/* * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // The LL layer for MMU register operations #pragma once #include #include "soc/ext_mem_defs.h" #include "soc/dport_reg.h" #include "soc/dport_access.h" #include "hal/assert.h" #include "hal/mmu_types.h" #ifdef __cplusplus extern "C" { #endif #define MMU_LL_PSRAM_ENTRY_START_ID 1152 #define MMU_LL_END_DROM_ENTRY_VADDR (SOC_DRAM_FLASH_ADDRESS_HIGH - SOC_MMU_PAGE_SIZE) #define MMU_LL_END_DROM_ENTRY_ID (64 - 1) /** * Convert MMU virtual address to linear address * * @param vaddr virtual address * * @return linear address */ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr) { return vaddr & SOC_MMU_LINEAR_ADDR_MASK; } /** * Convert MMU linear address to virtual address * * @param laddr linear address * @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` * @param target virtual address aimed physical memory target, not used * * @return virtual address */ static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target) { (void)target; uint32_t vaddr_base = 0; if (vaddr_type == MMU_VADDR_DATA) { vaddr_base = SOC_MMU_DBUS_VADDR_BASE; } else { vaddr_base = SOC_MMU_IBUS_VADDR_BASE; } return vaddr_base | laddr; } /** * Get MMU page size * * @param mmu_id MMU ID * * @return MMU page size code */ __attribute__((always_inline)) static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id) { //On esp32, MMU Page size is always 64KB (void)mmu_id; return MMU_PAGE_64KB; } /** * Set MMU page size * * @param size MMU page size * * @note On esp32, only supports `MMU_PAGE_64KB` */ __attribute__((always_inline)) static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size) { //ONly supports `MMU_PAGE_64KB` } /** * Check if the external memory vaddr region is valid * * @param mmu_id MMU ID * @param vaddr_start start of the virtual address * @param len length, in bytes * @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` * * @return * True for valid */ __attribute__((always_inline)) static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type) { (void)mmu_id; uint32_t vaddr_end = vaddr_start + len - 1; bool valid = false; if (type & MMU_VADDR_DATA) { valid |= (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_end)) || (SOC_ADDRESS_IN_DROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_DROM0_CACHE(vaddr_end)); } if (type & MMU_VADDR_INSTRUCTION) { valid |= (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_end)) || (SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_end)) || (SOC_ADDRESS_IN_IROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IROM0_CACHE(vaddr_end)); } return valid; } /** * Check if the paddr region is valid * * @param mmu_id MMU ID * @param paddr_start start of the physical address * @param len length, in bytes * * @return * True for valid */ static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len) { (void)mmu_id; return (paddr_start < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) && (len < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) && ((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)); } /** * To get the MMU table entry id to be mapped * * @param mmu_id MMU ID * @param vaddr virtual address to be mapped * * @return * MMU table entry id */ __attribute__((always_inline)) static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr) { (void)mmu_id; uint32_t offset = 0; uint32_t shift_code = 0; uint32_t vaddr_mask = 0; //On ESP32, we only use PID0 and PID1 if (SOC_ADDRESS_IN_DROM0_CACHE(vaddr)) { offset = 0; shift_code = 16; vaddr_mask = SOC_MMU_VADDR_MASK; } else if (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr)) { offset = 64; shift_code = 16; vaddr_mask = SOC_MMU_VADDR_MASK; } else if (SOC_ADDRESS_IN_IRAM1_CACHE(vaddr)) { offset = 128; shift_code = 16; vaddr_mask = SOC_MMU_VADDR_MASK; } else if (SOC_ADDRESS_IN_IROM0_CACHE(vaddr)) { offset = 192; shift_code = 16; vaddr_mask = SOC_MMU_VADDR_MASK; } else if (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr)) { //PSRAM page size 32KB offset = MMU_LL_PSRAM_ENTRY_START_ID; shift_code = 15; vaddr_mask = SOC_MMU_VADDR_MASK >> 1; } else { HAL_ASSERT(false); } return offset + ((vaddr & vaddr_mask) >> shift_code); } /** * Format the paddr to be mappable * * @param mmu_id MMU ID * @param paddr physical address to be mapped * @param target paddr memory target, not used * * @return * mmu_val - paddr in MMU table supported format */ __attribute__((always_inline)) static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target) { (void)mmu_id; uint32_t shift_code = 0; if (target == MMU_TARGET_FLASH0) { shift_code = 16; } else { //PSRAM page size 32KB shift_code = 15; } return paddr >> shift_code; } /** * Write to the MMU table to map the virtual memory and the physical memory * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param mmu_val Value to be set into an MMU entry, for physical address * @param target MMU target physical memory. */ __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target) { (void)target; DPORT_INTERRUPT_DISABLE(); switch (mmu_id) { case MMU_TABLE_CORE0: DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], mmu_val); break; case