/* * SPDX-FileCopyrightText: 2017-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include "esp_efuse.h" #include #include "esp_efuse_table.h" // md5_digest_table 0c453d200f282e320677c1ac46786658 // This file was generated from the file esp_efuse_table.csv. DO NOT CHANGE THIS FILE MANUALLY. // If you want to change some fields, you need to change esp_efuse_table.csv file // then run `efuse_common_table` or `efuse_custom_table` command it will generate this file. // To show efuse_table run the command 'show_efuse_table'. static const esp_efuse_desc_t WR_DIS[] = { {EFUSE_BLK0, 0, 32}, // [] Disable programming of individual eFuses, }; static const esp_efuse_desc_t WR_DIS_RD_DIS[] = { {EFUSE_BLK0, 0, 1}, // [] wr_dis of RD_DIS, }; static const esp_efuse_desc_t WR_DIS_KM_DISABLE_DEPLOY_MODE[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_DISABLE_DEPLOY_MODE, }; static const esp_efuse_desc_t WR_DIS_KM_RND_SWITCH_CYCLE[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_RND_SWITCH_CYCLE, }; static const esp_efuse_desc_t WR_DIS_KM_DEPLOY_ONLY_ONCE[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_DEPLOY_ONLY_ONCE, }; static const esp_efuse_desc_t WR_DIS_FORCE_USE_KEY_MANAGER_KEY[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of FORCE_USE_KEY_MANAGER_KEY, }; static const esp_efuse_desc_t WR_DIS_FORCE_DISABLE_SW_INIT_KEY[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of FORCE_DISABLE_SW_INIT_KEY, }; static const esp_efuse_desc_t WR_DIS_KM_XTS_KEY_LENGTH_256[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_XTS_KEY_LENGTH_256, }; static const esp_efuse_desc_t WR_DIS_LOCK_KM_KEY[] = { {EFUSE_BLK0, 1, 1}, // [] wr_dis of LOCK_KM_KEY, }; static const esp_efuse_desc_t WR_DIS_DIS_ICACHE[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_ICACHE, }; static const esp_efuse_desc_t WR_DIS_DIS_USB_JTAG[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_USB_JTAG, }; static const esp_efuse_desc_t WR_DIS_DIS_FORCE_DOWNLOAD[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_FORCE_DOWNLOAD, }; static const esp_efuse_desc_t WR_DIS_SPI_DOWNLOAD_MSPI_DIS[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of SPI_DOWNLOAD_MSPI_DIS, }; static const esp_efuse_desc_t WR_DIS_DIS_TWAI[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_TWAI, }; static const esp_efuse_desc_t WR_DIS_JTAG_SEL_ENABLE[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of JTAG_SEL_ENABLE, }; static const esp_efuse_desc_t WR_DIS_DIS_PAD_JTAG[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_PAD_JTAG, }; static const esp_efuse_desc_t WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_DOWNLOAD_MANUAL_ENCRYPT, }; static const esp_efuse_desc_t WR_DIS_HYS_EN_PAD[] = { {EFUSE_BLK0, 2, 1}, // [] wr_dis of HYS_EN_PAD, }; static const esp_efuse_desc_t WR_DIS_WDT_DELAY_SEL[] = { {EFUSE_BLK0, 3, 1}, // [] wr_dis of WDT_DELAY_SEL, }; static const esp_efuse_desc_t WR_DIS_SPI_BOOT_CRYPT_CNT[] = { {EFUSE_BLK0, 4, 1}, // [] wr_dis of SPI_BOOT_CRYPT_CNT, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE0[] = { {EFUSE_BLK0, 5, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE0, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE1[] = { {EFUSE_BLK0, 6, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE1, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE2[] = { {EFUSE_BLK0, 7, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE2, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_0[] = { {EFUSE_BLK0, 8, 1}, // [WR_DIS.KEY0_PURPOSE] wr_dis of KEY_PURPOSE_0, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_1[] = { {EFUSE_BLK0, 9, 1}, // [WR_DIS.KEY1_PURPOSE] wr_dis of KEY_PURPOSE_1, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_2[] = { {EFUSE_BLK0, 10, 1}, // [WR_DIS.KEY2_PURPOSE] wr_dis of KEY_PURPOSE_2, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_3[] = { {EFUSE_BLK0, 11, 1}, // [WR_DIS.KEY3_PURPOSE] wr_dis of KEY_PURPOSE_3, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_4[] = { {EFUSE_BLK0, 12, 1}, // [WR_DIS.KEY4_PURPOSE] wr_dis of KEY_PURPOSE_4, }; static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_5[] = { {EFUSE_BLK0, 13, 1}, // [WR_DIS.KEY5_PURPOSE] wr_dis of KEY_PURPOSE_5, }; static const esp_efuse_desc_t WR_DIS_SEC_DPA_LEVEL[] = { {EFUSE_BLK0, 14, 1}, // [] wr_dis of SEC_DPA_LEVEL, }; static const esp_efuse_desc_t WR_DIS_XTS_DPA_PSEUDO_LEVEL[] = { {EFUSE_BLK0, 14, 1}, // [] wr_dis of XTS_DPA_PSEUDO_LEVEL, }; static const esp_efuse_desc_t WR_DIS_XTS_DPA_CLK_ENABLE[] = { {EFUSE_BLK0, 14, 1}, // [] wr_dis of XTS_DPA_CLK_ENABLE, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_SHA384_EN[] = { {EFUSE_BLK0, 14, 1}, // [] wr_dis of SECURE_BOOT_SHA384_EN, }; static const esp_efuse_desc_t WR_DIS_ECC_FORCE_CONST_TIME[] = { {EFUSE_BLK0, 14, 1}, // [] wr_dis of ECC_FORCE_CONST_TIME, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_EN[] = { {EFUSE_BLK0, 15, 1}, // [] wr_dis of SECURE_BOOT_EN, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[] = { {EFUSE_BLK0, 16, 1}, // [] wr_dis of SECURE_BOOT_AGGRESSIVE_REVOKE, }; static const esp_efuse_desc_t WR_DIS_XTAL_48M_SEL[] = { {EFUSE_BLK0, 17, 1}, // [] wr_dis of XTAL_48M_SEL, }; static const esp_efuse_desc_t WR_DIS_XTAL_48M_SEL_MODE[] = { {EFUSE_BLK0, 