global: rename esp32s2beta to esp32s2

This commit is contained in:
morris
2020-01-17 11:47:08 +08:00
parent 95743f4ee6
commit e30cd361a8
458 changed files with 660 additions and 1923 deletions

View File

@@ -0,0 +1,391 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "sdkconfig.h"
#include "bootloader_common.h"
#include "soc/efuse_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/io_mux_reg.h"
#include "esp32s2/rom/efuse.h"
#include "esp32s2/rom/gpio.h"
#include "esp32s2/rom/spi_flash.h"
#include "bootloader_init.h"
#include "bootloader_clock.h"
#include "bootloader_flash_config.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/ets_sys.h"
#include "esp32s2/rom/spi_flash.h"
#include "esp32s2/rom/rtc.h"
#include "esp32s2/rom/uart.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "flash_qio_mode.h"
#include "soc/assist_debug_reg.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/extmem_reg.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
#include <string.h>
static const char *TAG = "boot.esp32s2";
void bootloader_configure_spi_pins(int drv)
{
const uint32_t spiconfig = ets_efuse_get_spiconfig();
uint8_t wp_pin = ets_efuse_get_wp_pad();
uint8_t clk_gpio_num = SPI_CLK_GPIO_NUM;
uint8_t q_gpio_num = SPI_Q_GPIO_NUM;
uint8_t d_gpio_num = SPI_D_GPIO_NUM;
uint8_t cs0_gpio_num = SPI_CS0_GPIO_NUM;
uint8_t hd_gpio_num = SPI_HD_GPIO_NUM;
uint8_t wp_gpio_num = SPI_WP_GPIO_NUM;
if (spiconfig == 0) {
} else {
clk_gpio_num = spiconfig & 0x3f;
q_gpio_num = (spiconfig >> 6) & 0x3f;
d_gpio_num = (spiconfig >> 12) & 0x3f;
cs0_gpio_num = (spiconfig >> 18) & 0x3f;
hd_gpio_num = (spiconfig >> 24) & 0x3f;
wp_gpio_num = wp_pin;
}
gpio_pad_set_drv(clk_gpio_num, drv);
gpio_pad_set_drv(q_gpio_num, drv);
gpio_pad_set_drv(d_gpio_num, drv);
gpio_pad_set_drv(cs0_gpio_num, drv);
if (hd_gpio_num <= MAX_PAD_GPIO_NUM) {
gpio_pad_set_drv(hd_gpio_num, drv);
}
if (wp_gpio_num <= MAX_PAD_GPIO_NUM) {
gpio_pad_set_drv(wp_gpio_num, drv);
}
}
static void bootloader_reset_mmu(void)
{
//ToDo: save the autoload value
Cache_Suspend_ICache();
Cache_Invalidate_ICache_All();
Cache_MMU_Init();
/* normal ROM boot exits with DROM0 cache unmasked,
but serial bootloader exits with it masked. */
REG_CLR_BIT(EXTMEM_PRO_ICACHE_CTRL1_REG, EXTMEM_PRO_ICACHE_MASK_DROM0);
}
static void update_flash_config(const esp_image_header_t *bootloader_hdr)
{
uint32_t size;
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
uint32_t autoload = Cache_Suspend_ICache();
// Set flash chip size
esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Resume_ICache(autoload);
}
static void print_flash_info(const esp_image_header_t *bootloader_hdr)
{
ESP_LOGD(TAG, "magic %02x", bootloader_hdr->magic);
ESP_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count);
ESP_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode);
ESP_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed);
ESP_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size);
const char *str;
switch (bootloader_hdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_40M:
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str);
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
uint32_t spi_ctrl = REG_READ(SPI_MEM_CTRL_REG(0));
if (spi_ctrl & SPI_MEM_FREAD_QIO) {
str = "QIO";
} else if (spi_ctrl & SPI_MEM_FREAD_QUAD) {
str = "QOUT";
} else if (spi_ctrl & SPI_MEM_FREAD_DIO) {
str = "DIO";
} else if (spi_ctrl & SPI_MEM_FREAD_DUAL) {
str = "DOUT";
} else if (spi_ctrl & SPI_MEM_FASTRD_MODE) {
str = "FAST READ";
} else {
str = "SLOW READ";
}
ESP_LOGI(TAG, "SPI Mode : %s", str);
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str);
}
static void IRAM_ATTR bootloader_init_flash_configure(void)
{
bootloader_flash_dummy_config(&bootloader_image_hdr);
bootloader_flash_cs_timing_config();
}
static esp_err_t bootloader_init_spi_flash(void)
{
bootloader_init_flash_configure();
#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
const uint32_t spiconfig = ets_efuse_get_spiconfig();
if (spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
ESP_LOGE(TAG, "SPI flash pins are overridden. Enable CONFIG_SPI_FLASH_ROM_DRIVER_PATCH in menuconfig");
return ESP_FAIL;
}
#endif
esp_rom_spiflash_unlock();
#if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
print_flash_info(&bootloader_image_hdr);
update_flash_config(&bootloader_image_hdr);
return ESP_OK;
}
static void bootloader_init_uart_console(void)
{
#if CONFIG_ESP_CONSOLE_UART_NONE
ets_install_putc1(NULL);
ets_install_putc2(NULL);
#else // CONFIG_ESP_CONSOLE_UART_NONE
const int uart_num = CONFIG_ESP_CONSOLE_UART_NUM;
