/* * SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include #include "soc/soc.h" #include "soc/clk_tree_defs.h" #include "soc/pcr_reg.h" #include "soc/pcr_struct.h" #include "soc/lp_clkrst_struct.h" #include "soc/pmu_reg.h" #include "soc/pmu_struct.h" #include "soc/chip_revision.h" #include "hal/regi2c_ctrl.h" #include "soc/regi2c_bbpll.h" #include "hal/assert.h" #include "hal/log.h" #include "esp32c5/rom/rtc.h" #include "hal/misc.h" #include "hal/efuse_hal.h" #ifdef __cplusplus extern "C" { #endif #define MHZ (1000000) #define CLK_LL_PLL_80M_FREQ_MHZ (80) #define CLK_LL_PLL_120M_FREQ_MHZ (120) #define CLK_LL_PLL_160M_FREQ_MHZ (160) #define CLK_LL_PLL_240M_FREQ_MHZ (240) #define CLK_LL_PLL_480M_FREQ_MHZ (480) #define CLK_LL_XTAL32K_CONFIG_DEFAULT() { \ .dac = 3, \ .dres = 3, \ .dgm = 3, \ .dbuf = 1, \ } // Fix default division factor for the RC_FAST clock for calibration to be 32 #define CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS 5 /** * @brief XTAL32K_CLK enable modes */ typedef enum { CLK_LL_XTAL32K_ENABLE_MODE_CRYSTAL, //!< Enable the external 32kHz crystal for XTAL32K_CLK CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL, //!< Enable the external clock signal for OSC_SLOW_CLK CLK_LL_XTAL32K_ENABLE_MODE_BOOTSTRAP, //!< Bootstrap the crystal oscillator for faster XTAL32K_CLK start up */ } clk_ll_xtal32k_enable_mode_t; /** * @brief XTAL32K_CLK configuration structure */ typedef struct { uint32_t dac : 6; uint32_t dres : 3; uint32_t dgm : 3; uint32_t dbuf: 1; } clk_ll_xtal32k_config_t; /** * @brief Power up BBPLL circuit */ static inline __attribute__((always_inline)) void clk_ll_bbpll_enable(void) { SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_HIGH_XPD_BB_I2C | PMU_TIE_HIGH_XPD_BBPLL | PMU_TIE_HIGH_XPD_BBPLL_I2C); SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_HIGH_GLOBAL_BBPLL_ICG); } /** * @brief Power down BBPLL circuit */ static inline __attribute__((always_inline)) void clk_ll_bbpll_disable(void) { SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_LOW_GLOBAL_BBPLL_ICG) ; SET_PERI_REG_MASK(PMU_IMM_HP_CK_POWER_REG, PMU_TIE_LOW_XPD_BBPLL | PMU_TIE_LOW_XPD_BBPLL_I2C); } /** * @brief Release the root clock source locked by PMU */ static inline __attribute__((always_inline)) void clk_ll_cpu_clk_src_lock_release(void) { SET_PERI_REG_MASK(PMU_IMM_SLEEP_SYSCLK_REG, PMU_UPDATE_DIG_SYS_CLK_SEL); } /** * @brief Enable the 32kHz crystal oscillator * * @param mode Used to determine the xtal32k configuration parameters */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_enable(clk_ll_xtal32k_enable_mode_t mode) { if (mode == CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL) { // No need to configure anything for OSC_SLOW_CLK return; } // Configure xtal32k clk_ll_xtal32k_config_t cfg = CLK_LL_XTAL32K_CONFIG_DEFAULT(); LP_CLKRST.xtal32k.dac_xtal32k = cfg.dac; LP_CLKRST.xtal32k.dres_xtal32k = cfg.dres; LP_CLKRST.xtal32k.dgm_xtal32k = cfg.dgm; LP_CLKRST.xtal32k.dbuf_xtal32k = cfg.dbuf; // Enable xtal32k xpd SET_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K); } /** * @brief Disable the 32kHz crystal oscillator */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_disable(void) { // Disable xtal32k xpd CLEAR_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K); } /** * @brief Get the state of the 32kHz crystal clock * * @return True if the 32kHz XTAL is enabled */ static inline __attribute__((always_inline)) bool clk_ll_xtal32k_is_enabled(void) { return REG_GET_FIELD(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_XTAL32K) == 1; } /** * @brief Enable the internal oscillator output for RC_FAST_CLK */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_enable(void) { SET_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK); } /** * @brief Disable the internal oscillator output for RC_FAST_CLK */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_disable(void) { CLEAR_PERI_REG_MASK(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK); } /** * @brief Get the state of the internal oscillator for RC_FAST_CLK * * @return True if the oscillator is enabled */ static inline __attribute__((always_inline)) bool clk_ll_rc_fast_is_enabled(void) { return REG_GET_FIELD(PMU_HP_SLEEP_LP_CK_POWER_REG, PMU_HP_SLEEP_XPD_FOSC_CLK) == 1; } /** * @brief Enable the digital RC_FAST_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_enable(void) { LP_CLKRST.clk_to_hp.icg_hp_fosc = 1; } /** * @brief Disable the digital RC_FAST_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_disable(void) { LP_CLKRST.clk_to_hp.icg_hp_fosc = 0; } /** * @brief Get the state of the digital RC_FAST_CLK * * @return True if the digital RC_FAST_CLK is enabled */ static inline __attribute__((always_inline)) bool clk_ll_rc_fast_digi_is_enabled(void) { return LP_CLKRST.clk_to_hp.icg_hp_fosc; } /** * @brief Enable the digital XTAL32K_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_enable(void) { LP_CLKRST.clk_to_hp.icg_hp_xtal32k = 1; } /** * @brief Disable the digital XTAL32K_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_disable(void) { LP_CLKRST.clk_to_hp.icg_hp_xtal32k = 0; } /** * @brief Get the state of the digital XTAL32K_CLK * * @return True if the digital XTAL32K_CLK is enabled */ static inline __attribute__((always_inline)) bool clk_ll_xtal32k_digi_is_enabled(void) { return LP_CLKRST.clk_to_hp.icg_hp_xtal32k; } /** * @brief Get XTAL_CLK frequency * * PCR_CLK_XTAL_FREQ updates its value based on EFUSE_XTAL_48M_SEL. * * @return Main XTAL clock frequency, in MHz. */ static inline __attribute__((always_inline)) uint32_t clk_ll_xtal_get_freq_mhz(void) { return PCR.sysclk_conf.clk_xtal_freq; } #define clk_ll_xtal_load_freq_mhz() clk_ll_xtal_get_freq_mhz() /** * @brief Get SPLL_CLK frequency * * @return PLL clock frequency, in MHz. Returns 0 if register field value is invalid. */ static inline __attribute__((always_inline)) uint32_t clk_ll_bbpll_get_freq_mhz(void) { // The target has a fixed 480MHz SPLL return CLK_LL_PLL_480M_FREQ_MHZ; } /** * @brief Set SPLL frequency from XTAL source (Digital part) * * @param pll_freq_mhz PLL frequency, in MHz */ static inline __attribute__((always_inline)) void clk_ll_bbpll_set_freq_mhz(uint32_t pll_freq_mhz) { // The target SPLL is fixed to 480MHz // Do nothing HAL_ASSERT(pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ); } /** * @brief Set SPLL frequency from XTAL source (Analog part) * * @param pll_freq_mhz PLL frequency, in MHz * @param xtal_freq_mhz XTAL frequency, in MHz */ static inline __attribute__((always_inline)) void clk_ll_bbpll_set_config(uint32_t pll_freq_mhz, uint32_t xtal_freq_mhz) { HAL_ASSERT(pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ); uint8_t div_ref; uint8_t div7_0; uint8_t dr1; uint8_t dr3; uint8_t dchgp = 5; uint8_t dbias = 3; uint8_t href = 3; uint8_t lref = 1; /* Configure 480M PLL */ switch (xtal_freq_mhz) { case SOC_XTAL_FREQ_48M: div_ref = 1; div7_0 = 10; dr1 = 1; dr3 = 1; break; case SOC_XTAL_FREQ_40M: div_ref = 1; div7_0 = 12; dr1 = 0; dr3 = 0; break; default: div_ref = 1; div7_0 = 12; dr1 = 0; dr3 = 0; break; } uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref); uint8_t i2c_bbpll_div_7_0 = div7_0; REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref); REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DLREF_SEL, lref); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DHREF_SEL, href); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias); } /** * @brief To enable the change of soc_clk_sel, cpu_div_num, and ahb_div_num */ static inline __attribute__((always_inline)) void clk_ll_bus_update(void) { PCR.bus_clk_update.bus_clock_update = 1; while (PCR.bus_clk_update.bus_clock_update); } /** * @brief Select the clock source for CPU_CLK (SOC Clock Root) * * @param in_sel One of the clock sources in