/* * SPDX-FileCopyrightText: 2021-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "sdkconfig.h" #if CONFIG_LCD_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_pm.h" #include "esp_lcd_panel_interface.h" #include "esp_lcd_panel_rgb.h" #include "esp_lcd_panel_ops.h" #include "esp_rom_gpio.h" #include "soc/soc_caps.h" #include "esp_clk_tree.h" #include "hal/dma_types.h" #include "driver/gpio.h" #include "esp_bit_defs.h" #include "esp_private/esp_clk_tree_common.h" #include "esp_private/gdma.h" #include "esp_private/gdma_link.h" #include "esp_private/esp_dma_utils.h" #include "esp_private/periph_ctrl.h" #include "esp_private/gpio.h" #include "esp_psram.h" #include "esp_lcd_common.h" #include "esp_cache.h" #include "esp_memory_utils.h" #include "soc/lcd_periph.h" #include "soc/io_mux_reg.h" #include "hal/lcd_hal.h" #include "hal/lcd_ll.h" #include "hal/cache_hal.h" #include "hal/cache_ll.h" #include "rgb_lcd_rotation_sw.h" // hardware issue workaround #if CONFIG_IDF_TARGET_ESP32S3 #define RGB_LCD_NEEDS_SEPARATE_RESTART_LINK 1 #endif #if CONFIG_LCD_RGB_ISR_IRAM_SAFE #define LCD_RGB_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED) #define LCD_RGB_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define LCD_RGB_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED #define LCD_RGB_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT #endif #if defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AHB) #define LCD_GDMA_NEW_CHANNEL gdma_new_ahb_channel #define LCD_GDMA_DESCRIPTOR_ALIGN 4 #elif defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AXI) #define LCD_GDMA_NEW_CHANNEL gdma_new_axi_channel #define LCD_GDMA_DESCRIPTOR_ALIGN 8 #else #error "Unsupported GDMA bus type for RGB LCD" #endif #define RGB_LCD_PANEL_MAX_FB_NUM 3 // maximum supported frame buffer number #define RGB_LCD_PANEL_BOUNCE_BUF_NUM 2 // bounce buffer number static const char *TAG = "lcd_panel.rgb"; typedef struct esp_rgb_panel_t esp_rgb_panel_t; static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel); static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel); static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel); static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data); static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data); static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y); static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes); static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap); static esp_err_t rgb_panel_disp_on_off(esp_lcd_panel_t *panel, bool off); static esp_err_t lcd_rgb_panel_select_clock_src(esp_rgb_panel_t *rgb_panel, lcd_clock_source_t clk_src); static esp_err_t lcd_rgb_create_dma_channel(esp_rgb_panel_t *rgb_panel); static esp_err_t lcd_rgb_panel_init_trans_link(esp_rgb_panel_t *rgb_panel); static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *rgb_panel, const esp_lcd_rgb_panel_config_t *panel_config); static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel); static void rgb_lcd_default_isr_handler(void *args); struct esp_rgb_panel_t { esp_lcd_panel_t base; // Base class of generic lcd panel int panel_id; // LCD panel ID lcd_hal_context_t hal; // Hal layer object size_t data_width; // Number of data lines size_t fb_bits_per_pixel; // Frame buffer color depth, in bpp size_t num_fbs; // Number of frame buffers size_t output_bits_per_pixel; // Color depth seen from the output data line. Default to fb_bits_per_pixel, but can be changed by YUV-RGB conversion size_t dma_burst_size; // DMA transfer burst size int disp_gpio_num; // Display control GPIO, which is used to perform action like "disp_off" intr_handle_t intr; // LCD peripheral interrupt handle esp_pm_lock_handle_t pm_lock; // Power management lock size_t num_dma_nodes; // Number of DMA descriptors that used to carry the frame buffer gdma_channel_handle_t dma_chan; // DMA channel handle gdma_link_list_handle_t dma_fb_links[RGB_LCD_PANEL_MAX_FB_NUM]; // DMA link lists for multiple frame buffers gdma_link_list_handle_t dma_bb_link; // DMA link list for bounce buffer #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK gdma_link_list_handle_t dma_restart_link; // DMA link list for restarting the DMA #endif uint8_t *fbs[RGB_LCD_PANEL_MAX_FB_NUM]; // Frame buffers uint8_t *bounce_buffer[RGB_LCD_PANEL_BOUNCE_BUF_NUM]; // Pointer to the bounce buffers size_t fb_size; // Size of frame buffer, in bytes size_t bb_size; // Size of the bounce buffer, in bytes. If not-zero, the driver uses two bounce buffers allocated from internal memory uint8_t cur_fb_index; // Current frame buffer index uint8_t bb_fb_index; // Current frame buffer index which used by bounce buffer size_t int_mem_align; // DMA buffer alignment for internal memory size_t ext_mem_align; // DMA buffer alignment for external memory int data_gpio_nums[SOC_LCDCAM_RGB_DATA_WIDTH]; // GPIOs used for data lines, we keep these GPIOs for action like "invert_color" uint32_t src_clk_hz; // Peripheral source clock resolution esp_lcd_rgb_timing_t timings; // RGB timing parameters (e.g. pclk, sync pulse, porch width) int bounce_pos_px; // Position in whatever source material is used for the bounce buffer, in pixels size_t bb_eof_count; // record the number we received the DMA EOF event, compare with `expect_eof_count` in the VSYNC_END ISR size_t expect_eof_count; // record the number of DMA EOF event we expected to receive esp_lcd_rgb_panel_draw_buf_complete_cb_t on_color_trans_done; // draw buffer completes esp_lcd_rgb_panel_frame_buf_complete_cb_t on_frame_buf_complete; // callback used to notify when the bounce buffer finish copying the entire frame esp_lcd_rgb_panel_vsync_cb_t on_vsync; // VSYNC event callback esp_lcd_rgb_panel_bounce_buf_fill_cb_t on_bounce_empty; // callback used to fill a bounce buffer rather than copying from the frame buffer void *user_ctx; // Reserved user's data of callback