/* * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /******************************************************************************* * NOTICE * The ll is not public api, don't use in application code. * See readme.md in hal/include/hal/readme.md ******************************************************************************/ #pragma once #include #include #include "hal/misc.h" #include "soc/dac_periph.h" #include "hal/dac_types.h" #include "soc/apb_saradc_struct.h" #include "soc/sens_struct.h" #include "soc/rtc_io_struct.h" #include "soc/apb_saradc_reg.h" #ifdef __cplusplus extern "C" { #endif #define DAC_LL_CW_PHASE_0 0x02 #define DAC_LL_CW_PHASE_180 0x03 /*--------------------------------------------------------------- DAC common setting ---------------------------------------------------------------*/ /** * Power on dac module and start output voltage. * * @note Before powering up, make sure the DAC PAD is set to RTC PAD and floating status. * @param channel DAC channel num. */ static inline void dac_ll_power_on(dac_channel_t channel) { SENS.sar_dac_ctrl1.dac_clkgate_en = 1; RTCIO.pad_dac[channel].dac_xpd_force = 1; RTCIO.pad_dac[channel].xpd_dac = 1; } /** * Power done dac module and stop output voltage. * * @param channel DAC channel num. */ static inline void dac_ll_power_down(dac_channel_t channel) { RTCIO.pad_dac[channel].dac_xpd_force = 0; RTCIO.pad_dac[channel].xpd_dac = 0; if (RTCIO.pad_dac[0].xpd_dac == 0 && RTCIO.pad_dac[1].xpd_dac == 0) { SENS.sar_dac_ctrl1.dac_clkgate_en = 0; } } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ /** * Output voltage with value (8 bit). * * @param channel DAC channel num. * @param value Output value. Value range: 0 ~ 255. * The corresponding range of voltage is 0v ~ VDD3P3_RTC. */ __attribute__((always_inline)) static inline void dac_ll_update_output_value(dac_channel_t channel, uint8_t value) { if (channel == DAC_CHAN_0) { SENS.sar_dac_ctrl2.dac_cw_en1 = 0; HAL_FORCE_MODIFY_U32_REG_FIELD(RTCIO.pad_dac[channel], dac, value); } else if (channel == DAC_CHAN_1) { SENS.sar_dac_ctrl2.dac_cw_en2 = 0; HAL_FORCE_MODIFY_U32_REG_FIELD(RTCIO.pad_dac[channel], dac, value); } } /** * Reset dac by software. */ static inline void dac_ll_rtc_reset(void) { SENS.sar_dac_ctrl1.dac_reset = 1; SENS.sar_dac_ctrl1.dac_reset = 0; } /** * Enable/disable the synchronization operation function of ADC1 and DAC. * * @note If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. * * @param enable Enable or disable adc and dac synchronization function. */ static inline void dac_ll_rtc_sync_by_adc(bool enable) { SENS.sar_amp_ctrl3.sar1_dac_xpd_fsm = enable; } /************************************/ /* DAC cosine wave generator API's */ /************************************/ /** * Enable cosine wave generator output. */ static inline void dac_ll_cw_generator_enable(void) { SENS.sar_dac_ctrl1.sw_tone_en = 1; } /** * Disable cosine wave generator output. */ static inline void dac_ll_cw_generator_disable(void) { SENS.sar_dac_ctrl1.sw_tone_en = 0; } /** * Enable the cosine wave generator of DAC channel. * * @param channel DAC channel num. * @param enable */ static inline void dac_ll_cw_enable_channel(dac_channel_t channel, bool enable) { if (channel == DAC_CHAN_0) { SENS.sar_dac_ctrl2.dac_cw_en1 = enable; } else if (channel == DAC_CHAN_1) { SENS.sar_dac_ctrl2.dac_cw_en2 = enable; } } /** * Set frequency of cosine wave generator output. * * @note We know that CLK8M is about 8M, but don't know the actual value. so this freq have limited error. * @param freq_hz CW generator frequency. Range: >= 130Hz, no exact ceiling limitation, but will distort when reach several MHz * @param rtc8m_freq the calibrated RTC 8M clock frequency */ static inline void dac_ll_cw_set_freq(uint32_t freq, uint32_t rtc8m_freq) { uint32_t sw_freq = (uint32_t)(((uint64_t)freq << 16) / rtc8m_freq); HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_dac_ctrl1, sw_fstep, (sw_freq > 0xFFFF) ? 