System/Security: Memprot API unified (ESP32C3)

Unified Memory protection API for all PMS-aware chips (ESP32C3)

Closes JIRA IDF-3849
This commit is contained in:
Martin Vychodil
2021-09-06 10:22:40 +02:00
parent 7c7fbb1fd0
commit dd938eb952
41 changed files with 3443 additions and 3090 deletions

View File

@@ -1,59 +1,22 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "soc/sensitive_reg.h"
#include "soc/cache_memory.h"
#include "hal/assert.h"
#include "soc/memprot_defs.h"
#include "hal/memprot_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/* ******************************************************************************************************
* *** GLOBALS ***
* NOTE: in this version, all the configurations apply only to WORLD_0
*/
#define IRAM_SRAM_START 0x4037C000
#define DRAM_SRAM_START 0x3FC7C000
/* ICache size is fixed to 16KB on ESP32-C3 */
#ifndef ICACHE_SIZE
#define ICACHE_SIZE 0x4000
#endif
#ifndef I_D_SRAM_SEGMENT_SIZE
#define I_D_SRAM_SEGMENT_SIZE 0x20000
#endif
#define I_D_SPLIT_LINE_SHIFT 0x9
#define I_D_FAULT_ADDR_SHIFT 0x2
typedef union {
struct {
uint32_t cat0 : 2;
uint32_t cat1 : 2;
uint32_t cat2 : 2;
uint32_t res0 : 8;
uint32_t splitaddr : 8;
uint32_t res1 : 10;
};
uint32_t val;
} constrain_reg_fields_t;
* *** COMMON ***
* ******************************************************************************************************/
static inline void memprot_ll_set_iram0_dram0_split_line_lock(void)
{
REG_WRITE(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_0_REG, 1);
@@ -64,7 +27,7 @@ static inline bool memprot_ll_get_iram0_dram0_split_line_lock(void)
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_0_REG) == 1;
}
static inline void* memprot_ll_get_split_addr_from_reg(uint32_t regval, uint32_t base)
static inline void *memprot_ll_get_split_addr_from_reg(uint32_t regval, uint32_t base)
{
constrain_reg_fields_t reg_val;
reg_val.val = regval;
@@ -85,43 +48,30 @@ static inline void* memprot_ll_get_split_addr_from_reg(uint32_t regval, uint32_t
/* ******************************************************************************************************
* *** IRAM0 ***
*/
//16kB (CACHE)
#define IRAM0_SRAM_LEVEL_0_LOW IRAM_SRAM_START //0x40370000
#define IRAM0_SRAM_LEVEL_0_HIGH (IRAM0_SRAM_LEVEL_0_LOW + ICACHE_SIZE - 0x1) //0x4037FFFF
//128kB (LEVEL 1)
#define IRAM0_SRAM_LEVEL_1_LOW (IRAM0_SRAM_LEVEL_0_HIGH + 0x1) //0x40380000
#define IRAM0_SRAM_LEVEL_1_HIGH (IRAM0_SRAM_LEVEL_1_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x4039FFFF
//128kB (LEVEL 2)
#define IRAM0_SRAM_LEVEL_2_LOW (IRAM0_SRAM_LEVEL_1_HIGH + 0x1) //0x403A0000
#define IRAM0_SRAM_LEVEL_2_HIGH (IRAM0_SRAM_LEVEL_2_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x403BFFFF
//128kB (LEVEL 3)
#define IRAM0_SRAM_LEVEL_3_LOW (IRAM0_SRAM_LEVEL_2_HIGH + 0x1) //0x403C0000
#define IRAM0_SRAM_LEVEL_3_HIGH (IRAM0_SRAM_LEVEL_3_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x403DFFFF
//permission bits
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R 0x1
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W 0x2
#define SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F 0x4
* ******************************************************************************************************/
static inline uint32_t memprot_ll_iram0_get_intr_source_num(void)
{
return ETS_CORE0_IRAM0_PMS_INTR_SOURCE;
}
///////////////////////////////////
// IRAM0 - SPLIT LINES
///////////////////////////////////
static inline void memprot_ll_set_iram0_split_line(const void *line_addr, uint32_t sensitive_reg)
/* ********************************
* IRAM0 - SPLIT LINES
*
* NOTES:
* 1. IRAM0/DRAM0 split-lines must be aligned to 512B boundaries (PMS module restriction)
* 2. split address must fall into appropriate IRAM0/DRAM0 region
*/
static inline memprot_ll_err_t memprot_ll_set_iram0_split_line(const void *line_addr, uint32_t sensitive_reg)
{
uint32_t addr = (uint32_t)line_addr;
HAL_ASSERT(addr >= IRAM0_SRAM_LEVEL_1_LOW && addr <= IRAM0_SRAM_LEVEL_3_HIGH);