functions int x_gap; // Extra gap in x coordinate, it's used when calculate the flush window int y_gap; // Extra gap in y coordinate, it's used when calculate the flush window portMUX_TYPE spinlock; // to protect panel specific resource from concurrent access (e.g. between task and ISR) int rotate_mask; // panel rotate_mask mask, Or'ed of `panel_rotate_mask_t` struct { uint32_t disp_en_level: 1; // The level which can turn on the screen by `disp_gpio_num` uint32_t stream_mode: 1; // If set, the LCD transfers data continuously, otherwise, it stops refreshing the LCD when transaction done uint32_t fb_in_psram: 1; // Whether the frame buffer is in PSRAM uint32_t need_update_pclk: 1; // Whether to update the PCLK before start a new transaction uint32_t need_restart: 1; // Whether to restart the LCD controller and the DMA uint32_t fb_behind_cache: 1; // Whether the frame buffer is behind the cache uint32_t bb_behind_cache: 1; // Whether the bounce buffer is behind the cache } flags; }; static esp_err_t lcd_rgb_panel_alloc_frame_buffers(esp_rgb_panel_t *rgb_panel) { bool fb_in_psram = rgb_panel->flags.fb_in_psram; // read the cache line size of internal and external memory, we use this information to check if the allocated memory is behind the cache uint32_t int_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA); uint32_t ext_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA); // alloc frame buffer for (int i = 0; i < rgb_panel->num_fbs; i++) { if (fb_in_psram) { // the allocated buffer is also aligned to the cache line size rgb_panel->fbs[i] = heap_caps_aligned_calloc(rgb_panel->ext_mem_align, 1, rgb_panel->fb_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_DMA | MALLOC_CAP_8BIT); ESP_RETURN_ON_FALSE(rgb_panel->fbs[i], ESP_ERR_NO_MEM, TAG, "no mem for frame buffer"); rgb_panel->flags.fb_behind_cache = ext_mem_cache_line_size > 0; } else { rgb_panel->fbs[i] = heap_caps_aligned_calloc(rgb_panel->int_mem_align, 1, rgb_panel->fb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA | MALLOC_CAP_8BIT); ESP_RETURN_ON_FALSE(rgb_panel->fbs[i], ESP_ERR_NO_MEM, TAG, "no mem for frame buffer"); rgb_panel->flags.fb_behind_cache = int_mem_cache_line_size > 0; } // flush data from cache to the physical memory if (rgb_panel->flags.fb_behind_cache) { esp_cache_msync(rgb_panel->fbs[i], rgb_panel->fb_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } } // alloc bounce buffer if (rgb_panel->bb_size) { for (int i = 0; i < RGB_LCD_PANEL_BOUNCE_BUF_NUM; i++) { // bounce buffer must be allocated from internal memory for performance rgb_panel->bounce_buffer[i] = heap_caps_aligned_calloc(rgb_panel->int_mem_align, 1, rgb_panel->bb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA | MALLOC_CAP_8BIT); ESP_RETURN_ON_FALSE(rgb_panel->bounce_buffer[i], ESP_ERR_NO_MEM, TAG, "no mem for bounce buffer"); if (int_mem_cache_line_size > 0) { // flush data from cache to the physical memory esp_cache_msync(rgb_panel->bounce_buffer[i], rgb_panel->bb_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); rgb_panel->flags.bb_behind_cache = true; } } } rgb_panel->cur_fb_index = 0; rgb_panel->bb_fb_index = 0; return ESP_OK; } static esp_err_t lcd_rgb_panel_destroy(esp_rgb_panel_t *rgb_panel) { LCD_CLOCK_SRC_ATOMIC() { lcd_ll_enable_clock(rgb_panel->hal.dev, false); } if (rgb_panel->panel_id >= 0) { PERIPH_RCC_RELEASE_ATOMIC(lcd_periph_rgb_signals.panels[rgb_panel->panel_id].module, ref_count) { if (ref_count == 0) { lcd_ll_enable_bus_clock(rgb_panel->panel_id, false); } } lcd_com_remove_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel->panel_id); } if (rgb_panel->dma_chan) { gdma_disconnect(rgb_panel->dma_chan); gdma_del_channel(rgb_panel->dma_chan); } for (size_t i = 0; i < RGB_LCD_PANEL_MAX_FB_NUM; i++) { if (rgb_panel->fbs[i]) { free(rgb_panel->fbs[i]); } if (rgb_panel->dma_fb_links[i]) { gdma_del_link_list(rgb_panel->dma_fb_links[i]); } } for (int i = 0; i < RGB_LCD_PANEL_BOUNCE_BUF_NUM; i++) { if (rgb_panel->bounce_buffer[i]) { free(rgb_panel->bounce_buffer[i]); } } if (rgb_panel->dma_bb_link) { gdma_del_link_list(rgb_panel->dma_bb_link); } #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK if (rgb_panel->dma_restart_link) { gdma_del_link_list(rgb_panel->dma_restart_link); } #endif if (rgb_panel->intr) { esp_intr_free(rgb_panel->intr); } if (rgb_panel->pm_lock) { esp_pm_lock_release(rgb_panel->pm_lock); esp_pm_lock_delete(rgb_panel->pm_lock); } free(rgb_panel); return ESP_OK; } esp_err_t esp_lcd_new_rgb_panel(const esp_lcd_rgb_panel_config_t *rgb_panel_config, esp_lcd_panel_handle_t *ret_panel) { #if CONFIG_LCD_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; esp_rgb_panel_t *rgb_panel = NULL; ESP_RETURN_ON_FALSE(rgb_panel_config && ret_panel, ESP_ERR_INVALID_ARG, TAG, "invalid parameter"); size_t data_width = rgb_panel_config->data_width; ESP_RETURN_ON_FALSE((data_width > 0) && (data_width <= SOC_LCDCAM_RGB_DATA_WIDTH) && ((data_width % 8) == 0), ESP_ERR_INVALID_ARG, TAG, "unsupported data width %d", data_width); ESP_RETURN_ON_FALSE(!(rgb_panel_config->flags.double_fb && rgb_panel_config->flags.no_fb), ESP_ERR_INVALID_ARG, TAG, "double_fb conflicts with no_fb"); ESP_RETURN_ON_FALSE(!(rgb_panel_config->num_fbs > 0 && rgb_panel_config->num_fbs != 2 && rgb_panel_config->flags.double_fb), ESP_ERR_INVALID_ARG, TAG, "num_fbs conflicts with double_fb"); ESP_RETURN_ON_FALSE(!(rgb_panel_config->num_fbs > 0 && rgb_panel_config->flags.no_fb), ESP_ERR_INVALID_ARG, TAG, "num_fbs conflicts with no_fb"); ESP_RETURN_ON_FALSE(!