systimer: strip hal driver

This commit is contained in:
morris
2021-04-02 12:41:21 +08:00
parent 7c1e1c9e2d
commit ec898b771e
12 changed files with 541 additions and 672 deletions

View File

@@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -13,124 +13,156 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "soc/systimer_struct.h"
#define SYSTIMER_LL_COUNTER_CLOCK (0) // Counter used for "wallclock" time
#define SYSTIMER_LL_ALARM_CLOCK (2) // Alarm used for "wallclock" time
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/systimer_reg.h"
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/*******************counter*************************/
/******************* Clock *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(void)
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(systimer_dev_t *dev, bool en)
{
REG_SET_BIT(SYSTIMER_CONF_REG, SYSTIMER_CLK_EN);
dev->conf.clk_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(void)
/******************* Counter *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(systimer_dev_t *dev, uint32_t counter_id, bool en)
{
REG_SET_BIT(SYSTIMER_LOAD_REG, SYSTIMER_TIMER_LOAD);
// ESP32-S2 only has one counter in systimer group
(void)dev;
(void)counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_load_counter_value(uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(systimer_dev_t *dev, uint32_t counter_id, uint32_t cpu_id, bool can)
{
REG_WRITE(SYSTIMER_LOAD_LO_REG, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_LOAD_HI_REG, (value & 0xFFFFFFFF00000000) >> 32);
(void)dev;
(void)counter_id;
(void)cpu_id;
(void)can;
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_pll(uint32_t step)
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_PLL_STEP, step);
(void)counter_id;
dev->update.timer_update = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_xtal(uint32_t step)
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_XTAL_STEP, step);
(void)counter_id;
return dev->update.timer_value_valid;
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(void)
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(systimer_dev_t *dev, uint32_t counter_id, uint64_t value)
{
REG_WRITE(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_UPDATE);
(void)counter_id;
dev->load_hi.timer_load_hi = value >> 32;
dev->load_lo.timer_load_lo = value;
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(void)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_GET_BIT(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_VALUE_VALID);
return dev->value_lo.timer_value_lo;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(void)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYSTIMER_VALUE_LO_REG);
return dev->value_hi.timer_value_hi;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(void)
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYSTIMER_VALUE_HI_REG);
dev->load.timer_load = 1;
}
/*******************alarm*************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_value(uint32_t alarm_id, uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_pll(systimer_dev_t *dev, uint32_t step)
{
REG_WRITE(SYSTIMER_TARGET0_LO_REG + alarm_id * 8, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_TARGET0_HI_REG + alarm_id * 8, (value & 0xFFFFFFFF00000000) >> 32);
dev->step.timer_pll_step = step;
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_value(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_xtal(systimer_dev_t *dev, uint32_t step)
{
return (uint64_t)REG_READ(SYSTIMER_TARGET0_HI_REG + alarm_id * 8) << 32 | REG_READ(SYSTIMER_TARGET0_LO_REG + alarm_id * 8);
dev->step.timer_xtal_step = step;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(uint32_t alarm_id)
/******************* Alarm *************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(systimer_dev_t *dev, uint32_t alarm_id, uint64_t value)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
dev->target_val[alarm_id].hi.timer_target_hi = value >> 32;
dev->target_val[alarm_id].lo.timer_target_lo = value;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
return ((uint64_t)(dev->target_val[alarm_id].hi.timer_target_hi) << 32) | dev->target_val[alarm_id].lo.timer_target_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(systimer_dev_t *dev, uint32_t alarm_id, uint32_t counter_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
// On esp32-s2, counter int the systimer is fixed connectred to other three alarm comparators
(void)dev;
(void)alarm_id;
(void)counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
dev->target_conf[alarm_id].target_period_mode = 0;
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(uint32_t alarm_id, uint32_t period)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYSTIMER_TARGET0_PERIOD, period);
dev->target_conf[alarm_id].target_period_mode = 1;
}
/*******************interrupt*************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(systimer_dev_t *dev, uint32_t alarm_id, uint32_t period)
{
REG_SET_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
assert(period < (1 << 30));
dev->target_conf[alarm_id].target_period = period;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
(void)dev;
(void)alarm_id;
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
return REG_GET_BIT(SYSTIMER_INT_RAW_REG, 1 << alarm_id);
dev->target_conf[alarm_id].target_work_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(uint32_t alarm_id)
/******************* Interrupt *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYSTIMER_INT_CLR_REG, 1 << alarm_id);
if (en) {
dev->int_ena.val |= 1 << alarm_id;
} else {
dev->int_ena.val &= ~(1 << alarm_id);
}
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(systimer_dev_t *dev, uint32_t alarm_id)
{
return dev->int_raw.val & (1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->int_clr.val |= 1 << alarm_id;
}
#ifdef __cplusplus

