refactor(hal): use hal utils to calculate clock division

This commit is contained in:
laokaiyao
2023-09-11 12:58:38 +08:00
parent 9bec9ccade
commit dd4072a80c
23 changed files with 432 additions and 292 deletions

View File

@@ -5,6 +5,7 @@
*/
#include "hal/hal_utils.h"
#include "hal/assert.h"
/**
* @brief helper function, calculate the Greatest Common Divisor
@@ -31,36 +32,42 @@ static inline uint32_t _sub_abs(uint32_t a, uint32_t b)
return a > b ? a - b : b - a;
}
uint32_t hal_utils_calc_clk_div_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
{
uint32_t div_denom = 1;
HAL_ASSERT(clk_info->max_fract > 2);
uint32_t div_denom = 2;
uint32_t div_numer = 0;
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
// fractional divider
if (freq_error) {
// Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
// Calculate the Greatest Common Divisor, time complexity O(log n)
uint32_t gcd = _gcd(clk_info->exp_freq_hz, freq_error);
// divide by the Greatest Common Divisor to get the accurate fraction before normalization
div_denom = clk_info->exp_freq_hz / gcd;
div_numer = freq_error / gcd;
// normalize div_denom and div_numer
uint32_t d = div_denom / clk_info->max_fract + 1;
// divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract
div_denom /= d;
div_numer /= d;
} else {
div_integ++;
}
}
// If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
if (div_integ < clk_info->min_integ || div_integ > clk_info->max_integ) {
if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
return 0;
}
// fractional divider
if (freq_error) {
// Calculate the Greatest Common Divisor, time complexity O(log n)
uint32_t gcd = _gcd(clk_info->exp_freq_hz, freq_error);
// divide by the Greatest Common Divisor to get the accurate fraction before normalization
div_denom = clk_info->exp_freq_hz / gcd;
div_numer = freq_error / gcd;
// normalize div_denom and div_numer
uint32_t d = div_denom / clk_info->max_fract + 1;
// divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract
div_denom /= d;
div_numer /= d;
}
// Assign result
clk_div->integ = div_integ;
clk_div->denom = div_denom;
clk_div->numer = div_numer;
clk_div->integer = div_integ;
clk_div->denominator = div_denom;
clk_div->numerator = div_numer;
// Return the actual frequency
if (div_numer) {
@@ -70,23 +77,19 @@ uint32_t hal_utils_calc_clk_div_fast(const hal_utils_clk_info_t *clk_info, hal_u
return clk_info->src_freq_hz / div_integ;
}
uint32_t hal_utils_calc_clk_div_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
{
uint32_t div_denom = 1;
HAL_ASSERT(clk_info->max_fract > 2);
uint32_t div_denom = 2;
uint32_t div_numer = 0;
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
// If the expect frequency is too high to satisfy the minimum integral division, failed and return 0
if (div_integ < clk_info->min_integ) {
return 0;
}
if (freq_error) {
// Carry bit if the decimal is greater than 1.0 - 1.0 / (PARLIO_LL_CLK_DIVIDER_MAX * 2)
if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract * 2)) {
// Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
// Search the closest fraction, time complexity O(n)
for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a <= clk_info->max_fract; a++) {
for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a < clk_info->max_fract; a++) {
b = (a * freq_error + clk_info->exp_freq_hz / 2) / clk_info->exp_freq_hz;
sub = _sub_abs(clk_info->exp_freq_hz * b, freq_error * a);
if (sub < min) {
@@ -99,15 +102,16 @@ uint32_t hal_utils_calc_clk_div_accurate(const hal_utils_clk_info_t *clk_info, h
div_integ++;
}
}
// If the expect frequency is too low to satisfy the maximum integral division, failed and return 0
if (div_integ > clk_info->max_integ) {
// If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
return 0;
}
// Assign result
clk_div->integ = div_integ;
clk_div->denom = div_denom;
clk_div->numer = div_numer;
clk_div->integer = div_integ;
clk_div->denominator = div_denom;
clk_div->numerator = div_numer;
// Return the actual frequency
if (div_numer) {
@@ -116,3 +120,22 @@ uint32_t hal_utils_calc_clk_div_accurate(const hal_utils_clk_info_t *clk_info, h
}
return clk_info->src_freq_hz / div_integ;
}
uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div)
{
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
/* If there is error and always round up,
Or, do the normal rounding and error >= (src/n + src/(n+1)) / 2,
then carry the bit */
if ((freq_error && clk_info->round_opt == HAL_DIV_ROUND_UP) || (clk_info->round_opt == HAL_DIV_ROUND &&
(freq_error >= clk_info->src_freq_hz / (2 * div_integ * (div_integ + 1))))) {
div_integ++;
}
// Assign result
*int_div = div_integ;
// Return the actual frequency
return clk_info->src_freq_hz / div_integ;
}