uartAttach(NULL);
ets_install_uart_printf();
// Wait for UART FIFO to be empty.
uart_tx_wait_idle(0);
#if CONFIG_ESP_CONSOLE_UART_CUSTOM
// Some constants to make the following code less upper-case
const int uart_tx_gpio = CONFIG_ESP_CONSOLE_UART_TX_GPIO;
const int uart_rx_gpio = CONFIG_ESP_CONSOLE_UART_RX_GPIO;
// Switch to the new UART (this just changes UART number used for
// ets_printf in ROM code).
uart_tx_switch(uart_num);
// If console is attached to UART1 or if non-default pins are used,
// need to reconfigure pins using GPIO matrix
if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
// Change pin mode for GPIO1/3 from UART to GPIO
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
// Route GPIO signals to/from pins
// (arrays should be optimized away by the compiler)
const uint32_t tx_idx_list[3] = {U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX};
const uint32_t rx_idx_list[3] = {U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX};
const uint32_t uart_reset[3] = {DPORT_UART_RST, DPORT_UART1_RST, DPORT_UART2_RST};
const uint32_t tx_idx = tx_idx_list[uart_num];
const uint32_t rx_idx = rx_idx_list[uart_num];
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[uart_rx_gpio]);
gpio_pad_pullup(uart_rx_gpio);
gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, uart_reset[uart_num]);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, uart_reset[uart_num]);
}
#endif // CONFIG_ESP_CONSOLE_UART_CUSTOM
// Set configured UART console baud rate
const int uart_baud = CONFIG_ESP_CONSOLE_UART_BAUDRATE;
uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
#endif // CONFIG_ESP_CONSOLE_UART_NONE
}
static void wdt_reset_cpu0_info_enable(void)
{
DPORT_REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_ASSIST_DEBUG);
DPORT_REG_CLR_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_ASSIST_DEBUG);
REG_WRITE(ASSIST_DEBUG_PRO_PDEBUGENABLE, 1);
REG_WRITE(ASSIST_DEBUG_PRO_RCD_RECORDING, 1);
}
static void wdt_reset_info_dump(int cpu)
{
uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
const char *cpu_name = cpu ? "APP" : "PRO";
stat = 0xdeadbeef;
pid = 0;
inst = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGINST);
dstat = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGSTATUS);
data = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGDATA);
pc = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGPC);
lsstat = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGLS0STAT);
lsaddr = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGLS0ADDR);
lsdata = REG_READ(ASSIST_DEBUG_PRO_RCD_PDEBUGLS0DATA);
if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
} else {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
}
ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
}
static void bootloader_check_wdt_reset(void)
{
int wdt_rst = 0;
RESET_REASON rst_reas[2];
rst_reas[0] = rtc_get_reset_reason(0);
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
rst_reas[0] == TG0WDT_CPU_RESET || rst_reas[0] == TG1WDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
}
wdt_reset_cpu0_info_enable();
}
void abort(void)
{
#if !CONFIG_ESP32S2_PANIC_SILENT_REBOOT
ets_printf("abort() was called at PC 0x%08x\r\n", (intptr_t)__builtin_return_address(0) - 3);
#endif
if (esp_cpu_in_ocd_debug_mode()) {
__asm__("break 0,0");
}
while (1) {
}
}
static void bootloader_super_wdt_auto_feed(void)
{
REG_SET_BIT(RTC_CNTL_SWD_CONF_REG, RTC_CNTL_SWD_AUTO_FEED_EN);
}
esp_err_t bootloader_init(void)
{
esp_err_t ret = ESP_OK;
bootloader_super_wdt_auto_feed();
// protect memory region
cpu_configure_region_protection();
/* check that static RAM is after the stack */
#ifndef NDEBUG
{
assert(&_bss_start <= &_bss_end);
assert(&_data_start <= &_data_end);
}
#endif
// clear bss section
bootloader_clear_bss_section();
// reset MMU
bootloader_reset_mmu();
// config clock
bootloader_clock_configure();
// initialize uart console, from now on, we can use esp_log
bootloader_init_uart_console();
/* print 2nd bootloader banner */
bootloader_print_banner();
// update flash ID
bootloader_flash_update_id();
// read bootloader header
if ((ret = bootloader_read_bootloader_header()) != ESP_OK) {
goto err;
}
// read chip revision and check if it's compatible to bootloader
if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) {
goto err;
}
// initialize spi flash
if ((ret = bootloader_init_spi_flash()) != ESP_OK) {
goto err;
}
// check whether a WDT reset happend
bootloader_check_wdt_reset();
// config WDT
bootloader_config_wdt();
// enable RNG early entropy source
bootloader_enable_random();
err:
return ret;
}