components/esp32: add inter-processor call API and implement spi_flash through it

With this change, flash operations can run on both cores.
NVS and WiFi stack can also run in dual core mode now.
This commit is contained in:
Ivan Grokhotkov
2016-09-12 18:54:45 +08:00
parent 1c6859573b
commit e9f2645b21
5 changed files with 321 additions and 85 deletions

View File

@@ -36,6 +36,8 @@
#include "esp_spi_flash.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_spi_flash.h"
#include "esp_ipc.h"
static void IRAM_ATTR user_start_cpu0(void);
static void IRAM_ATTR call_user_start_cpu1();
@@ -180,37 +182,39 @@ void IRAM_ATTR call_user_start_cpu1() {
user_start_cpu1();
}
extern volatile int port_xSchedulerRunning;
extern int xPortStartScheduler();
extern volatile int port_xSchedulerRunning[2];
void user_start_cpu1(void) {
//Wait for the freertos initialization is finished on CPU0
while (port_xSchedulerRunning == 0) ;
ets_printf("Core0 started initializing FreeRTOS. Jumping to scheduler.\n");
//Okay, start the scheduler!
void IRAM_ATTR user_start_cpu1(void) {
// Wait for FreeRTOS initialization to finish on PRO CPU
while (port_xSchedulerRunning[0] == 0) {
;
}
ets_printf("Starting scheduler on APP CPU.\n");
// Start the scheduler on APP CPU
xPortStartScheduler();
}
extern void (*__init_array_start)(void);
extern void (*__init_array_end)(void);
extern esp_err_t app_main();
static void do_global_ctors(void) {
void (**p)(void);
for(p = &__init_array_start; p != &__init_array_end; ++p)
(*p)();
}
extern esp_err_t app_main();
void user_start_cpu0(void) {
ets_setup_syscalls();
do_global_ctors();
esp_ipc_init();
spi_flash_init();
#if CONFIG_WIFI_ENABLED
ets_printf("nvs_flash_init\n");
esp_err_t ret = nvs_flash_init(5, 3);
if (ret != ESP_OK) {
ets_printf("nvs_flash_init fail, ret=%d\n", ret);
printf("nvs_flash_init failed, ret=%d\n", ret);
}
system_init();
@@ -227,6 +231,7 @@ void user_start_cpu0(void) {
app_main();
#endif
ets_printf("Starting scheduler on PRO CPU.\n");
vTaskStartScheduler();
}

View File

@@ -27,7 +27,10 @@ typedef int32_t esp_err_t;
#define ESP_OK 0
#define ESP_FAIL -1
#define ESP_ERR_NO_MEM 0x101
#define ESP_ERR_NO_MEM 0x101
#define ESP_ERR_INVALID_ARG 0x102
#define ESP_ERR_INVALID_STATE 0x103
#ifdef __cplusplus
}

View File

@@ -0,0 +1,84 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP_IPC_H__
#define __ESP_IPC_H__
#include <esp_err.h>
typedef void (*esp_ipc_func_t)(void* arg);
/**
* @brief Inter-processor call APIs
*
* FreeRTOS provides several APIs which can be used to communicate between
* different tasks, including tasks running on different CPUs.
* This module provides additional APIs to run some code on the other CPU.
*/
/**
* @brief Initialize inter-processor call module.
*
* This function start two tasks, one on each CPU. These tasks are started
* with high priority. These tasks are normally inactive, waiting until one of
* the esp_ipc_call_* functions to be used. One of these tasks will be
* woken up to execute the callback provided to esp_ipc_call_nonblocking or
* esp_ipc_call_blocking.
*/
void esp_ipc_init();
/**
* @brief Execute function on the given CPU
*
* This will wake a high-priority task on CPU indicated by cpu_id argument,
* and run func(arg) in the context of that task.
* This function returns as soon as the high-priority task is woken up.
* If another IPC call is already being executed, this function will also wait
* for it to complete.
*
* In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
*
* @param cpu_id CPU where function should be executed (0 or 1)
* @param func pointer to a function which should be executed
* @param arg arbitrary argument to be passed into function
*
* @return ESP_ERR_INVALID_ARG if cpu_id is invalid
* ESP_OK otherwise
*/
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg);
/**
* @brief Execute function on the given CPU and wait for it to finish
*
* This will wake a high-priority task on CPU indicated by cpu_id argument,
* and run func(arg) in the context of that task.
* This function waits for func to return.
*
* In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
*
* @param cpu_id CPU where function should be executed (0 or 1)
* @param func pointer to a function which should be executed
* @param arg arbitrary argument to be passed into function
*
* @return ESP_ERR_INVALID_ARG if cpu_id is invalid
* ESP_OK otherwise
*/
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg);
#endif /* __ESP_IPC_H__ */