if (addr < IRAM0_SRAM_LEVEL_1_LOW || addr > IRAM0_SRAM_LEVEL_3_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_OUT_OF_RANGE;
}
if (addr % 0x200 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
uint32_t category[3] = {0};
if (addr <= IRAM0_SRAM_LEVEL_1_HIGH) {
@@ -141,47 +91,61 @@ static inline void memprot_ll_set_iram0_split_line(const void *line_addr, uint32
(category[2] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_2_S);
uint32_t conf_addr = ((addr >> I_D_SPLIT_LINE_SHIFT) & SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_V) << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_S;
uint32_t reg_cfg = conf_addr | category_bits;
REG_WRITE(sensitive_reg, reg_cfg);
return MEMP_LL_OK;
}
/* can be both IRAM0/DRAM0 address */
static inline void memprot_ll_set_iram0_split_line_main_I_D(const void *line_addr)
static inline memprot_ll_err_t memprot_ll_set_iram0_split_line_main_I_D(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG);
return memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG);
}
static inline void memprot_ll_set_iram0_split_line_I_0(const void *line_addr)
static inline memprot_ll_err_t memprot_ll_set_iram0_split_line_I_0(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG);
return memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG);
}
static inline void memprot_ll_set_iram0_split_line_I_1(const void *line_addr)
static inline memprot_ll_err_t memprot_ll_set_iram0_split_line_I_1(const void *line_addr)
{
memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG);
return memprot_ll_set_iram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG);
}
static inline void* memprot_ll_get_iram0_split_line_main_I_D(void)
static inline uint32_t memprot_ll_get_iram0_split_line_main_I_D_cat(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG) & 0x3F;
}
static inline uint32_t memprot_ll_get_iram0_split_line_I_0_cat(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG) & 0x3F;
}
static inline uint32_t memprot_ll_get_iram0_split_line_I_1_cat(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG) & 0x3F;
}
static inline void *memprot_ll_get_iram0_split_line_main_I_D(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_1_REG), SOC_DIRAM_IRAM_LOW);
}
static inline void* memprot_ll_get_iram0_split_line_I_0(void)
static inline void *memprot_ll_get_iram0_split_line_I_0(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_2_REG), SOC_DIRAM_IRAM_LOW);
}
static inline void* memprot_ll_get_iram0_split_line_I_1(void)
static inline void *memprot_ll_get_iram0_split_line_I_1(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_3_REG), SOC_DIRAM_IRAM_LOW);
}
///////////////////////////////////
// IRAM0 - PMS CONFIGURATION
///////////////////////////////////
// lock
static inline void memprot_ll_iram0_set_pms_lock(void)
@@ -198,14 +162,14 @@ static inline bool memprot_ll_iram0_get_pms_lock(void)
static inline uint32_t memprot_ll_iram0_set_permissions(bool r, bool w, bool x)
{
uint32_t permissions = 0;
if ( r ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
if (r) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_R;
}
if ( w ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
if (w) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_W;
}
if ( x ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F;
if (x) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_F;
}
return permissions;
@@ -233,39 +197,38 @@ static inline void memprot_ll_iram0_set_pms_area_3(bool r, bool w, bool x)
static inline void memprot_ll_iram0_get_permissions(uint32_t perms, bool *r, bool *w, bool *x)
{
*r = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
*w = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
*x = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_F;
*r = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_R;
*w = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_W;
*x = perms & SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_F;
}
static inline void memprot_ll_iram0_get_pms_area_0(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