View File

@@ -1,148 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include <assert.h>
#include "soc/soc_caps.h"
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "soc/rtc.h"
#define SYSTIMER_TICKS_PER_US (80) // Number of timer ticks per microsecond
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot();
while (!systimer_ll_is_counter_value_valid());
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low();
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high();
lo_start = systimer_ll_get_counter_value_low();
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id)
{
return systimer_hal_get_counter_value(counter_id) / SYSTIMER_TICKS_PER_US;
}
void systimer_hal_set_alarm_target(systimer_alarm_id_t alarm_id, uint64_t timestamp)
{
int64_t offset = SYSTIMER_TICKS_PER_US * 2;
uint64_t now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
systimer_counter_value_t alarm = { .val = MAX(timestamp * SYSTIMER_TICKS_PER_US, now_time + offset) };
do {
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_value(alarm_id, alarm.val);
systimer_ll_enable_alarm(alarm_id);
now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && !systimer_ll_is_alarm_int_fired(alarm_id)) {
// new alarm is less than the counter and the interrupt flag is not set
offset += -1 * delta + SYSTIMER_TICKS_PER_US * 2;
alarm.val = now_time + offset;
} else {
// finish if either (alarm > counter) or the interrupt flag is already set.
break;
}
} while (1);
}
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id)
{
return systimer_ll_get_alarm_value(alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id)
{
systimer_ll_enable_alarm_int(alarm_id);
}
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us)
{
/* If this function was called when switching APB clock to PLL, don't need
* do anything: the SYSTIMER_TIMER_PLL_STEP is already correct.
* If this was called when switching APB clock to XTAL, need to adjust
* XTAL_STEP value accordingly.
*/
if (apb_ticks_per_us != SYSTIMER_TICKS_PER_US) {
assert((SYSTIMER_TICKS_PER_US % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)");
systimer_ll_set_step_for_xtal(SYSTIMER_TICKS_PER_US / apb_ticks_per_us);
}
}
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_load_counter_value(new_count.val);
systimer_ll_apply_counter_value();
}
void systimer_hal_enable_counter(systimer_counter_id_t counter_id)
{
(void)counter_id;
}
void systimer_hal_init(void)
{
assert(rtc_clk_xtal_freq_get() == 40 && "update the step for xtal to support other XTAL:APB frequency ratios");
systimer_ll_enable_clock();
/* Configure the counter:
* - increment by 1 when running from PLL (80 ticks per microsecond),
* - increment by 2 when running from XTAL (40 ticks per microsecond).
* Note that if the APB frequency is derived from XTAL with divider != 1,
* XTAL_STEP needs to be adjusted accordingly. For example, if
* the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8.
* This is handled in systimer_hal_on_apb_freq_update function.
*/
systimer_ll_set_step_for_pll(1);
systimer_ll_set_step_for_xtal(2);
}
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id)
{
// esp32s2 only has one counter, so there's no need to connect alarm unit to counter
(void)alarm_id;
(void)counter_id;
}