117
components/esp32/ipc.c Normal file
View File

@@ -0,0 +1,117 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "esp_err.h"
#include "esp_ipc.h"
#include "esp_attr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
static TaskHandle_t s_ipc_tasks[portNUM_PROCESSORS]; // Two high priority tasks, one for each CPU
static SemaphoreHandle_t s_ipc_mutex; // This mutex is used as a global lock for esp_ipc_* APIs
static SemaphoreHandle_t s_ipc_sem[portNUM_PROCESSORS]; // Two semaphores used to wake each of s_ipc_tasks
static SemaphoreHandle_t s_ipc_ack; // Semaphore used to acknowledge that task was woken up,
// or function has finished running
static volatile esp_ipc_func_t s_func; // Function which should be called by high priority task
static void * volatile s_func_arg; // Argument to pass into s_func
typedef enum {
IPC_WAIT_FOR_START,
IPC_WAIT_FOR_END
} esp_ipc_wait_t;
static volatile esp_ipc_wait_t s_ipc_wait; // This variable tells high priority task when it should give
// s_ipc_ack semaphore: before s_func is called, or
// after it returns
static void IRAM_ATTR ipc_task(void* arg)
{
const uint32_t cpuid = (uint32_t) arg;
assert(cpuid == xPortGetCoreID());
while (true) {
// Wait for IPC to be initiated.
// This will be indicated by giving the semaphore corresponding to
// this CPU.
if (xSemaphoreTake(s_ipc_sem[cpuid], portMAX_DELAY) != pdTRUE) {
// TODO: when can this happen?
abort();
}
esp_ipc_func_t func = s_func;
void* arg = s_func_arg;
if (s_ipc_wait == IPC_WAIT_FOR_START) {
xSemaphoreGive(s_ipc_ack);
}
(*func)(arg);
if (s_ipc_wait == IPC_WAIT_FOR_END) {
xSemaphoreGive(s_ipc_ack);
}
}
// TODO: currently this is unreachable code. Introduce esp_ipc_uninit
// function which will signal to both tasks that they can shut down.
// Not critical at this point, we don't have a use case for stopping
// IPC yet.
// Also need to delete the semaphore here.
vTaskDelete(NULL);
}
void esp_ipc_init()
{
s_ipc_mutex = xSemaphoreCreateMutex();
s_ipc_ack = xSemaphoreCreateBinary();
const char* task_names[2] = {"ipc0", "ipc1"};
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
s_ipc_sem[i] = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(ipc_task, task_names[i], XT_STACK_MIN_SIZE, (void*) i,
configMAX_PRIORITIES - 1, &s_ipc_tasks[i], i);
}
}
static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for)
{
if (cpu_id >= portNUM_PROCESSORS) {
return ESP_ERR_INVALID_ARG;
}
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
return ESP_ERR_INVALID_STATE;
}
xSemaphoreTake(s_ipc_mutex, portMAX_DELAY);
s_func = func;
s_func_arg = arg;
s_ipc_wait = IPC_WAIT_FOR_START;
xSemaphoreGive(s_ipc_sem[cpu_id]);
xSemaphoreTake(s_ipc_ack, portMAX_DELAY);
xSemaphoreGive(s_ipc_mutex);
return ESP_OK;
}
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
{
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START);
}
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
{
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END);
}