memprot_ll_iram0_get_permissions(permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_1(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
memprot_ll_iram0_get_permissions(permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_2(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
memprot_ll_iram0_get_permissions(permissions, r, w, x);
}
static inline void memprot_ll_iram0_get_pms_area_3(bool *r, bool *w, bool *x)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_2_REG, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3);
memprot_ll_iram0_get_permissions( permissions, r, w, x);
memprot_ll_iram0_get_permissions(permissions, r, w, x);
}
///////////////////////////////////
// IRAM0 - MONITOR
///////////////////////////////////
// lock
static inline void memprot_ll_iram0_set_monitor_lock(void)
@@ -281,26 +244,31 @@ static inline bool memprot_ll_iram0_get_monitor_lock(void)
// interrupt enable/clear
static inline void memprot_ll_iram0_set_monitor_en(bool enable)
{
if ( enable ) {
REG_SET_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN );
if (enable) {
REG_SET_BIT(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN);
} else {
REG_CLR_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN );
REG_CLR_BIT(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN);
}
}
static inline bool memprot_ll_iram0_get_monitor_intrclr(void)
{
return REG_GET_BIT(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR) > 0;
}
static inline bool memprot_ll_iram0_get_monitor_en(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN ) == 1;
return REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_EN) == 1;
}
static inline void memprot_ll_iram0_clear_monitor_intr(void)
static inline void memprot_ll_iram0_set_monitor_intrclr(void)
{
REG_SET_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR );
REG_SET_BIT(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR);
}
static inline void memprot_ll_iram0_reset_clear_monitor_intr(void)
static inline void memprot_ll_iram0_reset_monitor_intrclr(void)
{
REG_CLR_BIT( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR );
REG_CLR_BIT(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_CLR);
}
static inline uint32_t memprot_ll_iram0_get_monitor_enable_register(void)
@@ -308,31 +276,31 @@ static inline uint32_t memprot_ll_iram0_get_monitor_enable_register(void)
return REG_READ(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_1_REG);
}
// // permission violation status
// permission violation status
static inline uint32_t memprot_ll_iram0_get_monitor_status_intr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR );
return REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR);
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_wr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WR );
return REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WR);
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_loadstore(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_LOADSTORE );
return REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_LOADSTORE);
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_world(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD );
return REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD);
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_fault_addr(void)
static inline intptr_t memprot_ll_iram0_get_monitor_status_fault_addr(void)
{
uint32_t addr = REG_GET_FIELD( SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR );
return addr > 0 ? (addr << I_D_FAULT_ADDR_SHIFT) + IRAM0_ADDRESS_LOW : 0;
uint32_t addr = REG_GET_FIELD(SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR);
return (intptr_t)(addr > 0 ? (addr << I_D_FAULT_ADDR_SHIFT) + IRAM0_ADDRESS_LOW : 0);
}
static inline uint32_t memprot_ll_iram0_get_monitor_status_register(void)
@@ -342,43 +310,309 @@ static inline uint32_t memprot_ll_iram0_get_monitor_status_register(void)
/* ******************************************************************************************************
* *** DRAM0 ***
* *** RTC_FAST ***
*/
//cache not available from DRAM (!)