(rgb_panel_config->flags.no_fb && rgb_panel_config->bounce_buffer_size_px == 0), ESP_ERR_INVALID_ARG, TAG, "must set bounce buffer if there's no frame buffer"); // determine number of framebuffers size_t num_fbs = 1; if (rgb_panel_config->flags.no_fb) { num_fbs = 0; } else if (rgb_panel_config->flags.double_fb) { num_fbs = 2; } else if (rgb_panel_config->num_fbs > 0) { num_fbs = rgb_panel_config->num_fbs; } ESP_RETURN_ON_FALSE(num_fbs <= RGB_LCD_PANEL_MAX_FB_NUM, ESP_ERR_INVALID_ARG, TAG, "too many frame buffers"); // bpp defaults to the number of data lines, but for serial RGB interface, they're not equal // e.g. for serial RGB 8-bit interface, data lines are 8, whereas the bpp is 24 (RGB888) size_t fb_bits_per_pixel = data_width; if (rgb_panel_config->bits_per_pixel) { // override bpp if it's set fb_bits_per_pixel = rgb_panel_config->bits_per_pixel; } // calculate buffer size size_t fb_size = rgb_panel_config->timings.h_res * rgb_panel_config->timings.v_res * fb_bits_per_pixel / 8; size_t bb_size = rgb_panel_config->bounce_buffer_size_px * fb_bits_per_pixel / 8; size_t expect_bb_eof_count = 0; if (bb_size) { ESP_RETURN_ON_FALSE(fb_size % bb_size == 0, ESP_ERR_INVALID_ARG, TAG, "frame buffer size must be multiple of bounce buffer size"); expect_bb_eof_count = fb_size / bb_size; } // calculate the number of DMA descriptors size_t num_dma_nodes = 0; // allocate memory for rgb panel rgb_panel = heap_caps_calloc(1, sizeof(esp_rgb_panel_t), LCD_RGB_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(rgb_panel, ESP_ERR_NO_MEM, err, TAG, "no mem for rgb panel"); rgb_panel->panel_id = -1; rgb_panel->num_dma_nodes = num_dma_nodes; rgb_panel->num_fbs = num_fbs; rgb_panel->fb_size = fb_size; rgb_panel->bb_size = bb_size; rgb_panel->fb_bits_per_pixel = fb_bits_per_pixel; rgb_panel->expect_eof_count = expect_bb_eof_count; // register to platform int panel_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel); ESP_GOTO_ON_FALSE(panel_id >= 0, ESP_ERR_NOT_FOUND, err, TAG, "no free rgb panel slot"); rgb_panel->panel_id = panel_id; // enable APB to access LCD registers PERIPH_RCC_ACQUIRE_ATOMIC(lcd_periph_rgb_signals.panels[panel_id].module, ref_count) { if (ref_count == 0) { lcd_ll_enable_bus_clock(panel_id, true); lcd_ll_reset_register(panel_id); } } // initialize HAL layer, so we can call LL APIs later lcd_hal_init(&rgb_panel->hal, panel_id); // enable clock LCD_CLOCK_SRC_ATOMIC() { lcd_ll_enable_clock(rgb_panel->hal.dev, true); } // set clock source ret = lcd_rgb_panel_select_clock_src(rgb_panel, rgb_panel_config->clk_src); ESP_GOTO_ON_ERROR(ret, err, TAG, "set source clock failed"); // reset peripheral and FIFO after we select a correct clock source lcd_ll_fifo_reset(rgb_panel->hal.dev); lcd_ll_reset(rgb_panel->hal.dev); // install interrupt service, (LCD peripheral shares the interrupt source with Camera by different mask) int isr_flags = LCD_RGB_INTR_ALLOC_FLAGS | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED; ret = esp_intr_alloc_intrstatus(lcd_periph_rgb_signals.panels[panel_id].irq_id, isr_flags, (uint32_t)lcd_ll_get_interrupt_status_reg(rgb_panel->hal.dev), LCD_LL_EVENT_VSYNC_END, rgb_lcd_default_isr_handler, rgb_panel, &rgb_panel->intr); ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed"); lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, false); // disable all interrupts lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, UINT32_MAX); // clear pending interrupt // install DMA service rgb_panel->flags.stream_mode = !rgb_panel_config->flags.refresh_on_demand; rgb_panel->dma_burst_size = rgb_panel_config->dma_burst_size ? rgb_panel_config->dma_burst_size : 64; rgb_panel->flags.fb_in_psram = rgb_panel_config->flags.fb_in_psram; ESP_GOTO_ON_ERROR(lcd_rgb_create_dma_channel(rgb_panel), err, TAG, "install DMA failed"); // allocate frame buffers + bounce buffers ESP_GOTO_ON_ERROR(lcd_rgb_panel_alloc_frame_buffers(rgb_panel), err, TAG, "alloc frame buffers failed"); // initialize DMA descriptor link ESP_GOTO_ON_ERROR(lcd_rgb_panel_init_trans_link(rgb_panel), err, TAG, "init DMA link failed"); // configure GPIO ret = lcd_rgb_panel_configure_gpio(rgb_panel, rgb_panel_config); ESP_GOTO_ON_ERROR(ret, err, TAG, "configure GPIO failed"); // fill other rgb panel runtime parameters memcpy(rgb_panel->data_gpio_nums, rgb_panel_config->data_gpio_nums, sizeof(rgb_panel->data_gpio_nums)); rgb_panel->timings = rgb_panel_config->timings; rgb_panel->data_width = rgb_panel_config->data_width; rgb_panel->output_bits_per_pixel = fb_bits_per_pixel; // by default, the output bpp is the same as the frame buffer bpp rgb_panel->disp_gpio_num = rgb_panel_config->disp_gpio_num; rgb_panel->flags.disp_en_level = !rgb_panel_config->flags.disp_active_low; rgb_panel->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; // fill function table rgb_panel->base.del = rgb_panel_del; rgb_panel->base.reset = rgb_panel_reset; rgb_panel->base.init = rgb_panel_init; rgb_panel->base.draw_bitmap = rgb_panel_draw_bitmap; rgb_panel->base.disp_on_off = rgb_panel_disp_on_off; rgb_panel->base.invert_color = rgb_panel_invert_color; rgb_panel->base.mirror = rgb_panel_mirror; rgb_panel->base.swap_xy = rgb_panel_swap_xy; rgb_panel->base.set_gap = rgb_panel_set_gap; // return base class *ret_panel = &(rgb_panel->base); ESP_LOGD(TAG, "new rgb panel(%d) @%p, num_fbs=%zu, fb_size=%zu, bb0 @%p, bb1 @%p, bb_size=%zu", rgb_panel->panel_id, rgb_panel, rgb_panel->num_fbs, rgb_panel->fb_size, rgb_panel->bounce_buffer[0], rgb_panel->bounce_buffer[1], rgb_panel->bb_size); for (size_t i = 0; i < rgb_panel->num_fbs; i++) { ESP_LOGD(TAG, "fb[%zu] @%p", i, rgb_panel->fbs[i]); } return ESP_OK; err: if (rgb_panel) { lcd_rgb_panel_destroy(rgb_panel); } return ret; } esp_err_t esp_lcd_rgb_panel_register_event_callbacks(esp_lcd_panel_handle_t panel, const esp_lcd_rgb_panel_event_callbacks_t *callbacks, void *user_ctx) { ESP_RETURN_ON_FALSE(panel && callbacks, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); #if CONFIG_LCD_RGB_ISR_IRAM_SAFE if (callbacks->on_vsync) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_vsync), ESP_ERR_INVALID_ARG, TAG, "on_vsync callback not in IRAM"); } if (callbacks->on_color_trans_done) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_color_trans_done), ESP_ERR_INVALID_ARG, TAG, "on_color_trans_done