17, 1}, // [] wr_dis of XTAL_48M_SEL_MODE, }; static const esp_efuse_desc_t WR_DIS_FLASH_TPUW[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of FLASH_TPUW, }; static const esp_efuse_desc_t WR_DIS_DIS_DOWNLOAD_MODE[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_DOWNLOAD_MODE, }; static const esp_efuse_desc_t WR_DIS_DIS_DIRECT_BOOT[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_DIRECT_BOOT, }; static const esp_efuse_desc_t WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_USB_SERIAL_JTAG_ROM_PRINT, }; static const esp_efuse_desc_t WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE, }; static const esp_efuse_desc_t WR_DIS_ENABLE_SECURITY_DOWNLOAD[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of ENABLE_SECURITY_DOWNLOAD, }; static const esp_efuse_desc_t WR_DIS_UART_PRINT_CONTROL[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of UART_PRINT_CONTROL, }; static const esp_efuse_desc_t WR_DIS_FORCE_SEND_RESUME[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of FORCE_SEND_RESUME, }; static const esp_efuse_desc_t WR_DIS_SECURE_VERSION[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of SECURE_VERSION, }; static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[] = { {EFUSE_BLK0, 18, 1}, // [] wr_dis of SECURE_BOOT_DISABLE_FAST_WAKE, }; static const esp_efuse_desc_t WR_DIS_HUK_GEN_STATE[] = { {EFUSE_BLK0, 19, 1}, // [] wr_dis of HUK_GEN_STATE, }; static const esp_efuse_desc_t WR_DIS_BLK1[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of BLOCK1, }; static const esp_efuse_desc_t WR_DIS_MAC[] = { {EFUSE_BLK0, 20, 1}, // [WR_DIS.MAC_FACTORY] wr_dis of MAC, }; static const esp_efuse_desc_t WR_DIS_MAC_EXT[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of MAC_EXT, }; static const esp_efuse_desc_t WR_DIS_WAFER_VERSION_MINOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of WAFER_VERSION_MINOR, }; static const esp_efuse_desc_t WR_DIS_WAFER_VERSION_MAJOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of WAFER_VERSION_MAJOR, }; static const esp_efuse_desc_t WR_DIS_DISABLE_WAFER_VERSION_MAJOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of DISABLE_WAFER_VERSION_MAJOR, }; static const esp_efuse_desc_t WR_DIS_DISABLE_BLK_VERSION_MAJOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of DISABLE_BLK_VERSION_MAJOR, }; static const esp_efuse_desc_t WR_DIS_BLK_VERSION_MINOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of BLK_VERSION_MINOR, }; static const esp_efuse_desc_t WR_DIS_BLK_VERSION_MAJOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of BLK_VERSION_MAJOR, }; static const esp_efuse_desc_t WR_DIS_FLASH_CAP[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of FLASH_CAP, }; static const esp_efuse_desc_t WR_DIS_FLASH_VENDOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of FLASH_VENDOR, }; static const esp_efuse_desc_t WR_DIS_PSRAM_CAP[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of PSRAM_CAP, }; static const esp_efuse_desc_t WR_DIS_PSRAM_VENDOR[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of PSRAM_VENDOR, }; static const esp_efuse_desc_t WR_DIS_TEMP[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of TEMP, }; static const esp_efuse_desc_t WR_DIS_PKG_VERSION[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of PKG_VERSION, }; static const esp_efuse_desc_t WR_DIS_PA_TRIM_VERSION[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of PA_TRIM_VERSION, }; static const esp_efuse_desc_t WR_DIS_TRIM_N_BIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of TRIM_N_BIAS, }; static const esp_efuse_desc_t WR_DIS_TRIM_P_BIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of TRIM_P_BIAS, }; static const esp_efuse_desc_t WR_DIS_SYS_DATA_PART1[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of BLOCK2, }; static const esp_efuse_desc_t WR_DIS_ACTIVE_HP_DBIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of ACTIVE_HP_DBIAS, }; static const esp_efuse_desc_t WR_DIS_ACTIVE_LP_DBIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of ACTIVE_LP_DBIAS, }; static const esp_efuse_desc_t WR_DIS_LSLP_HP_DBG[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of LSLP_HP_DBG, }; static const esp_efuse_desc_t WR_DIS_LSLP_HP_DBIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of LSLP_HP_DBIAS, }; static const esp_efuse_desc_t WR_DIS_DSLP_LP_DBG[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of DSLP_LP_DBG, }; static const esp_efuse_desc_t WR_DIS_DSLP_LP_DBIAS[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of DSLP_LP_DBIAS, }; static const esp_efuse_desc_t WR_DIS_LP_HP_DBIAS_VOL_GAP[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of LP_HP_DBIAS_VOL_GAP, }; static const esp_efuse_desc_t WR_DIS_REF_CURR_CODE[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of REF_CURR_CODE, }; static const esp_efuse_desc_t WR_DIS_RES_TUNE_CODE[] = { {EFUSE_BLK0, 20, 1}, // [] wr_dis of RES_TUNE_CODE, }; static const esp_efuse_desc_t WR_DIS_OPTIONAL_UNIQUE_ID[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of OPTIONAL_UNIQUE_ID, }; static const esp_efuse_desc_t WR_DIS_TEMPERATURE_SENSOR[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of TEMPERATURE_SENSOR, }; static const esp_efuse_desc_t WR_DIS_OCODE[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of