#define DRAM0_SRAM_LEVEL_0_LOW DRAM_SRAM_START //0x3FC7C000
#define DRAM0_SRAM_LEVEL_0_HIGH (DRAM0_SRAM_LEVEL_0_LOW + ICACHE_SIZE - 0x1) //0x3FC7FFFF
static inline uint32_t memprot_ll_rtcfast_get_intr_source_num(void)
{
return ETS_CORE0_PIF_PMS_INTR_SOURCE;
}
//128kB
#define DRAM0_SRAM_LEVEL_1_LOW (DRAM0_SRAM_LEVEL_0_HIGH + 0x1) //0x3FC80000
#define DRAM0_SRAM_LEVEL_1_HIGH (DRAM0_SRAM_LEVEL_1_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FC9FFFF
//shared PIF PMS lock
//!!!: use after ALL the constraints have been set
static inline void memprot_ll_set_pif_constraint_lock(void)
{
REG_WRITE(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_0_REG, 1);
}
//128kB
#define DRAM0_SRAM_LEVEL_2_LOW (DRAM0_SRAM_LEVEL_1_HIGH + 0x1) //0x3FCA0000
#define DRAM0_SRAM_LEVEL_2_HIGH (DRAM0_SRAM_LEVEL_2_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FCBFFFF
static inline bool memprot_ll_get_pif_constraint_lock(void)
{
return REG_READ(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_0_REG) == 1;
}
//128kB
#define DRAM0_SRAM_LEVEL_3_LOW (DRAM0_SRAM_LEVEL_2_HIGH + 0x1) //0x3FCC0000
#define DRAM0_SRAM_LEVEL_3_HIGH (DRAM0_SRAM_LEVEL_3_LOW + I_D_SRAM_SEGMENT_SIZE - 0x1) //0x3FCDFFFF
static inline uint32_t memprot_ll_rtcfast_get_splitaddr_register(void)
{
return REG_READ(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_9_REG);
}
#define SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W 0x2
#define SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R 0x1
/* ********************************
* IRAM0 RTCFAST - SPLIT LINES
*
* NOTES:
* 1. there is only 1 split line for RTCFAST/WORLD
* 2. RTCFAST split-line must be aligned to 4B boundaries (PMS stores 11 bits of 13-bit offset in 8kB RTCFAST region)
* 3. RTCFAST has weird section structure (text -> dummy (!) -> force -> data) - .dummy section seems to have wrong mapping (it doesn't fall inline with .rtctext)
*/
static inline memprot_ll_err_t memprot_ll_set_rtcfast_split_line(const void *line_addr, memprot_ll_world_t world)
{
uint32_t addr = (uint32_t)line_addr;
uint32_t mask;
if (addr < SOC_RTC_IRAM_LOW || addr >= SOC_RTC_IRAM_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_OUT_OF_RANGE;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
switch (world) {
case MEMP_LL_WORLD_0:
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_0_M;
break;
case MEMP_LL_WORLD_1:
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_1_M;
break;
default:
return MEMP_LL_ERR_WORLD_INVALID;
}
//offset bits to store are the same width for both worlds -> using SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_0_V
CLEAR_PERI_REG_MASK(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_9_REG, mask);
REG_SET_BITS(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_9_REG, mask, (addr >> 2) & SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_0_V);
return MEMP_LL_OK;
}
static inline memprot_ll_err_t memprot_ll_get_rtcfast_split_line(memprot_ll_world_t world, void **line_addr)
{
uint32_t reg_addr = REG_READ(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_9_REG);
uint32_t mask = 0;
uint32_t shift = 0;
switch (world) {
case MEMP_LL_WORLD_0:
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_0_M;
shift = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_0_S;
break;
case MEMP_LL_WORLD_1:
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_1_M;
shift = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_SPLTADDR_WORLD_1_S;
break;
default:
return MEMP_LL_ERR_WORLD_INVALID;
}
*line_addr = (void *)((((reg_addr & mask) >> shift) << 2) + SOC_RTC_IRAM_LOW);
return MEMP_LL_OK;
}
///////////////////////////////////
// RTC_FAST - PMS CONFIGURATION
// permission settings
static inline uint32_t memprot_ll_rtcfast_set_permissions(bool r, bool w, bool x)
{
uint32_t permissions = 0;
if (r) {
permissions |= SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_R;
}
if (w) {
permissions |= SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_W;
}
if (x) {
permissions |= SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_F;
}
return permissions;
}
static inline memprot_ll_err_t memprot_ll_rtcfast_set_pms_area(bool r, bool w, bool x, memprot_ll_world_t world, memprot_ll_area_t area)
{
uint32_t bits = 0;
uint32_t mask = 0;
switch (world) {
case MEMP_LL_WORLD_0: {
switch (area) {
case MEMP_LL_AREA_LOW:
bits = memprot_ll_rtcfast_set_permissions(r, w, x) << SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_L_S;