callback not in IRAM"); } if (callbacks->on_frame_buf_complete) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_frame_buf_complete), ESP_ERR_INVALID_ARG, TAG, "on_frame_buf_complete callback not in IRAM"); } if (callbacks->on_bounce_empty) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_bounce_empty), ESP_ERR_INVALID_ARG, TAG, "on_bounce_empty callback not in IRAM"); } if (user_ctx) { ESP_RETURN_ON_FALSE(esp_ptr_internal(user_ctx), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM"); } #endif // CONFIG_LCD_RGB_ISR_IRAM_SAFE rgb_panel->on_vsync = callbacks->on_vsync; rgb_panel->on_color_trans_done = callbacks->on_color_trans_done; rgb_panel->on_frame_buf_complete = callbacks->on_frame_buf_complete; rgb_panel->on_bounce_empty = callbacks->on_bounce_empty; rgb_panel->user_ctx = user_ctx; return ESP_OK; } esp_err_t esp_lcd_rgb_panel_set_pclk(esp_lcd_panel_handle_t panel, uint32_t freq_hz) { ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); // the pclk frequency will be updated in the `LCD_LL_EVENT_VSYNC_END` event handler portENTER_CRITICAL(&rgb_panel->spinlock); rgb_panel->flags.need_update_pclk = true; rgb_panel->timings.pclk_hz = freq_hz; portEXIT_CRITICAL(&rgb_panel->spinlock); return ESP_OK; } esp_err_t esp_lcd_rgb_panel_restart(esp_lcd_panel_handle_t panel) { ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); ESP_RETURN_ON_FALSE(rgb_panel->flags.stream_mode, ESP_ERR_INVALID_STATE, TAG, "not in stream mode"); // the underlying restart job will be done in the `LCD_LL_EVENT_VSYNC_END` event handler portENTER_CRITICAL(&rgb_panel->spinlock); rgb_panel->flags.need_restart = true; portEXIT_CRITICAL(&rgb_panel->spinlock); return ESP_OK; } esp_err_t esp_lcd_rgb_panel_get_frame_buffer(esp_lcd_panel_handle_t panel, uint32_t fb_num, void **fb0, ...) { ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); ESP_RETURN_ON_FALSE(fb_num && fb_num <= rgb_panel->num_fbs, ESP_ERR_INVALID_ARG, TAG, "invalid frame buffer number"); void **fb_itor = fb0; va_list args; va_start(args, fb0); for (int i = 0; i < fb_num; i++) { if (fb_itor) { *fb_itor = rgb_panel->fbs[i]; fb_itor = va_arg(args, void **); } } va_end(args); return ESP_OK; } esp_err_t esp_lcd_rgb_panel_refresh(esp_lcd_panel_handle_t panel) { ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); ESP_RETURN_ON_FALSE(!rgb_panel->flags.stream_mode, ESP_ERR_INVALID_STATE, TAG, "refresh on demand is not enabled"); lcd_rgb_panel_start_transmission(rgb_panel); return ESP_OK; } esp_err_t esp_lcd_rgb_panel_set_yuv_conversion(esp_lcd_panel_handle_t panel, const esp_lcd_yuv_conv_config_t *config) { ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); lcd_hal_context_t *hal = &rgb_panel->hal; bool en_conversion = config != NULL; // bits per pixel for different YUV sample const uint8_t bpp_yuv[] = { [LCD_YUV_SAMPLE_422] = 16, [LCD_YUV_SAMPLE_420] = 12, [LCD_YUV_SAMPLE_411] = 12, }; if (en_conversion) { if (memcmp(&config->src, &config->dst, sizeof(config->src)) == 0) { ESP_RETURN_ON_FALSE(false, ESP_ERR_INVALID_ARG, TAG, "conversion source and destination are the same"); } if (config->src.color_space == LCD_COLOR_SPACE_YUV && config->dst.color_space == LCD_COLOR_SPACE_RGB) { // YUV->RGB lcd_ll_set_convert_mode_yuv_to_rgb(hal->dev, config->src.yuv_sample); rgb_panel->output_bits_per_pixel = rgb_panel->fb_bits_per_pixel; } else if (config->src.color_space == LCD_COLOR_SPACE_RGB && config->dst.color_space == LCD_COLOR_SPACE_YUV) { // RGB->YUV lcd_ll_set_convert_mode_rgb_to_yuv(hal->dev, config->dst.yuv_sample); rgb_panel->output_bits_per_pixel = bpp_yuv[config->dst.yuv_sample]; } else if (config->src.color_space == LCD_COLOR_SPACE_YUV && config->dst.color_space == LCD_COLOR_SPACE_YUV) { // YUV->YUV lcd_ll_set_convert_mode_yuv_to_yuv(hal->dev, config->src.yuv_sample, config->dst.yuv_sample); rgb_panel->output_bits_per_pixel = bpp_yuv[config->dst.yuv_sample]; } else { ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "unsupported conversion mode"); } // set conversion standard lcd_ll_set_yuv_convert_std(hal->dev, config->std); // set conversion data width lcd_ll_set_convert_data_width(hal->dev, rgb_panel->data_width); // set color range lcd_ll_set_input_color_range(hal->dev, config->src.color_range); lcd_ll_set_output_color_range(hal->dev, config->dst.color_range); } else { // output bpp equals to frame buffer bpp rgb_panel->output_bits_per_pixel = rgb_panel->fb_bits_per_pixel; } // enable or disable RGB-YUV conversion lcd_ll_enable_rgb_yuv_convert(hal->dev, en_conversion); return ESP_OK; } static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); int panel_id = rgb_panel->panel_id; ESP_RETURN_ON_ERROR(lcd_rgb_panel_destroy(rgb_panel), TAG, "destroy rgb panel(%d) failed", panel_id); ESP_LOGD(TAG, "del rgb panel(%d)", panel_id); return ESP_OK; } static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); lcd_ll_fifo_reset(rgb_panel->hal.dev); lcd_ll_reset(rgb_panel->hal.dev); return ESP_OK; } static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel) { esp_err_t ret = ESP_OK; esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); // set pixel clock frequency hal_utils_clk_div_t lcd_clk_div = {}; rgb_panel->timings.pclk_hz = lcd_hal_cal_pclk_freq(&rgb_panel->hal, rgb_panel->src_clk_hz, rgb_panel->timings.pclk_hz, &lcd_clk_div); LCD_CLOCK_SRC_ATOMIC() { lcd_ll_set_group_clock_coeff(rgb_panel->hal.dev, lcd_clk_div.integer, lcd_clk_div.denominator, lcd_clk_div.numerator); } // pixel clock phase and polarity lcd_ll_set_clock_idle_level(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_idle_high); lcd_ll_set_pixel_clock_edge(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_active_neg); // enable RGB mode and set data width lcd_ll_enable_rgb_mode(rgb_panel->hal.dev, true); lcd_ll_set_dma_read_stride(rgb_panel->hal.dev, rgb_panel->data_width); // enable data phase only