OCODE, }; static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN0[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN0, }; static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN1[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN1, }; static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN2[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN2, }; static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN3[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN3, }; static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN0[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN0, }; static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN1[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN1, }; static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN2[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN2, }; static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN3[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN3, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH0_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH1_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH2_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH3_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH4_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH5_ATTEN0_INITCODE_DIFF, }; static const esp_efuse_desc_t WR_DIS_BLOCK_USR_DATA[] = { {EFUSE_BLK0, 22, 1}, // [WR_DIS.USER_DATA] wr_dis of BLOCK_USR_DATA, }; static const esp_efuse_desc_t WR_DIS_CUSTOM_MAC[] = { {EFUSE_BLK0, 22, 1}, // [WR_DIS.MAC_CUSTOM WR_DIS.USER_DATA_MAC_CUSTOM] wr_dis of CUSTOM_MAC, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY0[] = { {EFUSE_BLK0, 23, 1}, // [WR_DIS.KEY0] wr_dis of BLOCK_KEY0, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY1[] = { {EFUSE_BLK0, 24, 1}, // [WR_DIS.KEY1] wr_dis of BLOCK_KEY1, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY2[] = { {EFUSE_BLK0, 25, 1}, // [WR_DIS.KEY2] wr_dis of BLOCK_KEY2, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY3[] = { {EFUSE_BLK0, 26, 1}, // [WR_DIS.KEY3] wr_dis of BLOCK_KEY3, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY4[] = { {EFUSE_BLK0, 27, 1}, // [WR_DIS.KEY4] wr_dis of BLOCK_KEY4, }; static const esp_efuse_desc_t WR_DIS_BLOCK_KEY5[] = { {EFUSE_BLK0, 28, 1}, // [WR_DIS.KEY5] wr_dis of BLOCK_KEY5, }; static const esp_efuse_desc_t WR_DIS_BLOCK_SYS_DATA2[] = { {EFUSE_BLK0, 29, 1}, // [WR_DIS.SYS_DATA_PART2] wr_dis of BLOCK_SYS_DATA2, }; static const esp_efuse_desc_t WR_DIS_USB_EXCHG_PINS[] = { {EFUSE_BLK0, 30, 1}, // [] wr_dis of USB_EXCHG_PINS, }; static const esp_efuse_desc_t WR_DIS_VDD_SPI_AS_GPIO[] = { {EFUSE_BLK0, 30, 1}, // [] wr_dis of VDD_SPI_AS_GPIO, }; static const esp_efuse_desc_t WR_DIS_SOFT_DIS_JTAG[] = { {EFUSE_BLK0, 31, 1}, // [] wr_dis of SOFT_DIS_JTAG, }; static const esp_efuse_desc_t RD_DIS[] = { {EFUSE_BLK0, 32, 7}, // [] Disable reading from BlOCK4-10, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY0[] = { {EFUSE_BLK0, 32, 1}, // [RD_DIS.KEY0] rd_dis of BLOCK_KEY0, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY1[] = { {EFUSE_BLK0, 33, 1}, // [RD_DIS.KEY1] rd_dis of BLOCK_KEY1, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY2[] = { {EFUSE_BLK0, 34, 1}, // [RD_DIS.KEY2] rd_dis of BLOCK_KEY2, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY3[] = { {EFUSE_BLK0, 35, 1}, // [RD_DIS.KEY3] rd_dis of BLOCK_KEY3, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY4[] = { {EFUSE_BLK0, 36, 1}, // [RD_DIS.KEY4] rd_dis of BLOCK_KEY4, }; static const esp_efuse_desc_t RD_DIS_BLOCK_KEY5[] = { {EFUSE_BLK0, 37, 1}, // [RD_DIS.KEY5] rd_dis of BLOCK_KEY5, }; static const esp_efuse_desc_t RD_DIS_BLOCK_SYS_DATA2[] = { {EFUSE_BLK0, 38, 1}, // [RD_DIS.SYS_DATA_PART2] rd_dis of BLOCK_SYS_DATA2, }; static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[] = { {EFUSE_BLK0, 39, 1}, // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the high part of the field), }; static const esp_efuse_desc_t DIS_ICACHE[] = { {EFUSE_BLK0, 40, 1}, // [] Represents whether cache is disabled. 1: Disabled 0: Enabled, }; static const esp_efuse_desc_t DIS_USB_JTAG[] = { {EFUSE_BLK0, 41, 1}, // [] Represents whether the USB-to-JTAG function in USB Serial/JTAG is disabled. Note that \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} is available only when \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} is configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Disabled0: Enabled, }; static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_EN[] = { {EFUSE_BLK0, 42, 1}, // [] Represents whether the ani-rollback check for the 2nd stage bootloader is enabled.1: Enabled0: Disabled, }; static const esp_efuse_desc_t DIS_FORCE_DOWNLOAD[] = { {EFUSE_BLK0, 44, 1}, // [] Represents whether the function that forces chip into Download mode is disabled. 