soc_cpu_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_cpu_set_src(soc_cpu_clk_src_t in_sel) { switch (in_sel) { case SOC_CPU_CLK_SRC_XTAL: PCR.sysclk_conf.soc_clk_sel = 0; break; case SOC_CPU_CLK_SRC_RC_FAST: PCR.sysclk_conf.soc_clk_sel = 1; break; case SOC_CPU_CLK_SRC_PLL_F160M: PCR.sysclk_conf.soc_clk_sel = 2; break; case SOC_CPU_CLK_SRC_PLL_F240M: PCR.sysclk_conf.soc_clk_sel = 3; break; default: // Unsupported SOC_CLK mux input sel abort(); } } /** * @brief Get the clock source for CPU_CLK (SOC Clock Root) * * @return Currently selected clock source (one of soc_cpu_clk_src_t values) */ static inline __attribute__((always_inline)) soc_cpu_clk_src_t clk_ll_cpu_get_src(void) { uint32_t clk_sel = PCR.sysclk_conf.soc_clk_sel; switch (clk_sel) { case 0: return SOC_CPU_CLK_SRC_XTAL; case 1: return SOC_CPU_CLK_SRC_RC_FAST; case 2: return SOC_CPU_CLK_SRC_PLL_F160M; case 3: return SOC_CPU_CLK_SRC_PLL_F240M; default: // Invalid SOC_CLK_SEL value return SOC_CPU_CLK_SRC_INVALID; } } /** * @brief Set CPU_CLK's divider * * SOC_ROOT_CLK ------> CPU_CLK * * @param divider Divider. (PCR_CPU_DIV_NUM + 1) = divider. */ static inline __attribute__((always_inline)) void clk_ll_cpu_set_divider(uint32_t divider) { HAL_ASSERT(divider >= 1); HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_div_num, (divider) - 1); } /** * @brief Get CPU_CLK's divider * * @return Divider. Divider = (PCR_CPU_DIV_NUM + 1). */ static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_divider(void) { return HAL_FORCE_READ_U32_REG_FIELD(PCR.cpu_freq_conf, cpu_div_num) + 1; } /** * @brief Set AHB_CLK's divider * * SOC_ROOT_CLK ------> AHB_CLK * Constraint: f_ahb <= 48 MHz, f_cpu = n * f_ahb * * @param divider Divider. (PCR_AHB_DIV_NUM + 1) = divider. */ static inline __attribute__((always_inline)) void clk_ll_ahb_set_divider(uint32_t divider) { HAL_ASSERT(divider >= 1); HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_div_num, divider - 1); } /** * @brief Get AHB_CLK's divider * * @return Divider. Divider = (PCR_AHB_DIV_NUM + 1). */ static inline __attribute__((always_inline)) uint32_t clk_ll_ahb_get_divider(void) { return HAL_FORCE_READ_U32_REG_FIELD(PCR.ahb_freq_conf, ahb_div_num) + 1; } /** * @brief Set APB_CLK divider. freq of APB_CLK = freq of AHB_CLK / divider * * @param divider Divider. PCR_APB_DIV_NUM = divider - 1. */ static inline __attribute__((always_inline)) void clk_ll_apb_set_divider(uint32_t divider) { // AHB ------> APB // Divider option: 1, 2, 4 (PCR_APB_DIV_NUM=0, 1, 3) HAL_ASSERT(divider == 1 || divider == 2 || divider == 4); HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.apb_freq_conf, apb_div_num, divider - 1); } /** * @brief Get APB_CLK divider * * @return Divider. Divider = (PCR_APB_DIV_NUM + 1). */ static inline __attribute__((always_inline)) uint32_t clk_ll_apb_get_divider(void) { return HAL_FORCE_READ_U32_REG_FIELD(PCR.apb_freq_conf, apb_div_num) + 1; } /** * @brief Enable or disable the soc root clock auto gating logic * * @param ena true to enable, false to disable */ static inline __attribute__((always_inline)) void clk_ll_soc_root_clk_auto_gating_bypass(bool ena) { if (ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 1)) { if (ena) { REG_CLR_BIT(PCR_FPGA_DEBUG_REG, BIT(31)); } else { REG_SET_BIT(PCR_FPGA_DEBUG_REG, BIT(31)); } } } /** * @brief Select the clock source for RTC_SLOW_CLK * * @param in_sel One of the clock sources in soc_rtc_slow_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_rtc_slow_set_src(soc_rtc_slow_clk_src_t in_sel) { switch (in_sel) { case SOC_RTC_SLOW_CLK_SRC_RC_SLOW: LP_CLKRST.lp_clk_conf.slow_clk_sel = 0; break; case SOC_RTC_SLOW_CLK_SRC_XTAL32K: LP_CLKRST.lp_clk_conf.slow_clk_sel = 1; break; case SOC_RTC_SLOW_CLK_SRC_OSC_SLOW: LP_CLKRST.lp_clk_conf.slow_clk_sel = 3; break; default: // Unsupported RTC_SLOW_CLK mux input sel abort(); } } /** * @brief Get the clock source for RTC_SLOW_CLK * * @return Currently