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_L_M;
break;
case MEMP_LL_AREA_HIGH:
bits = memprot_ll_rtcfast_set_permissions(r, w, x) << SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_H_S;
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_H_M;
break;
default:
return MEMP_LL_ERR_AREA_INVALID;
}
} break;
case MEMP_LL_WORLD_1: {
switch (area) {
case MEMP_LL_AREA_LOW:
bits = memprot_ll_rtcfast_set_permissions(r, w, x) << SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_L_S;
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_L_M;
break;
case MEMP_LL_AREA_HIGH:
bits = memprot_ll_rtcfast_set_permissions(r, w, x) << SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_H_S;
mask = SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_H_M;
break;
default:
return MEMP_LL_ERR_AREA_INVALID;
}
} break;
default:
return MEMP_LL_ERR_WORLD_INVALID;
}
CLEAR_PERI_REG_MASK(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, mask);
REG_SET_BITS(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, bits, mask);
return MEMP_LL_OK;
}
static inline void memprot_ll_rtcfast_get_permissions(uint32_t perms, bool *r, bool *w, bool *x)
{
*r = perms & SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_R;
*w = perms & SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_W;
*x = perms & SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_X_F;
}
static inline memprot_ll_err_t memprot_ll_rtcfast_get_pms_area(bool *r, bool *w, bool *x, memprot_ll_world_t world, memprot_ll_area_t area)
{
uint32_t permissions = 0;
switch (world) {
case MEMP_LL_WORLD_0: {
switch (area) {
case MEMP_LL_AREA_LOW:
permissions = REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_L);
break;
case MEMP_LL_AREA_HIGH:
permissions = REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_0_H);
break;
default:
return MEMP_LL_ERR_AREA_INVALID;
}
} break;
case MEMP_LL_WORLD_1: {
switch (area) {
case MEMP_LL_AREA_LOW:
permissions = REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_L);
break;
case MEMP_LL_AREA_HIGH:
permissions = REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG, SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_RTCFAST_WORLD_1_H);
break;
default:
return MEMP_LL_ERR_AREA_INVALID;
}
} break;
default:
return MEMP_LL_ERR_WORLD_INVALID;
}
memprot_ll_rtcfast_get_permissions(permissions, r, w, x);
return MEMP_LL_OK;
}
static inline uint32_t memprot_ll_rtcfast_get_permission_register(void)
{
return REG_READ(SENSITIVE_CORE_0_PIF_PMS_CONSTRAIN_10_REG);
}
///////////////////////////////////
// RTC_FAST - MONITOR
// lock
static inline void memprot_ll_rtcfast_set_monitor_lock(void)
{
REG_WRITE(SENSITIVE_CORE_0_PIF_PMS_MONITOR_0_REG, 1);
}
static inline bool memprot_ll_rtcfast_get_monitor_lock(void)
{
return REG_READ(SENSITIVE_CORE_0_PIF_PMS_MONITOR_0_REG) == 1;
}
// interrupt enable/clear
static inline void memprot_ll_rtcfast_set_monitor_en(bool enable)
{
if (enable) {
REG_SET_BIT(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_EN);
} else {
REG_CLR_BIT(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_EN);
}
}
static inline bool memprot_ll_rtcfast_get_monitor_en(void)
{
return REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_EN) > 0;
}
static inline bool memprot_ll_rtcfast_get_monitor_intrclr(void)
{
return REG_GET_BIT(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_CLR) > 0;
}
static inline void memprot_ll_rtcfast_set_monitor_intrclr(void)
{
REG_SET_BIT(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_CLR);
}
static inline void memprot_ll_rtcfast_reset_monitor_intrclr(void)
{
REG_CLR_BIT(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_CLR);
}
static inline uint32_t memprot_ll_rtcfast_get_monitor_register(void)
{
return REG_READ(SENSITIVE_CORE_0_PIF_PMS_MONITOR_1_REG);
}
// permission violation status
static inline uint32_t memprot_ll_rtcfast_get_monitor_status_intr(void)
{
return REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_INTR);
}
static inline intptr_t memprot_ll_rtcfast_get_monitor_status_fault_addr(void)
{
//full address SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_STATUS_HADDR
return (intptr_t)REG_READ(SENSITIVE_CORE_0_PIF_PMS_MONITOR_3_REG);
}
static inline uint32_t memprot_ll_rtcfast_get_monitor_status_fault_world(void)
{
return REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_STATUS_HWORLD);
}