1: Disabled0: Enabled, }; static const esp_efuse_desc_t SPI_DOWNLOAD_MSPI_DIS[] = { {EFUSE_BLK0, 45, 1}, // [] Represents whether SPI0 controller during boot\_mode\_download is disabled.0: Enabled1: Disabled, }; static const esp_efuse_desc_t DIS_TWAI[] = { {EFUSE_BLK0, 46, 1}, // [] Represents whether TWAI$^®$ function is disabled.1: Disabled0: Enabled, }; static const esp_efuse_desc_t JTAG_SEL_ENABLE[] = { {EFUSE_BLK0, 47, 1}, // [] Represents whether the selection of a JTAG signal source through the strapping pin value is enabled when all of \hyperref[fielddesc:EFUSEDISPADJTAG]{EFUSE\_DIS\_PAD\_JTAG}; \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} and \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} are configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Enabled0: Disabled, }; static const esp_efuse_desc_t SOFT_DIS_JTAG[] = { {EFUSE_BLK0, 48, 3}, // [] Represents whether PAD JTAG is disabled in the soft way. It can be restarted via HMAC. Odd count of bits with a value of 1: DisabledEven count of bits with a value of 1: Enabled, }; static const esp_efuse_desc_t DIS_PAD_JTAG[] = { {EFUSE_BLK0, 51, 1}, // [] Represents whether PAD JTAG is disabled in the hard way (permanently).1: Disabled0: Enabled, }; static const esp_efuse_desc_t DIS_DOWNLOAD_MANUAL_ENCRYPT[] = { {EFUSE_BLK0, 52, 1}, // [] Represents whether flash encryption is disabled (except in SPI boot mode).1: Disabled0: Enabled, }; static const esp_efuse_desc_t USB_EXCHG_PINS[] = { {EFUSE_BLK0, 57, 1}, // [] Represents whether the D+ and D- pins is exchanged.1: Exchanged0: Not exchanged, }; static const esp_efuse_desc_t VDD_SPI_AS_GPIO[] = { {EFUSE_BLK0, 58, 1}, // [] Represents whether VDD SPI pin is functioned as GPIO.1: Functioned0: Not functioned, }; static const esp_efuse_desc_t WDT_DELAY_SEL[] = { {EFUSE_BLK0, 59, 2}, // [] Represents RTC watchdog timeout threshold.0: The originally configured STG0 threshold × 21: The originally configured STG0 threshold × 42: The originally configured STG0 threshold × 83: The originally configured STG0 threshold × 16, }; static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[] = { {EFUSE_BLK0, 61, 3}, // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the low part of the field), }; static const esp_efuse_desc_t KM_DISABLE_DEPLOY_MODE[] = { {EFUSE_BLK0, 64, 4}, // [] Represents whether the new key deployment of key manager is disabled. Bit0: Represents whether the new ECDSA key deployment is disabled0: Enabled1: DisabledBit1: Represents whether the new XTS-AES (flash and PSRAM) key deployment is disabled0: Enabled1: DisabledBit2: Represents whether the new HMAC key deployment is disabled0: Enabled1: DisabledBit3: Represents whether the new DS key deployment is disabled0: Enabled1: Disabled, }; static const esp_efuse_desc_t KM_RND_SWITCH_CYCLE[] = { {EFUSE_BLK0, 68, 2}, // [] Represents the cycle at which the Key Manager switches random numbers.0: Controlled by the \hyperref[fielddesc:KEYMNGRNDSWITCHCYCLE]{KEYMNG\_RND\_SWITCH\_CYCLE} register. For more information; please refer to Chapter \ref{mod:keymng} \textit{\nameref{mod:keymng}}1: 8 Key Manager clock cycles2: 16 Key Manager clock cycles3: 32 Key Manager clock cycles, }; static const esp_efuse_desc_t KM_DEPLOY_ONLY_ONCE[] = { {EFUSE_BLK0, 70, 4}, // [] Represents whether the corresponding key can be deployed only once.Bit0: Represents whether the ECDSA key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit1: Represents whether the XTS-AES (flash and PSRAM) key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit2: Represents whether the HMAC key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit3: Represents whether the DS key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only once, }; static const esp_efuse_desc_t FORCE_USE_KEY_MANAGER_KEY[] = { {EFUSE_BLK0, 74, 4}, // [] Represents whether the corresponding key must come from Key Manager. Bit0: Represents whether the ECDSA key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit1: Represents whether the XTS-AES (flash and PSRAM) key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit2: Represents whether the HMAC key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit3: Represents whether the DS key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key Manager, }; static const esp_efuse_desc_t FORCE_DISABLE_SW_INIT_KEY[] = { {EFUSE_BLK0, 78, 1}, // [] Represents whether to disable the use of the initialization key written by software and instead force use efuse\_init\_key.0: Enable1: Disable, }; static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[] = { {EFUSE_BLK0, 79, 1}, // [] Represents whether the ani-rollback SECURE_VERSION will be updated from the ROM bootloader.1: Enable0: Disable, }; static const esp_efuse_desc_t SPI_BOOT_CRYPT_CNT[] = { {EFUSE_BLK0, 80, 3}, // [] Enables flash encryption when 1 or 3 bits are set and disables otherwise {0: "Disable"; 1: "Enable"; 3: "Disable"; 7: "Enable"}, }; static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE0[] = { {EFUSE_BLK0, 83, 1}, // [] Revoke 1st secure boot key, }; static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE1[] = { {EFUSE_BLK0, 84, 1}, // [] Revoke 2nd secure boot key, }; static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE2[] = { {EFUSE_BLK0, 85, 1}, // [] Revoke 3rd secure boot key, }; static const esp_efuse_desc_t KEY_PURPOSE_0[] = { {EFUSE_BLK0, 86, 5}, // [KEY0_PURPOSE] Represents the purpose of Key0. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t KEY_PURPOSE_1[] = { {EFUSE_BLK0, 91, 5}, // [KEY1_PURPOSE] Represents the purpose of Key1. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t KEY_PURPOSE_2[] = { {EFUSE_BLK0, 96, 5}, // [KEY2_PURPOSE] Represents the purpose of Key2. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t KEY_PURPOSE_3[] = { {EFUSE_BLK0, 101, 5}, // [KEY3_PURPOSE] Represents the purpose of Key3. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t KEY_PURPOSE_4[] = { {EFUSE_BLK0, 106, 5}, // [KEY4_PURPOSE] Represents the purpose of Key4. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t KEY_PURPOSE_5[] = { {EFUSE_BLK0, 111, 5}, // [KEY5_PURPOSE] Represents the purpose of Key5. See Table \ref{tab:efuse-key-purpose}, }; static const esp_efuse_desc_t SEC_DPA_LEVEL[] = { {EFUSE_BLK0, 116, 2}, // [] Represents the security level of anti-DPA attack. The level is adjusted by configuring the clock random frequency division mode.0: Security level is SEC\_DPA\_OFF1: Security level is SEC\_DPA\_LOW2: Security level is SEC\_DPA\_MIDDLE3: Security level is SEC\_DPA\_HIGHFor more information; please refer to Chapter \ref{mod:sysreg} \textit{\nameref{mod:sysreg}} > Section \ref{sec:sysreg-anti-dpa-attack-security-control} \textit{\nameref{sec:sysreg-anti-dpa-attack-security-control}}., }; static const esp_efuse_desc_t RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[] = { {EFUSE_BLK0, 118, 3}, // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The high part of the field), }; static const esp_efuse_desc_t SECURE_BOOT_EN[] = { {EFUSE_BLK0, 121, 1}, // [] Represents whether Secure Boot is enabled.1: Enabled0: Disabled, }; static const esp_efuse_desc_t SECURE_BOOT_AGGRESSIVE_REVOKE[] = { {EFUSE_BLK0, 122, 1}, // [] Represents whether aggressive revocation of Secure Boot is enabled.1: Enabled0: Disabled, }; static const esp_efuse_desc_t KM_XTS_KEY_LENGTH_256[] = { {EFUSE_BLK0, 123, 1}, // [] Represents which key flash encryption uses.0: XTS-AES-256 key1: XTS-AES-128 key, }; static const esp_efuse_desc_t FLASH_TPUW[] = { {EFUSE_BLK0, 124, 4}, // [] Represents the flash waiting time after power-up. Measurement unit: ms. When the value is less than 15; the waiting time is the programmed value. Otherwise; the waiting time is a fixed value; i.e. 30 ms, }; static const esp_efuse_desc_t DIS_DOWNLOAD_MODE[] = { {EFUSE_BLK0, 128, 1}, // [] Represents whether Download mode is disable or enable. 1. Disable 0: Enable, }; static const esp_efuse_desc_t DIS_DIRECT_BOOT[] = { {EFUSE_BLK0, 129, 1}, // [] Represents whether direct boot mode is disabled or enabled. 1. Disable 0: Enable, }; static const esp_efuse_desc_t DIS_USB_SERIAL_JTAG_ROM_PRINT[] = { {EFUSE_BLK0, 130, 1}, // [] Represents whether print from USB-Serial-JTAG is disabled or enabled. 1. Disable 0: Enable, }; static const esp_efuse_desc_t LOCK_KM_KEY[] = { {EFUSE_BLK0, 131, 1}, // [] Represents whether the keys in the Key Manager are locked after deployment.0: Not locked1: Locked, }; static const esp_efuse_desc_t DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = { {EFUSE_BLK0, 132, 1}, // [] Represents whether the USB-Serial-JTAG download function is disabled or enabled. 1: Disable 0: Enable, }; static const esp_efuse_desc_t ENABLE_SECURITY_DOWNLOAD[] = { {EFUSE_BLK0, 133, 1}, // [] Represents whether security download is enabled. Only downloading into flash is supported. Reading/writing RAM or registers is not supported (i.e. stub download is not supported).1: Enabled0: Disabled, }; static const esp_efuse_desc_t UART_PRINT_CONTROL[] = { {EFUSE_BLK0, 134, 2}, // [] Set the default UARTboot message output mode {0: "Enable"; 1: "Enable when GPIO8 is low at reset"; 2: "Enable when GPIO8 is high at reset"; 3: "Disable"}, }; static const esp_efuse_desc_t FORCE_SEND_RESUME[] = { {EFUSE_BLK0, 136, 1}, // [] Represents whether ROM code is forced to send a resume command during SPI boot.1: Forced. 0: Not forced., }; static const esp_efuse_desc_t SECURE_VERSION[] = { {EFUSE_BLK0, 137, 9}, // [] Represents the app secure version used by ESP-IDF anti-rollback feature, }; static const esp_efuse_desc_t SECURE_BOOT_DISABLE_FAST_WAKE[] = { {EFUSE_BLK0, 153, 1}, // [] Represents whether FAST VERIFY ON WAKE is disabled when Secure Boot is enabled.1: Disabled0: Enabled, }; static const esp_efuse_desc_t HYS_EN_PAD[] = { {EFUSE_BLK0, 154, 1}, // [] Represents whether the hysteresis function of PAD0 – PAD27 is enabled.1: Enabled0: Disabled, }; static const esp_efuse_desc_t XTS_DPA_PSEUDO_LEVEL[] = { {EFUSE_BLK0, 155, 2}, // [] Represents the pseudo round level of XTS-AES anti-DPA attack.0: Disabled1: Low2: Moderate3: High, }; static const esp_efuse_desc_t XTS_DPA_CLK_ENABLE[] = { {EFUSE_BLK0, 157, 1}, // [] Represents whether XTS-AES anti-DPA attack clock is enabled.0: Disable1: Enabled, }; static const esp_efuse_desc_t SECURE_BOOT_SHA384_EN[] = { {EFUSE_BLK0, 159, 1}, // [] Represents if the chip supports Secure Boot using SHA-384, }; static const esp_efuse_desc_t HUK_GEN_STATE[] = { {EFUSE_BLK0, 160, 9}, // [] Represents whether the HUK generate mode is valid.Odd count of bits with a value of 1: InvalidEven count of bits with a value of 1: Valid, }; static const esp_efuse_desc_t XTAL_48M_SEL[] = { {EFUSE_BLK0, 169, 3}, // [] Represents whether XTAL frequency is 48MHz or not. If not; 40MHz XTAL will be used. If this field contains Odd number bit 1: Enable 48MHz XTAL\ Even number bit 1: Enable 40MHz XTAL, }; static const esp_efuse_desc_t XTAL_48M_SEL_MODE[] = { {EFUSE_BLK0, 172, 1}, // [] Represents what determines the XTAL frequency in \textbf{Joint Download Boot} mode. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.0: Strapping PAD state1: \hyperref[fielddesc:EFUSEXTAL48MSEL]{EFUSE\_XTAL\_48M\_SEL} in eFuse, }; static const esp_efuse_desc_t ECC_FORCE_CONST_TIME[] = { {EFUSE_BLK0, 173, 1}, // [] Represents whether to force ECC to use constant-time mode for point multiplication calculation. 0: Not force1: Force, }; static const esp_efuse_desc_t RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[] = { {EFUSE_BLK0, 174, 9}, // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The low part of the field), }; static const esp_efuse_desc_t MAC[] = { {EFUSE_BLK1, 40, 8}, // [MAC_FACTORY] MAC address, {EFUSE_BLK1, 32, 8}, // [MAC_FACTORY] MAC address, {EFUSE_BLK1, 24, 8}, // [MAC_FACTORY] MAC address, {EFUSE_BLK1, 16, 8}, // [MAC_FACTORY] MAC address, {EFUSE_BLK1, 8, 8}, // [MAC_FACTORY] MAC address, {EFUSE_BLK1, 0, 8}, // [MAC_FACTORY] MAC address, }; static const esp_efuse_desc_t MAC_EXT[] = { {EFUSE_BLK1, 48, 16}, // [] Represents the extended bits of MAC address, }; static const esp_efuse_desc_t WAFER_VERSION_MINOR[] = { {EFUSE_BLK1, 64, 4}, // [] Minor chip version, }; static const esp_efuse_desc_t WAFER_VERSION_MAJOR[] = { {EFUSE_BLK1, 68, 2}, // [] Minor chip version, }; static const esp_efuse_desc_t DISABLE_WAFER_VERSION_MAJOR[] = { {EFUSE_BLK1, 70, 1}, // [] Disables check of wafer version major, }; static const esp_efuse_desc_t DISABLE_BLK_VERSION_MAJOR[] = { {EFUSE_BLK1, 71, 1}, // [] Disables check of blk version major, }; static const esp_efuse_desc_t BLK_VERSION_MINOR[] = { {EFUSE_BLK1, 72, 3}, // [] BLK_VERSION_MINOR of BLOCK2, }; static const esp_efuse_desc_t BLK_VERSION_MAJOR[] = { {EFUSE_BLK1, 75, 2}, // [] BLK_VERSION_MAJOR of BLOCK2, }; static const esp_efuse_desc_t FLASH_CAP[] = { {EFUSE_BLK1, 77, 3}, // [] Flash capacity, }; static const esp_efuse_desc_t FLASH_VENDOR[] = { {EFUSE_BLK1, 80, 3}, // [] Flash vendor, }; static const esp_efuse_desc_t PSRAM_CAP[] = { {EFUSE_BLK1, 83, 3}, // [] Psram capacity, }; static const esp_efuse_desc_t PSRAM_VENDOR[] = { {EFUSE_BLK1, 86, 2}, // [] Psram vendor, }; static const esp_efuse_desc_t TEMP[] = { {EFUSE_BLK1, 88, 2}, // [] Temp (die embedded inside), }; static const esp_efuse_desc_t PKG_VERSION[] = { {EFUSE_BLK1, 90, 3}, // [] Package version, }; static const esp_efuse_desc_t PA_TRIM_VERSION[] = { {EFUSE_BLK1, 93, 3}, // [] PADC CAL PA trim version, }; static const esp_efuse_desc_t TRIM_N_BIAS[] = { {EFUSE_BLK1, 96, 5}, // [] PADC CAL N bias, }; static const esp_efuse_desc_t TRIM_P_BIAS[] = { {EFUSE_BLK1, 101, 5}, // [] PADC CAL P bias, }; static const esp_efuse_desc_t ACTIVE_HP_DBIAS[] = { {EFUSE_BLK1, 106, 4}, // [] Active HP DBIAS of fixed voltage, }; static const esp_efuse_desc_t ACTIVE_LP_DBIAS[] = { {EFUSE_BLK1, 110, 4}, // [] Active LP DBIAS of fixed voltage, }; static const esp_efuse_desc_t LSLP_HP_DBG[] = { {EFUSE_BLK1, 114, 2}, // [] LSLP HP DBG of fixed voltage, }; static const esp_efuse_desc_t LSLP_HP_DBIAS[] = { {EFUSE_BLK1, 116, 4}, // [] LSLP HP DBIAS of fixed voltage, }; static const esp_efuse_desc_t DSLP_LP_DBG[] = { {EFUSE_BLK1, 120, 4}, // [] DSLP LP DBG of fixed voltage, }; static const esp_efuse_desc_t DSLP_LP_DBIAS[] = { {EFUSE_BLK1, 124, 5}, // [] DSLP LP DBIAS of fixed voltage, }; static const esp_efuse_desc_t LP_HP_DBIAS_VOL_GAP[] = { {EFUSE_BLK1, 129, 5}, // [] DBIAS gap between LP and HP, }; static const esp_efuse_desc_t REF_CURR_CODE[] = { {EFUSE_BLK1, 134, 4}, // [] REF PADC Calibration Curr, }; static const esp_efuse_desc_t RES_TUNE_CODE[] = { {EFUSE_BLK1, 138, 5}, // [] RES PADC Calibration Tune, }; static const esp_efuse_desc_t OPTIONAL_UNIQUE_ID[] = { {EFUSE_BLK2, 0, 128}, // [] Optional unique 128-bit ID, }; static const esp_efuse_desc_t TEMPERATURE_SENSOR[] = { {EFUSE_BLK2, 128, 9}, // [] Temperature calibration data, }; static const esp_efuse_desc_t OCODE[] = { {EFUSE_BLK2, 137, 8}, // [] ADC OCode, }; static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN0[] = { {EFUSE_BLK2, 145, 10}, // [] Average initcode of ADC1 atten0, }; static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN1[] = { {EFUSE_BLK2, 155, 10}, // [] Average initcode of ADC1 atten0, }; static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN2[] = { {EFUSE_BLK2, 165, 10}, // [] Average initcode of ADC1 atten0, }; static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN3[] = { {EFUSE_BLK2, 175, 10}, // [] Average initcode of ADC1 atten0, }; static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN0[] = { {EFUSE_BLK2, 185, 10}, // [] HI DOUT of ADC1 atten0, }; static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN1[] = { {EFUSE_BLK2, 195, 10}, // [] HI DOUT of ADC1 atten1, }; static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN2[] = { {EFUSE_BLK2, 205, 10}, // [] HI DOUT of ADC1 atten2, }; static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN3[] = { {EFUSE_BLK2, 215, 10}, // [] HI