lcd_ll_set_phase_cycles(rgb_panel->hal.dev, 0, 0, 1); // number of data cycles is controlled by DMA buffer size lcd_ll_enable_output_always_on(rgb_panel->hal.dev, true); // configure HSYNC, VSYNC, DE signal idle state level lcd_ll_set_idle_level(rgb_panel->hal.dev, !rgb_panel->timings.flags.hsync_idle_low, !rgb_panel->timings.flags.vsync_idle_low, rgb_panel->timings.flags.de_idle_high); // configure blank region timing lcd_ll_set_blank_cycles(rgb_panel->hal.dev, 1, 1); // RGB panel always has a front and back blank (porch region) lcd_ll_set_horizontal_timing(rgb_panel->hal.dev, rgb_panel->timings.hsync_pulse_width, rgb_panel->timings.hsync_back_porch, rgb_panel->timings.h_res * rgb_panel->output_bits_per_pixel / rgb_panel->data_width, rgb_panel->timings.hsync_front_porch); lcd_ll_set_vertical_timing(rgb_panel->hal.dev, rgb_panel->timings.vsync_pulse_width, rgb_panel->timings.vsync_back_porch, rgb_panel->timings.v_res, rgb_panel->timings.vsync_front_porch); // output hsync even in porch region lcd_ll_enable_output_hsync_in_porch_region(rgb_panel->hal.dev, true); // generate the hsync at the very beginning of line lcd_ll_set_hsync_position(rgb_panel->hal.dev, 0); // in stream mode, after finish one frame, the LCD controller will ask for data automatically from the DMA // DMA should prepare the next frame data within porch region lcd_ll_enable_auto_next_frame(rgb_panel->hal.dev, rgb_panel->flags.stream_mode); // trigger interrupt on the end of frame lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, true); // enable intr esp_intr_enable(rgb_panel->intr); // start transmission if (rgb_panel->flags.stream_mode) { lcd_rgb_panel_start_transmission(rgb_panel); } ESP_LOGD(TAG, "rgb panel(%d) start, pclk=%"PRIu32"Hz", rgb_panel->panel_id, rgb_panel->timings.pclk_hz); return ret; } static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); ESP_RETURN_ON_FALSE(rgb_panel->num_fbs > 0, ESP_ERR_NOT_SUPPORTED, TAG, "no frame buffer installed"); esp_lcd_rgb_panel_draw_buf_complete_cb_t cb = rgb_panel->on_color_trans_done; uint8_t *draw_buffer = (uint8_t *)color_data; size_t fb_size = rgb_panel->fb_size; int h_res = rgb_panel->timings.h_res; int v_res = rgb_panel->timings.v_res; int bytes_per_pixel = rgb_panel->fb_bits_per_pixel / 8; uint32_t bytes_per_line = bytes_per_pixel * h_res; // adjust the flush window by adding extra gap x_start += rgb_panel->x_gap; y_start += rgb_panel->y_gap; x_end += rgb_panel->x_gap; y_end += rgb_panel->y_gap; // clip to boundaries if (rgb_panel->rotate_mask & ROTATE_MASK_SWAP_XY) { x_start = MAX(x_start, 0); x_end = MIN(x_end, v_res); y_start = MAX(y_start, 0); y_end = MIN(y_end, h_res); } else { x_start = MAX(x_start, 0); x_end = MIN(x_end, h_res); y_start = MAX(y_start, 0); y_end = MIN(y_end, v_res); } // check if we want to copy the draw buffer to the internal frame buffer bool draw_buf_copy_to_fb = true; uint8_t draw_buf_fb_index = 0; for (int i = 0; i < rgb_panel->num_fbs; i++) { if (draw_buffer >= rgb_panel->fbs[i] && draw_buffer < rgb_panel->fbs[i] + fb_size) { draw_buf_fb_index = i; draw_buf_copy_to_fb = false; break; } } if (draw_buf_copy_to_fb) { // sync the draw buffer with the frame buffer by CPU copy ESP_LOGV(TAG, "copy draw buffer to frame buffer by CPU"); uint8_t *fb = rgb_panel->fbs[rgb_panel->cur_fb_index]; size_t bytes_to_flush = v_res * bytes_per_line; uint8_t *flush_ptr = fb; const uint8_t *from = (const uint8_t *)color_data; uint32_t copy_bytes_per_line = (x_end - x_start) * bytes_per_pixel; size_t offset = y_start * copy_bytes_per_line + x_start * bytes_per_pixel; uint8_t *to = fb; if (1 == bytes_per_pixel) { COPY_PIXEL_CODE_BLOCK(8) } else if (2 == bytes_per_pixel) { COPY_PIXEL_CODE_BLOCK(16) } else if (3 == bytes_per_pixel) { COPY_PIXEL_CODE_BLOCK(24) } // do memory sync only when the frame buffer is mounted to the DMA link list and behind the cache if (!rgb_panel->bb_size && rgb_panel->flags.fb_behind_cache) { esp_cache_msync(flush_ptr, bytes_to_flush, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } // after the draw buffer finished copying, notify the user to recycle the draw buffer if (cb) { cb(&rgb_panel->base, NULL, rgb_panel->user_ctx); } } else { ESP_LOGV(TAG, "draw buffer is part of the frame buffer"); // the new frame buffer index is changed rgb_panel->cur_fb_index = draw_buf_fb_index; // when this function is called, the frame buffer already reflects the draw buffer changes // if the frame buffer is also mounted to the DMA, we need to do the sync between them if (!rgb_panel->bb_size && rgb_panel->flags.fb_behind_cache) { uint8_t *cache_sync_start = rgb_panel->fbs[draw_buf_fb_index] + (y_start * h_res) * bytes_per_pixel; size_t cache_sync_size = (y_end - y_start) * bytes_per_line; esp_cache_msync(cache_sync_start, cache_sync_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } // after the draw buffer finished copying, notify the user to recycle the draw buffer if (cb) { cb(&rgb_panel->base, NULL, rgb_panel->user_ctx); } } if (!rgb_panel->bb_size) { if (rgb_panel->flags.stream_mode) { for (int i = 0; i < rgb_panel->num_fbs; i++) { // Note, because of DMA prefetch, there's possibility that the old frame buffer might be sent out again // it's hard to know the time when the new frame buffer starts gdma_link_concat(rgb_panel->dma_fb_links[i], -1, rgb_panel->dma_fb_links[rgb_panel->cur_fb_index], 0); } } } return ESP_OK; } static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); int panel_id = rgb_panel->panel_id; // inverting the data line by GPIO matrix for (int i = 0; i < rgb_panel->data_width; i++) { if (rgb_panel->data_gpio_nums[i] >= 0) { esp_rom_gpio_connect_out_signal(rgb_panel->data_gpio_nums[i], lcd_periph_rgb_signals.panels[panel_id].data_sigs[i], invert_color_data, false); } } return ESP_OK; } static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); rgb_panel->rotate_mask &= ~(ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y); rgb_panel->rotate_mask |= (mirror_x << RGB_PANEL_MIRROR_X | mirror_y << RGB_PANEL_MIRROR_Y); return ESP_OK; } static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); rgb_panel->rotate_mask &= ~(ROTATE_MASK_SWAP_XY); rgb_panel->rotate_mask |= swap_axes << RGB_PANEL_SWAP_XY; return ESP_OK; } static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); rgb_panel->x_gap = x_gap; rgb_panel->y_gap = y_gap; return ESP_OK; } static esp_err_t rgb_panel_disp_on_off(esp_lcd_panel_t *panel, bool on_off) { esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base); if (rgb_panel->disp_gpio_num < 0) { return ESP_ERR_NOT_SUPPORTED; } if (!on_off) { // turn off screen gpio_set_level(rgb_panel->disp_gpio_num, !rgb_panel->flags.disp_en_level); } else { // turn on screen gpio_set_level(rgb_panel->disp_gpio_num, rgb_panel->flags.disp_en_level); } return ESP_OK; } static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *rgb_panel, const esp_lcd_rgb_panel_config_t *panel_config) { int panel_id = rgb_panel->panel_id; // Set the number of output data lines lcd_ll_set_data_wire_width(rgb_panel->hal.dev, panel_config->data_width); // connect peripheral signals via GPIO matrix for (size_t i = 0; i < panel_config->data_width; i++) { if (panel_config->data_gpio_nums[i] >= 0) { gpio_func_sel(panel_config->data_gpio_nums[i], PIN_FUNC_GPIO); esp_rom_gpio_connect_out_signal(panel_config->data_gpio_nums[i], lcd_periph_rgb_signals.panels[panel_id].data_sigs[i], false, false); } } if (panel_config->hsync_gpio_num >= 0) { gpio_func_sel(panel_config->hsync_gpio_num, PIN_FUNC_GPIO); esp_rom_gpio_connect_out_signal(panel_config->hsync_gpio_num, lcd_periph_rgb_signals.panels[panel_id].hsync_sig, false, false); } if (panel_config->vsync_gpio_num >= 0) { gpio_func_sel(panel_config->vsync_gpio_num, PIN_FUNC_GPIO); esp_rom_gpio_connect_out_signal(panel_config->vsync_gpio_num, lcd_periph_rgb_signals.panels[panel_id].vsync_sig, false, false); } // PCLK may not be necessary in some cases (i.e. VGA output) if (panel_config->pclk_gpio_num >= 0) { gpio_func_sel(panel_config->pclk_gpio_num, PIN_FUNC_GPIO); esp_rom_gpio_connect_out_signal(panel_config->pclk_gpio_num, lcd_periph_rgb_signals.panels[panel_id].pclk_sig, false, false); } // DE signal might not be necessary for some RGB LCD if (panel_config->de_gpio_num >= 0) { gpio_func_sel(panel_config->de_gpio_num, PIN_FUNC_GPIO); esp_rom_gpio_connect_out_signal(panel_config->de_gpio_num, lcd_periph_rgb_signals.panels[panel_id].de_sig, false, false); } // disp enable GPIO is optional, it is a general purpose output GPIO if (panel_config->disp_gpio_num >= 0) { gpio_func_sel(panel_config->disp_gpio_num, PIN_FUNC_GPIO); gpio_output_enable(panel_config->disp_gpio_num); } return ESP_OK; } static esp_err_t lcd_rgb_panel_select_clock_src(esp_rgb_panel_t *rgb_panel, lcd_clock_source_t clk_src) { // get clock source frequency uint32_t src_clk_hz = 0; ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &src_clk_hz), TAG, "get clock source frequency failed"); rgb_panel->src_clk_hz = src_clk_hz; esp_clk_tree_enable_src((soc_module_clk_t)clk_src, true); LCD_CLOCK_SRC_ATOMIC() { lcd_ll_select_clk_src(rgb_panel->hal.dev, clk_src); } // create pm lock based on different clock source #if CONFIG_PM_ENABLE // clock sources like PLL and XTAL will be turned off in light sleep, so basically a NO_LIGHT_SLEEP lock is sufficient esp_pm_lock_type_t lock_type = ESP_PM_NO_LIGHT_SLEEP; #if CONFIG_IDF_TARGET_ESP32P4 // use CPU_MAX lock to ensure PSRAM bandwidth and usability during DFS lock_type = ESP_PM_CPU_FREQ_MAX; #endif ESP_RETURN_ON_ERROR(esp_pm_lock_create(lock_type, 0, "rgb_panel", &rgb_panel->pm_lock), TAG, "create pm lock failed"); // hold the lock during the whole lifecycle of RGB panel esp_pm_lock_acquire(rgb_panel->pm_lock); ESP_LOGD(TAG, "installed pm lock and hold the lock during the whole panel lifecycle"); #endif return ESP_OK; } static IRAM_ATTR bool lcd_rgb_panel_fill_bounce_buffer(esp_rgb_panel_t *panel, uint8_t *buffer) { bool need_yield = false; int bytes_per_pixel = panel->fb_bits_per_pixel / 8; if (unlikely(panel->num_fbs == 0)) { // driver doesn't maintain a frame buffer, so ask the user to fill the bounce buffer if (panel->on_bounce_empty) { if (panel->on_bounce_empty(&panel->base, buffer, panel->bounce_pos_px, panel->bb_size, panel->user_ctx)) { need_yield = true; } } } else { // copy partial frame buffer to the bounce buffer // Note: if the frame buffer is behind a cache, and the cache is disabled, crash would happen here when auto write back happens memcpy(buffer, &panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size); } // do memory sync if the bounce buffer is behind the cache if (panel->flags.bb_behind_cache) { esp_cache_msync(buffer, panel->bb_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } panel->bounce_pos_px += panel->bb_size / bytes_per_pixel; // If the bounce pos is larger than the frame buffer size, wrap around so the next isr starts pre-loading the next frame. if (panel->bounce_pos_px >= panel->fb_size / bytes_per_pixel) { panel->bounce_pos_px = 0; panel->bb_fb_index = panel->cur_fb_index; esp_lcd_rgb_panel_frame_buf_complete_cb_t cb = panel->on_frame_buf_complete; if (cb) { if (cb(&panel->base, NULL, panel->user_ctx)) { need_yield = true; } } } // Preload the next bit of buffer to the cache memory, this can improve the performance if (panel->num_fbs > 0 && panel->flags.fb_behind_cache) { #if CONFIG_IDF_TARGET_ESP32S3 Cache_Start_DCache_Preload((uint32_t)&panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size, 0); #elif CONFIG_IDF_TARGET_ESP32P4 Cache_Start_L2_Cache_Preload((uint32_t)&panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size, 0); #else #error "Unsupported target" #endif } return need_yield; } static IRAM_ATTR bool lcd_rgb_panel_eof_handler(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { bool