selected clock source (one of soc_rtc_slow_clk_src_t values) */ static inline __attribute__((always_inline)) soc_rtc_slow_clk_src_t clk_ll_rtc_slow_get_src(void) { uint32_t clk_sel = LP_CLKRST.lp_clk_conf.slow_clk_sel; switch (clk_sel) { case 0: return SOC_RTC_SLOW_CLK_SRC_RC_SLOW; case 1: return SOC_RTC_SLOW_CLK_SRC_XTAL32K; case 3: return SOC_RTC_SLOW_CLK_SRC_OSC_SLOW; default: return SOC_RTC_SLOW_CLK_SRC_INVALID; } } /** * @brief Select the clock source for RTC_FAST_CLK * * @param in_sel One of the clock sources in soc_rtc_fast_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_rtc_fast_set_src(soc_rtc_fast_clk_src_t in_sel) { switch (in_sel) { case SOC_RTC_FAST_CLK_SRC_RC_FAST: LP_CLKRST.lp_clk_conf.fast_clk_sel = 0; break; case SOC_RTC_FAST_CLK_SRC_XTAL_D2: LP_CLKRST.lp_clk_conf.fast_clk_sel = 1; break; case SOC_RTC_FAST_CLK_SRC_XTAL: LP_CLKRST.lp_clk_conf.fast_clk_sel = 2; break; default: // Unsupported RTC_FAST_CLK mux input sel abort(); } } /** * @brief Get the clock source for RTC_FAST_CLK * * @return Currently selected clock source (one of soc_rtc_fast_clk_src_t values) */ static inline __attribute__((always_inline)) soc_rtc_fast_clk_src_t clk_ll_rtc_fast_get_src(void) { uint32_t clk_sel = LP_CLKRST.lp_clk_conf.fast_clk_sel; switch (clk_sel) { case 0: return SOC_RTC_FAST_CLK_SRC_RC_FAST; case 1: return SOC_RTC_FAST_CLK_SRC_XTAL_D2; case 2: return SOC_RTC_FAST_CLK_SRC_XTAL; default: return SOC_RTC_FAST_CLK_SRC_INVALID; } } /** * @brief Set RC_FAST_CLK divider. The output from the divider is passed into rtc_fast_clk MUX. * * @param divider Divider of RC_FAST_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_set_divider(uint32_t divider) { // No divider on the target HAL_ASSERT(divider == 1); } /** * @brief Get RC_FAST_CLK divider * * @return Divider */ static inline __attribute__((always_inline)) uint32_t clk_ll_rc_fast_get_divider(void) { // No divider on the target, always return divider = 1 return 1; } /** * @brief Set the frequency division factor of RC_FAST clock */ static inline void clk_ll_rc_fast_tick_conf(void) { HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.ctrl_32k_conf, fosc_tick_num, (1 << CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS) - 1); // divider = 1 << CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS } /** * @brief Set RC_SLOW_CLK divider * * @param divider Divider of RC_SLOW_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage. */ static inline __attribute__((always_inline)) void clk_ll_rc_slow_set_divider(uint32_t divider) { // No divider on the target HAL_ASSERT(divider == 1); } /** * @brief Enable the RTC clock calibration reference XTAL source on timer group0. * @param enable enable or disable the XTAL source. */ static inline __attribute__((always_inline)) void clk_ll_enable_timergroup_rtc_calibration_clock(bool enable) { PCR.timergroup_xtal_conf.tg0_xtal_clk_en = enable; } /************************** LP STORAGE REGISTER STORE/LOAD **************************/ /** * @brief Store RTC_SLOW_CLK calibration value in RTC storage register * * Value of RTC_SLOW_CLK_CAL_REG has to be in the same format as returned by rtc_clk_cal (microseconds, * in Q13.19 fixed-point format). * * @param cal_value The calibration value of slow clock period in microseconds, in Q13.19 fixed point format */ static inline __attribute__((always_inline)) void clk_ll_rtc_slow_store_cal(uint32_t cal_value) { REG_WRITE(RTC_SLOW_CLK_CAL_REG, cal_value); } /** * @brief Load the calibration value of RTC_SLOW_CLK frequency from RTC storage register * * This value gets updated (i.e. rtc slow clock gets calibrated) every time RTC_SLOW_CLK source switches * * @return The calibration value of slow clock period in microseconds, in Q13.19 fixed point format */ static inline __attribute__((always_inline)) uint32_t clk_ll_rtc_slow_load_cal(void) { return REG_READ(RTC_SLOW_CLK_CAL_REG); } #ifdef __cplusplus } #endif