MMU_TABLE_CORE1: DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], mmu_val); break; default: HAL_ASSERT(false); } DPORT_INTERRUPT_RESTORE(); } /** * Read the raw value from MMU table * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param mmu_val Value to be read from MMU table */ __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id) { uint32_t mmu_value; DPORT_INTERRUPT_DISABLE(); switch (mmu_id) { case MMU_TABLE_CORE0: mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]); break; case MMU_TABLE_CORE1: mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id]); break; default: HAL_ASSERT(false); } DPORT_INTERRUPT_RESTORE(); return mmu_value; } /** * Set MMU table entry as invalid * * @param mmu_id MMU ID * @param entry_id MMU entry ID */ __attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id) { HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM); DPORT_INTERRUPT_DISABLE(); switch (mmu_id) { case MMU_TABLE_CORE0: DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID); break; case MMU_TABLE_CORE1: DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID); break; default: HAL_ASSERT(false); } DPORT_INTERRUPT_RESTORE(); } /** * Unmap all the items in the MMU table * * @param mmu_id MMU ID */ __attribute__((always_inline)) static inline void mmu_ll_unmap_all(uint32_t mmu_id) { for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) { mmu_ll_set_entry_invalid(mmu_id, i); } } /** * Check MMU table entry value is valid * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return True for MMU entry is valid; False for invalid */ static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM); DPORT_INTERRUPT_DISABLE(); uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]); DPORT_INTERRUPT_RESTORE(); return (mmu_value & SOC_MMU_INVALID) ? false : true; } /** * Get the MMU table entry target * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return Target, see `mmu_target_t` */ static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id) { HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM); HAL_ASSERT(mmu_ll_check_entry_valid(mmu_id, entry_id)); return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? MMU_TARGET_PSRAM0 : MMU_TARGET_FLASH0; } /** * Convert MMU entry ID to paddr base * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return paddr base */ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM); DPORT_INTERRUPT_DISABLE(); uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]); DPORT_INTERRUPT_RESTORE(); return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? (mmu_value << 15) : (mmu_value << 16); } /** * Find the MMU table entry ID based on table map value * @note This function can only find the first match entry ID. However it is possible that a physical address * is mapped to multiple virtual addresses * * @param mmu_id MMU ID * @param mmu_val map value to be read from MMU table standing for paddr * @param target physical memory target, see `mmu_target_t` * * @return MMU entry ID, -1 for invalid */ static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target) { (void)mmu_id; (void)target; DPORT_INTERRUPT_DISABLE(); if (target == MMU_TARGET_FLASH0) { for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) { uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]); if (!(mmu_value & SOC_MMU_INVALID)) { if (mmu_value == mmu_val) { DPORT_INTERRUPT_RESTORE(); return i; } } } } else { //For PSRAM, we only use PID 0/1. Its start entry ID is MMU_LL_PSRAM_ENTRY_START_ID (1152), and 128 entries are used for PSRAM for (int i = MMU_LL_PSRAM_ENTRY_START_ID; i < 1280; i++) { uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]); if (!(mmu_value & SOC_MMU_INVALID)) { if (mmu_value == mmu_val) { DPORT_INTERRUPT_RESTORE(); return i; } } } } DPORT_INTERRUPT_RESTORE(); return -1; } /** * Convert MMU entry ID to vaddr base * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` */ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type) { (void)mmu_id; (void)type; uint32_t vaddr_base = 0; uint32_t shift_code = 0; if (entry_id < 64) { //first 64 entries are for DROM0 if (type != MMU_VADDR_DATA) { return 0; } entry_id -= 0; shift_code = 16; vaddr_base = 0x3f400000; } else if (entry_id >= 64 && entry_id < 128) { //second 64 entries are for IRAM0 if (type != MMU_VADDR_INSTRUCTION) { return 0; } entry_id -= 64; shift_code = 16; vaddr_base = 0x40000000; } else if (entry_id >= 128 && entry_id < 192) { //third 64 entries are for IRAM1 if (type != MMU_VADDR_INSTRUCTION) { return 0; } entry_id -= 128; shift_code = 16; vaddr_base = 0x40000000; } else if (entry_id >= 192 && entry_id < 256) { //fourth 64 entries are for IROM0 if (type != MMU_VADDR_INSTRUCTION) { return 0; } entry_id -= 192; shift_code = 16; vaddr_base = 0x40000000; } else if (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) { //starting from 1152, 128 entries are for DRAM1 if (type != MMU_VADDR_DATA) { return 0; } entry_id -= MMU_LL_PSRAM_ENTRY_START_ID; shift_code = 15; vaddr_base = 0x3f800000; } else { HAL_ASSERT(false); } return vaddr_base + (entry_id << shift_code); } #ifdef __cplusplus } #endif