static inline uint32_t memprot_ll_rtcfast_get_monitor_status_fault_loadstore(void)
{
return REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_STATUS_HPORT_0);
}
static inline uint32_t memprot_ll_rtcfast_get_monitor_status_fault_wr(void)
{
return REG_GET_FIELD(SENSITIVE_CORE_0_PIF_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_PIF_PMS_MONITOR_VIOLATE_STATUS_HWRITE);
}
/* ******************************************************************************************************
* *** DRAM0 ***
* ******************************************************************************************************/
static inline uint32_t memprot_ll_dram0_get_intr_source_num(void)
{
return ETS_CORE0_DRAM0_PMS_INTR_SOURCE;
}
///////////////////////////////////
// DRAM0 - SPLIT LINES
///////////////////////////////////
static inline void memprot_ll_set_dram0_split_line(const void *line_addr, uint32_t sensitive_reg)
static inline memprot_ll_err_t memprot_ll_set_dram0_split_line(const void *line_addr, uint32_t sensitive_reg)
{
uint32_t addr = (uint32_t)line_addr;
HAL_ASSERT(addr >= DRAM0_SRAM_LEVEL_1_LOW && addr <= DRAM0_SRAM_LEVEL_3_HIGH);
//sanity check: split address required above unified mgmt region & 32bit aligned
if (addr < DRAM0_SRAM_LEVEL_1_LOW || addr > DRAM0_SRAM_LEVEL_3_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_OUT_OF_RANGE;
}
//split-line must be divisible by 512 (PMS module restriction)
if (addr % 0x200 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
uint32_t category[3] = {0};
if (addr <= DRAM0_SRAM_LEVEL_1_HIGH) {
@@ -398,36 +632,45 @@ static inline void memprot_ll_set_dram0_split_line(const void *line_addr, uint32
(category[2] << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_CATEGORY_2_S);
uint32_t conf_addr = ((addr >> I_D_SPLIT_LINE_SHIFT) & SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_V) << SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SRAM_SPLITADDR_S;
uint32_t reg_cfg = conf_addr | category_bits;
REG_WRITE(sensitive_reg, reg_cfg);
return MEMP_LL_OK;
}
static inline void memprot_ll_set_dram0_split_line_D_0(const void *line_addr)
static inline memprot_ll_err_t memprot_ll_set_dram0_split_line_D_0(const void *line_addr)
{
memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_4_REG);
return memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_4_REG);
}
static inline void memprot_ll_set_dram0_split_line_D_1(const void *line_addr)
static inline memprot_ll_err_t memprot_ll_set_dram0_split_line_D_1(const void *line_addr)
{
memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_5_REG);
return memprot_ll_set_dram0_split_line(line_addr, SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_5_REG);
}
static inline void* memprot_ll_get_dram0_split_line_D_0(void)
static inline void *memprot_ll_get_dram0_split_line_D_0(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_4_REG), SOC_DIRAM_DRAM_LOW);
}
static inline void* memprot_ll_get_dram0_split_line_D_1(void)
static inline void *memprot_ll_get_dram0_split_line_D_1(void)
{
return memprot_ll_get_split_addr_from_reg(REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_5_REG), SOC_DIRAM_DRAM_LOW);
}
static inline uint32_t memprot_ll_get_dram0_split_line_D_0_cat(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_4_REG) & 0x3F;
}
static inline uint32_t memprot_ll_get_dram0_split_line_D_1_cat(void)
{
return REG_READ(SENSITIVE_CORE_X_IRAM0_DRAM0_DMA_SPLIT_LINE_CONSTRAIN_5_REG) & 0x3F;
}
///////////////////////////////////
// DRAM0 - PMS CONFIGURATION
///////////////////////////////////
// lock
static inline void memprot_ll_dram0_set_pms_lock(void)
@@ -444,11 +687,11 @@ static inline bool memprot_ll_dram0_get_pms_lock(void)
static inline uint32_t memprot_ll_dram0_set_permissions(bool r, bool w)
{
uint32_t permissions = 0;
if ( r ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
if (r) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_R;
}
if ( w ) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
if (w) {
permissions |= SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_W;
}
return permissions;
@@ -476,37 +719,36 @@ static inline void memprot_ll_dram0_set_pms_area_3(bool r, bool w)
static inline void memprot_ll_dram0_get_permissions(uint32_t perms, bool *r, bool *w )
{
*r = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_R;
*w = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_W;