need_yield = false; esp_rgb_panel_t *rgb_panel = (esp_rgb_panel_t *)user_data; if (rgb_panel->bb_size) { // in bounce buffer mode, the DMA EOF means time to fill the finished bounce buffer // Figure out which bounce buffer to write to portENTER_CRITICAL_ISR(&rgb_panel->spinlock); int bb = rgb_panel->bb_eof_count % RGB_LCD_PANEL_BOUNCE_BUF_NUM; rgb_panel->bb_eof_count++; portEXIT_CRITICAL_ISR(&rgb_panel->spinlock); need_yield = lcd_rgb_panel_fill_bounce_buffer(rgb_panel, rgb_panel->bounce_buffer[bb]); } else { // if not bounce buffer, the DMA EOF event means the end of a frame has been sent out to the LCD controller if (rgb_panel->on_frame_buf_complete) { if (rgb_panel->on_frame_buf_complete(&rgb_panel->base, NULL, rgb_panel->user_ctx)) { need_yield = true; } } } return need_yield; } static esp_err_t lcd_rgb_create_dma_channel(esp_rgb_panel_t *rgb_panel) { // alloc DMA channel and connect to LCD peripheral gdma_channel_alloc_config_t dma_chan_config = { .direction = GDMA_CHANNEL_DIRECTION_TX, }; ESP_RETURN_ON_ERROR(LCD_GDMA_NEW_CHANNEL(&dma_chan_config, &rgb_panel->dma_chan), TAG, "alloc DMA channel failed"); gdma_connect(rgb_panel->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0)); // configure DMA strategy gdma_strategy_config_t dma_strategy = { .eof_till_data_popped = false, }; gdma_apply_strategy(rgb_panel->dma_chan, &dma_strategy); // configure DMA transfer gdma_transfer_config_t trans_cfg = { .max_data_burst_size = rgb_panel->dma_burst_size, .access_ext_mem = rgb_panel->flags.fb_in_psram, }; ESP_RETURN_ON_ERROR(gdma_config_transfer(rgb_panel->dma_chan, &trans_cfg), TAG, "config DMA transfer failed"); // get the memory alignment required by the DMA gdma_get_alignment_constraints(rgb_panel->dma_chan, &rgb_panel->int_mem_align, &rgb_panel->ext_mem_align); // register DMA EOF callback gdma_tx_event_callbacks_t cbs = { .on_trans_eof = lcd_rgb_panel_eof_handler, }; ESP_RETURN_ON_ERROR(gdma_register_tx_event_callbacks(rgb_panel->dma_chan, &cbs, rgb_panel), TAG, "register DMA EOF callback failed"); return ESP_OK; } #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK // If we restart GDMA, the data sent to the LCD peripheral needs to start LCD_FIFO_PRESERVE_SIZE_PX pixels after the FB start // so we use a dedicated DMA link (called restart link) to restart the transaction #define LCD_FIFO_PRESERVE_SIZE_PX (LCD_LL_FIFO_DEPTH + 1) #endif static esp_err_t lcd_rgb_panel_init_trans_link(esp_rgb_panel_t *rgb_panel) { #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK // the restart link shares the same buffer with the frame/bounce buffer but start from a different offset int restart_skip_bytes = LCD_FIFO_PRESERVE_SIZE_PX * (rgb_panel->fb_bits_per_pixel / 8); #endif if (rgb_panel->bb_size) { // DMA is used to convey the bounce buffer size_t buffer_alignment = rgb_panel->int_mem_align; size_t num_dma_nodes_per_bounce_buffer = esp_dma_calculate_node_count(rgb_panel->bb_size, buffer_alignment, LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE); gdma_link_list_config_t link_cfg = { .buffer_alignment = buffer_alignment, .item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN, .num_items = num_dma_nodes_per_bounce_buffer * RGB_LCD_PANEL_BOUNCE_BUF_NUM, .flags = { .check_owner = true, } }; ESP_RETURN_ON_ERROR(gdma_new_link_list(&link_cfg, &rgb_panel->dma_bb_link), TAG, "create bounce buffer DMA link failed"); // mount bounce buffers to the DMA link list gdma_buffer_mount_config_t mount_cfgs[RGB_LCD_PANEL_BOUNCE_BUF_NUM] = {0}; for (int i = 0; i < RGB_LCD_PANEL_BOUNCE_BUF_NUM; i++) { mount_cfgs[i].buffer = rgb_panel->bounce_buffer[i]; mount_cfgs[i].length = rgb_panel->bb_size; mount_cfgs[i].flags.mark_eof = true; // we use the DMA EOF interrupt to copy the frame buffer (partially) to the bounce buffer } ESP_RETURN_ON_ERROR(gdma_link_mount_buffers(rgb_panel->dma_bb_link, 0, mount_cfgs, RGB_LCD_PANEL_BOUNCE_BUF_NUM, NULL), TAG, "mount DMA bounce buffers failed"); #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK // create restart link gdma_link_list_config_t restart_link_cfg = { .buffer_alignment = buffer_alignment, .item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN, .num_items = 1, // the restart link only contains one node .flags = { .check_owner = true, } }; ESP_RETURN_ON_ERROR(gdma_new_link_list(&restart_link_cfg, &rgb_panel->dma_restart_link), TAG, "create DMA restart link list failed"); gdma_buffer_mount_config_t restart_buffer_mount_cfg = { .buffer = rgb_panel->bounce_buffer[0] + restart_skip_bytes, .length = MIN(LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE, rgb_panel->bb_size) - restart_skip_bytes, }; ESP_RETURN_ON_ERROR(gdma_link_mount_buffers(rgb_panel->dma_restart_link, 0, &restart_buffer_mount_cfg, 1, NULL), TAG, "mount DMA restart buffer failed"); // Magic here: we use the restart link to restart the bounce buffer link list, so concat them gdma_link_concat(rgb_panel->dma_restart_link, 0, rgb_panel->dma_bb_link, 1); #endif } else { // DMA is used to convey the frame buffer size_t buffer_alignment = rgb_panel->flags.fb_in_psram ? rgb_panel->ext_mem_align : rgb_panel->int_mem_align; uint32_t num_dma_nodes = esp_dma_calculate_node_count(rgb_panel->fb_size, buffer_alignment, LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE); gdma_link_list_config_t link_cfg = { .buffer_alignment = buffer_alignment, .item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN, .num_items = num_dma_nodes, .flags = { .check_owner = true, }, }; gdma_buffer_mount_config_t mount_cfg = { .length = rgb_panel->fb_size, .flags = { .mark_final = rgb_panel->flags.stream_mode ? false : true, .mark_eof = true, }, }; for (size_t i = 0; i < rgb_panel->num_fbs; i++) { ESP_RETURN_ON_ERROR(gdma_new_link_list(&link_cfg, &rgb_panel->dma_fb_links[i]), TAG, "create frame buffer DMA link failed"); // mount bounce buffers to the DMA link list mount_cfg.buffer = rgb_panel->fbs[i]; ESP_RETURN_ON_ERROR(gdma_link_mount_buffers(rgb_panel->dma_fb_links[i], 0, &mount_cfg, 1, NULL), TAG, "mount DMA frame buffer failed"); } #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK // create restart link gdma_link_list_config_t restart_link_cfg = { .buffer_alignment = buffer_alignment, .item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN, .num_items = 1, // the restart link only contains one node .flags = { .check_owner = true, } }; ESP_RETURN_ON_ERROR(gdma_new_link_list(&restart_link_cfg, &rgb_panel->dma_restart_link), TAG, "create DMA restart link list failed"); gdma_buffer_mount_config_t restart_buffer_mount_cfg = { .buffer = rgb_panel->fbs[0] + restart_skip_bytes, .length = MIN(LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE, rgb_panel->fb_size) - restart_skip_bytes, .flags.bypass_buffer_align_check = true, // the restart buffer may doesn't match the buffer alignment but it doesn't really matter in this case }; ESP_RETURN_ON_ERROR(gdma_link_mount_buffers(rgb_panel->dma_restart_link, 0, &restart_buffer_mount_cfg, 1, NULL), TAG, "mount DMA restart buffer failed"); // Magic here: we use the restart link to restart the frame buffer link list, so concat them gdma_link_concat(rgb_panel->dma_restart_link, 0, rgb_panel->dma_fb_links[0], 1); #endif } return ESP_OK; } // reset the GDMA channel every VBlank to stop permanent desyncs from happening. // Note that this fix can lead to single-frame desyncs itself, as in: if this interrupt // is late enough, the display will shift as the LCD controller already read out the // first data bytes, and resetting DMA will re-send those. However, the single-frame // desync this leads to is preferable to the permanent desync that could otherwise // happen. It's also not super-likely as this interrupt has the entirety of the VBlank // time to reset DMA. static IRAM_ATTR void lcd_rgb_panel_try_restart_transmission(esp_rgb_panel_t *panel) { int bb_size_px = panel->bb_size / (panel->fb_bits_per_pixel / 8); bool do_restart = false; #if CONFIG_LCD_RGB_RESTART_IN_VSYNC do_restart = true; #else portENTER_CRITICAL_ISR(&panel->spinlock); if (panel->flags.need_restart) { panel->flags.need_restart = false; do_restart = true; } if (panel->bb_eof_count < panel->expect_eof_count) { do_restart = true; } panel->bb_eof_count = 0; portEXIT_CRITICAL_ISR(&panel->spinlock); #endif // CONFIG_LCD_RGB_RESTART_IN_VSYNC if (!do_restart) { return; } if (panel->bb_size) { // Catch de-synced frame buffer and reset if needed. if (panel->bounce_pos_px > bb_size_px * 2) { panel->bounce_pos_px = 0; } // Pre-fill bounce buffer 0, if the EOF ISR didn't do that already if (panel->bounce_pos_px < bb_size_px) { lcd_rgb_panel_fill_bounce_buffer(panel, panel->bounce_buffer[0]); } } lcd_ll_fifo_reset(panel->hal.dev); gdma_reset(panel->dma_chan); #if RGB_LCD_NEEDS_SEPARATE_RESTART_LINK // restart the DMA by a special DMA node gdma_start(panel->dma_chan, gdma_link_get_head_addr(panel->dma_restart_link)); #else if (panel->bb_size) { gdma_start(panel->dma_chan, gdma_link_get_head_addr(panel->dma_bb_link)); } else { gdma_start(panel->dma_chan, gdma_link_get_head_addr(panel->dma_fb_links[panel->cur_fb_index])); } #endif if (panel->bb_size) { // Fill 2nd bounce buffer while 1st is being sent out, if needed. if (panel->bounce_pos_px < bb_size_px * 2) { lcd_rgb_panel_fill_bounce_buffer(panel, panel->bounce_buffer[1]); } } } static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel) { // reset FIFO of DMA and LCD, in case there remains old frame data gdma_reset(rgb_panel->dma_chan); lcd_ll_stop(rgb_panel->hal.dev); lcd_ll_reset(rgb_panel->hal.dev); lcd_ll_fifo_reset(rgb_panel->hal.dev); // pre-fill bounce buffers if needed if (rgb_panel->bb_size) { rgb_panel->bounce_pos_px = 0; lcd_rgb_panel_fill_bounce_buffer(rgb_panel, rgb_panel->bounce_buffer[0]); lcd_rgb_panel_fill_bounce_buffer(rgb_panel, rgb_panel->bounce_buffer[1]); } // the start of DMA should be prior to the start of LCD engine if (rgb_panel->bb_size) { gdma_start(rgb_panel->dma_chan, gdma_link_get_head_addr(rgb_panel->dma_bb_link)); } else { gdma_start(rgb_panel->dma_chan, gdma_link_get_head_addr(rgb_panel->dma_fb_links[rgb_panel->cur_fb_index])); } // delay 1us is sufficient for DMA to pass data to LCD FIFO // in fact, this is only needed when LCD pixel clock is set too high esp_rom_delay_us(1); // start LCD engine lcd_ll_start(rgb_panel->hal.dev); } IRAM_ATTR static void lcd_rgb_panel_try_update_pclk(esp_rgb_panel_t *rgb_panel) { hal_utils_clk_div_t lcd_clk_div = {}; portENTER_CRITICAL_ISR(&rgb_panel->spinlock); if (unlikely(rgb_panel->flags.need_update_pclk)) { rgb_panel->flags.need_update_pclk = false; rgb_panel->timings.pclk_hz = lcd_hal_cal_pclk_freq(&rgb_panel->hal, rgb_panel->src_clk_hz, rgb_panel->timings.pclk_hz, &lcd_clk_div); LCD_CLOCK_SRC_ATOMIC() { lcd_ll_set_group_clock_coeff(rgb_panel->hal.dev, lcd_clk_div.integer, lcd_clk_div.denominator, lcd_clk_div.numerator); } } portEXIT_CRITICAL_ISR(&rgb_panel->spinlock); } IRAM_ATTR static void rgb_lcd_default_isr_handler(void *args) { esp_rgb_panel_t *rgb_panel = (esp_rgb_panel_t *)args; bool need_yield = false; // clear the interrupt status uint32_t intr_status = lcd_ll_get_interrupt_status(rgb_panel->hal.dev); lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, intr_status); // VSYNC event happened if (intr_status & LCD_LL_EVENT_VSYNC_END) { // call user registered callback if (rgb_panel->on_vsync) { if (rgb_panel->on_vsync(&rgb_panel->base, NULL, rgb_panel->user_ctx)) { need_yield = true; } } // check whether to update the PCLK frequency, it should be safe to update the PCLK frequency in the VSYNC interrupt lcd_rgb_panel_try_update_pclk(rgb_panel); if (rgb_panel->flags.stream_mode) { // check whether to restart the transmission lcd_rgb_panel_try_restart_transmission(rgb_panel); } } // yield if needed if (need_yield) { portYIELD_FROM_ISR(); } }