0xFFFF : sw_freq); } /** * Set the amplitude of the cosine wave generator output. * * @param channel DAC channel num. * @param atten The attenuation of the amplitude. The max amplitude is VDD3P3_RTC. * 0: attenuation = 1, amplitude = VDD3P3_RTC / attenuation, * 1: attenuation = 2, amplitude = VDD3P3_RTC / attenuation, * 2: attenuation = 4, amplitude = VDD3P3_RTC / attenuation, * 3: attenuation = 8, amplitude = VDD3P3_RTC / attenuation */ static inline void dac_ll_cw_set_atten(dac_channel_t channel, dac_cosine_atten_t atten) { if (channel == DAC_CHAN_0) { SENS.sar_dac_ctrl2.dac_scale1 = atten; } else if (channel == DAC_CHAN_1) { SENS.sar_dac_ctrl2.dac_scale2 = atten; } } /** * Set the phase of the cosine wave generator output. * * @param channel DAC channel num. * @param phase Phase value. 0: 0x02 180: 0x03. */ static inline void dac_ll_cw_set_phase(dac_channel_t channel, dac_cosine_phase_t phase) { if (channel == DAC_CHAN_0) { SENS.sar_dac_ctrl2.dac_inv1 = phase; } else if (channel == DAC_CHAN_1) { SENS.sar_dac_ctrl2.dac_inv2 = phase; } } /** * Set the voltage value of the DC component of the cosine wave generator output. * * @note The DC offset setting should be after phase setting. * @note Unreasonable settings can cause the signal to be oversaturated. * @param channel DAC channel num. * @param offset DC value. Range: -128 ~ 127. */ static inline void dac_ll_cw_set_dc_offset(dac_channel_t channel, int8_t offset) { if (channel == DAC_CHAN_0) { if (SENS.sar_dac_ctrl2.dac_inv1 == DAC_LL_CW_PHASE_180) { offset = -offset; } HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_dac_ctrl2, dac_dc1, offset); } else if (channel == DAC_CHAN_1) { if (SENS.sar_dac_ctrl2.dac_inv2 == DAC_LL_CW_PHASE_180) { offset = -offset; } HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_dac_ctrl2, dac_dc2, offset); } } /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ /************************************/ /* DAC DMA API's */ /************************************/ /** * Enable/disable invert the DAC digital controller clock signal. * * @param enable true or false. */ static inline void dac_ll_digi_clk_inv(bool enable) { SENS.sar_dac_ctrl1.dac_clk_inv = enable; } /** * Enable/disable DAC-DMA mode for dac digital controller. */ static inline void dac_ll_digi_enable_dma(bool enable) { SENS.sar_dac_ctrl1.dac_dig_force = enable; APB_SARADC.apb_dac_ctrl.apb_dac_trans = enable; } /** * Sets the number of interval clock cycles for the digital controller to trigger the DAC output. * Expression: `dac_output_freq` = `controller_clk` / interval. * * @note The clocks of the DAC digital controller use the ADC digital controller clock divider. * * @param cycle The number of clock cycles for the trigger output interval. The unit is the divided clock. */ static inline void dac_ll_digi_set_trigger_interval(uint32_t cycle) { APB_SARADC.apb_dac_ctrl.dac_timer_target = cycle; } /** * Enable/disable DAC digital controller to trigger the DAC output. * * @param enable true or false. */ static inline void dac_ll_digi_trigger_output(bool enable) { APB_SARADC.apb_dac_ctrl.dac_timer_en = enable; } /** * Set DAC conversion mode for digital controller. * * @param mode Conversion mode select. See ``dac_digi_convert_mode_t``. */ static inline void dac_ll_digi_set_convert_mode(bool is_alternate) { APB_SARADC.apb_dac_ctrl.apb_dac_alter_mode = is_alternate; } /** * Reset FIFO of DAC digital controller. */ static inline void dac_ll_digi_fifo_reset(void) { APB_SARADC.apb_dac_ctrl.dac_reset_fifo = 1; APB_SARADC.apb_dac_ctrl.dac_reset_fifo = 0; } /** * Reset DAC digital controller. */ static inline void dac_ll_digi_reset(void) { APB_SARADC.apb_dac_ctrl.apb_dac_rst = 1; APB_SARADC.apb_dac_ctrl.apb_dac_rst = 0; } #ifdef __cplusplus } #endif