DOUT of ADC1 atten3, }; static const esp_efuse_desc_t ADC1_CH0_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 225, 4}, // [] Gap between ADC1 CH0 and average initcode, }; static const esp_efuse_desc_t ADC1_CH1_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 229, 4}, // [] Gap between ADC1 CH1 and average initcode, }; static const esp_efuse_desc_t ADC1_CH2_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 233, 4}, // [] Gap between ADC1 CH2 and average initcode, }; static const esp_efuse_desc_t ADC1_CH3_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 237, 4}, // [] Gap between ADC1 CH3 and average initcode, }; static const esp_efuse_desc_t ADC1_CH4_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 241, 4}, // [] Gap between ADC1 CH4 and average initcode, }; static const esp_efuse_desc_t ADC1_CH5_ATTEN0_INITCODE_DIFF[] = { {EFUSE_BLK2, 245, 4}, // [] Gap between ADC1 CH5 and average initcode, }; static const esp_efuse_desc_t USER_DATA[] = { {EFUSE_BLK3, 0, 256}, // [BLOCK_USR_DATA] User data, }; static const esp_efuse_desc_t USER_DATA_MAC_CUSTOM[] = { {EFUSE_BLK3, 200, 48}, // [MAC_CUSTOM CUSTOM_MAC] Custom MAC, }; static const esp_efuse_desc_t KEY0[] = { {EFUSE_BLK4, 0, 256}, // [BLOCK_KEY0] Key0 or user data, }; static const esp_efuse_desc_t KEY1[] = { {EFUSE_BLK5, 0, 256}, // [BLOCK_KEY1] Key1 or user data, }; static const esp_efuse_desc_t KEY2[] = { {EFUSE_BLK6, 0, 256}, // [BLOCK_KEY2] Key2 or user data, }; static const esp_efuse_desc_t KEY3[] = { {EFUSE_BLK7, 0, 256}, // [BLOCK_KEY3] Key3 or user data, }; static const esp_efuse_desc_t KEY4[] = { {EFUSE_BLK8, 0, 256}, // [BLOCK_KEY4] Key4 or user data, }; static const esp_efuse_desc_t KEY5[] = { {EFUSE_BLK9, 0, 256}, // [BLOCK_KEY5] Key5 or user data, }; static const esp_efuse_desc_t SYS_DATA_PART2[] = { {EFUSE_BLK10, 0, 256}, // [BLOCK_SYS_DATA2] System data part 2 (reserved), }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS[] = { &WR_DIS[0], // [] Disable programming of individual eFuses NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_RD_DIS[] = { &WR_DIS_RD_DIS[0], // [] wr_dis of RD_DIS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_DISABLE_DEPLOY_MODE[] = { &WR_DIS_KM_DISABLE_DEPLOY_MODE[0], // [] wr_dis of KM_DISABLE_DEPLOY_MODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_RND_SWITCH_CYCLE[] = { &WR_DIS_KM_RND_SWITCH_CYCLE[0], // [] wr_dis of KM_RND_SWITCH_CYCLE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_DEPLOY_ONLY_ONCE[] = { &WR_DIS_KM_DEPLOY_ONLY_ONCE[0], // [] wr_dis of KM_DEPLOY_ONLY_ONCE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_USE_KEY_MANAGER_KEY[] = { &WR_DIS_FORCE_USE_KEY_MANAGER_KEY[0], // [] wr_dis of FORCE_USE_KEY_MANAGER_KEY NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_DISABLE_SW_INIT_KEY[] = { &WR_DIS_FORCE_DISABLE_SW_INIT_KEY[0], // [] wr_dis of FORCE_DISABLE_SW_INIT_KEY NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_XTS_KEY_LENGTH_256[] = { &WR_DIS_KM_XTS_KEY_LENGTH_256[0], // [] wr_dis of KM_XTS_KEY_LENGTH_256 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LOCK_KM_KEY[] = { &WR_DIS_LOCK_KM_KEY[0], // [] wr_dis of LOCK_KM_KEY NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_ICACHE[] = { &WR_DIS_DIS_ICACHE[0], // [] wr_dis of DIS_ICACHE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_JTAG[] = { &WR_DIS_DIS_USB_JTAG[0], // [] wr_dis of DIS_USB_JTAG NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_FORCE_DOWNLOAD[] = { &WR_DIS_DIS_FORCE_DOWNLOAD[0], // [] wr_dis of DIS_FORCE_DOWNLOAD NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SPI_DOWNLOAD_MSPI_DIS[] = { &WR_DIS_SPI_DOWNLOAD_MSPI_DIS[0], // [] wr_dis of SPI_DOWNLOAD_MSPI_DIS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_TWAI[] = { &WR_DIS_DIS_TWAI[0], // [] wr_dis of DIS_TWAI NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_JTAG_SEL_ENABLE[] = { &WR_DIS_JTAG_SEL_ENABLE[0], // [] wr_dis of JTAG_SEL_ENABLE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_PAD_JTAG[] = { &WR_DIS_DIS_PAD_JTAG[0], // [] wr_dis of DIS_PAD_JTAG NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = { &WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[0], // [] wr_dis of DIS_DOWNLOAD_MANUAL_ENCRYPT NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_HYS_EN_PAD[] = { &WR_DIS_HYS_EN_PAD[0], // [] wr_dis of HYS_EN_PAD NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WDT_DELAY_SEL[] = { &WR_DIS_WDT_DELAY_SEL[0], // [] wr_dis of WDT_DELAY_SEL NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT[] = { &WR_DIS_SPI_BOOT_CRYPT_CNT[0], // [] wr_dis of SPI_BOOT_CRYPT_CNT NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE0[] = { &WR_DIS_SECURE_BOOT_KEY_REVOKE0[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE1[] = { &WR_DIS_SECURE_BOOT_KEY_REVOKE1[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE2[] = { &WR_DIS_SECURE_BOOT_KEY_REVOKE2[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_0[] = { &WR_DIS_KEY_PURPOSE_0[0], // [WR_DIS.KEY0_PURPOSE] wr_dis of KEY_PURPOSE_0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_1[] = { &WR_DIS_KEY_PURPOSE_1[0], // [WR_DIS.KEY1_PURPOSE] wr_dis of KEY_PURPOSE_1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_2[] = { &WR_DIS_KEY_PURPOSE_2[0], // [WR_DIS.KEY2_PURPOSE] wr_dis