||
{
|
||||
if (tasks_stat->stat_arr != NULL) {
|
||||
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->stat_arr);
|
||||
assert(heap_used_for_alloc != NULL);
|
||||
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->stat_arr);
|
||||
tasks_stat->stat_arr = NULL;
|
||||
tasks_stat->task_count = 0;
|
||||
}
|
||||
if (tasks_stat->heap_stat_start != NULL) {
|
||||
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->heap_stat_start);
|
||||
assert(heap_used_for_alloc != NULL);
|
||||
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->heap_stat_start);
|
||||
tasks_stat->heap_stat_start = NULL;
|
||||
tasks_stat->heap_count = 0;
|
||||
}
|
||||
if (tasks_stat->alloc_stat_start != NULL) {
|
||||
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->alloc_stat_start);
|
||||
assert(heap_used_for_alloc != NULL);
|
||||
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->alloc_stat_start);
|
||||
tasks_stat->alloc_stat_start = NULL;
|
||||
tasks_stat->alloc_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return per-task heap allocation totals and lists of blocks.
|
||||
*
|
||||
@@ -80,8 +946,7 @@ size_t heap_caps_get_per_task_info(heap_task_info_params_t *params)
|
||||
if (i < count) {
|
||||
params->totals[i].size[type] += bsize;
|
||||
params->totals[i].count[type] += 1;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
if (count < params->max_totals) {
|
||||
params->totals[count].task = btask;
|
||||
params->totals[count].size[type] = bsize;
|
||||
|
Reference in New Issue
Block a user