*r = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_R;
*w = perms & SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_X_W;
}
static inline void memprot_ll_dram0_get_pms_area_0(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_0);
memprot_ll_dram0_get_permissions( permissions, r, w);
memprot_ll_dram0_get_permissions(permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_1(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_1);
memprot_ll_dram0_get_permissions( permissions, r, w);
memprot_ll_dram0_get_permissions(permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_2(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_2);
memprot_ll_dram0_get_permissions( permissions, r, w);
memprot_ll_dram0_get_permissions(permissions, r, w);
}
static inline void memprot_ll_dram0_get_pms_area_3(bool *r, bool *w)
{
uint32_t permissions = REG_GET_FIELD(SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_1_REG, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_SRAM_WORLD_0_PMS_3);
memprot_ll_dram0_get_permissions( permissions, r, w);
memprot_ll_dram0_get_permissions(permissions, r, w);
}
///////////////////////////////////
// DRAM0 - MONITOR
///////////////////////////////////
// lock
static inline void memprot_ll_dram0_set_monitor_lock(void)
@@ -522,26 +764,31 @@ static inline bool memprot_ll_dram0_get_monitor_lock(void)
// interrupt enable/clear
static inline void memprot_ll_dram0_set_monitor_en(bool enable)
{
if ( enable ) {
REG_SET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN );
if (enable) {
REG_SET_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN);
} else {
REG_CLR_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN );
REG_CLR_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN);
}
}
static inline bool memprot_ll_dram0_get_monitor_en(void)
{
return REG_GET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN ) == 1;
return REG_GET_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_EN) > 0;
}
static inline void memprot_ll_dram0_clear_monitor_intr(void)
static inline void memprot_ll_dram0_set_monitor_intrclr(void)
{
REG_SET_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR );
REG_SET_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR);
}
static inline void memprot_ll_dram0_reset_clear_monitor_intr(void)
static inline void memprot_ll_dram0_reset_monitor_intrclr(void)
{
REG_CLR_BIT( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR );
REG_CLR_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR);
}
static inline bool memprot_ll_dram0_get_monitor_intrclr(void)
{
return REG_GET_BIT(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_1_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_CLR) > 0;
}
static inline uint32_t memprot_ll_dram0_get_monitor_enable_register(void)
@@ -552,33 +799,33 @@ static inline uint32_t memprot_ll_dram0_get_monitor_enable_register(void)
// permission violation status
static inline uint32_t memprot_ll_dram0_get_monitor_status_intr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR );
return REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_lock(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_LOCK );
return REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_LOCK);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_world(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD );
return REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WORLD);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_addr(void)
{
uint32_t addr = REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR );
uint32_t addr = REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_ADDR);
return addr > 0 ? (addr << I_D_FAULT_ADDR_SHIFT) + DRAM0_ADDRESS_LOW : 0;
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_wr(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_3_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WR );
return REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_3_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_WR);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_fault_byte_en(void)
{
return REG_GET_FIELD( SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_BYTEEN );
return REG_GET_FIELD(SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_2_REG, SENSITIVE_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_STATUS_BYTEEN);
}
static inline uint32_t memprot_ll_dram0_get_monitor_status_register_1(void)