of KEY_PURPOSE_2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_3[] = { &WR_DIS_KEY_PURPOSE_3[0], // [WR_DIS.KEY3_PURPOSE] wr_dis of KEY_PURPOSE_3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_4[] = { &WR_DIS_KEY_PURPOSE_4[0], // [WR_DIS.KEY4_PURPOSE] wr_dis of KEY_PURPOSE_4 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_5[] = { &WR_DIS_KEY_PURPOSE_5[0], // [WR_DIS.KEY5_PURPOSE] wr_dis of KEY_PURPOSE_5 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SEC_DPA_LEVEL[] = { &WR_DIS_SEC_DPA_LEVEL[0], // [] wr_dis of SEC_DPA_LEVEL NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTS_DPA_PSEUDO_LEVEL[] = { &WR_DIS_XTS_DPA_PSEUDO_LEVEL[0], // [] wr_dis of XTS_DPA_PSEUDO_LEVEL NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTS_DPA_CLK_ENABLE[] = { &WR_DIS_XTS_DPA_CLK_ENABLE[0], // [] wr_dis of XTS_DPA_CLK_ENABLE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_SHA384_EN[] = { &WR_DIS_SECURE_BOOT_SHA384_EN[0], // [] wr_dis of SECURE_BOOT_SHA384_EN NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ECC_FORCE_CONST_TIME[] = { &WR_DIS_ECC_FORCE_CONST_TIME[0], // [] wr_dis of ECC_FORCE_CONST_TIME NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_EN[] = { &WR_DIS_SECURE_BOOT_EN[0], // [] wr_dis of SECURE_BOOT_EN NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[] = { &WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[0], // [] wr_dis of SECURE_BOOT_AGGRESSIVE_REVOKE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTAL_48M_SEL[] = { &WR_DIS_XTAL_48M_SEL[0], // [] wr_dis of XTAL_48M_SEL NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTAL_48M_SEL_MODE[] = { &WR_DIS_XTAL_48M_SEL_MODE[0], // [] wr_dis of XTAL_48M_SEL_MODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_TPUW[] = { &WR_DIS_FLASH_TPUW[0], // [] wr_dis of FLASH_TPUW NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DOWNLOAD_MODE[] = { &WR_DIS_DIS_DOWNLOAD_MODE[0], // [] wr_dis of DIS_DOWNLOAD_MODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DIRECT_BOOT[] = { &WR_DIS_DIS_DIRECT_BOOT[0], // [] wr_dis of DIS_DIRECT_BOOT NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = { &WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[0], // [] wr_dis of DIS_USB_SERIAL_JTAG_ROM_PRINT NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = { &WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[0], // [] wr_dis of DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ENABLE_SECURITY_DOWNLOAD[] = { &WR_DIS_ENABLE_SECURITY_DOWNLOAD[0], // [] wr_dis of ENABLE_SECURITY_DOWNLOAD NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_UART_PRINT_CONTROL[] = { &WR_DIS_UART_PRINT_CONTROL[0], // [] wr_dis of UART_PRINT_CONTROL NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_SEND_RESUME[] = { &WR_DIS_FORCE_SEND_RESUME[0], // [] wr_dis of FORCE_SEND_RESUME NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_VERSION[] = { &WR_DIS_SECURE_VERSION[0], // [] wr_dis of SECURE_VERSION NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[] = { &WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[0], // [] wr_dis of SECURE_BOOT_DISABLE_FAST_WAKE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_HUK_GEN_STATE[] = { &WR_DIS_HUK_GEN_STATE[0], // [] wr_dis of HUK_GEN_STATE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK1[] = { &WR_DIS_BLK1[0], // [] wr_dis of BLOCK1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_MAC[] = { &WR_DIS_MAC[0], // [WR_DIS.MAC_FACTORY] wr_dis of MAC NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_MAC_EXT[] = { &WR_DIS_MAC_EXT[0], // [] wr_dis of MAC_EXT NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WAFER_VERSION_MINOR[] = { &WR_DIS_WAFER_VERSION_MINOR[0], // [] wr_dis of WAFER_VERSION_MINOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WAFER_VERSION_MAJOR[] = { &WR_DIS_WAFER_VERSION_MAJOR[0], // [] wr_dis of WAFER_VERSION_MAJOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DISABLE_WAFER_VERSION_MAJOR[] = { &WR_DIS_DISABLE_WAFER_VERSION_MAJOR[0], // [] wr_dis of DISABLE_WAFER_VERSION_MAJOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DISABLE_BLK_VERSION_MAJOR[] = { &WR_DIS_DISABLE_BLK_VERSION_MAJOR[0], // [] wr_dis of DISABLE_BLK_VERSION_MAJOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK_VERSION_MINOR[] = { &WR_DIS_BLK_VERSION_MINOR[0], // [] wr_dis of BLK_VERSION_MINOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK_VERSION_MAJOR[] = { &WR_DIS_BLK_VERSION_MAJOR[0], // [] wr_dis of BLK_VERSION_MAJOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_CAP[] = { &WR_DIS_FLASH_CAP[0], // [] wr_dis of FLASH_CAP NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_VENDOR[] = { &WR_DIS_FLASH_VENDOR[0], // [] wr_dis of FLASH_VENDOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PSRAM_CAP[] = { &WR_DIS_PSRAM_CAP[0], // [] wr_dis of PSRAM_CAP NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PSRAM_VENDOR[] = { &WR_DIS_PSRAM_VENDOR[0], // [] wr_dis of PSRAM_VENDOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TEMP[] = { &WR_DIS_TEMP[0], // [] wr_dis of TEMP NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PKG_VERSION[] = { &WR_DIS_PKG_VERSION[0], // [] wr_dis of PKG_VERSION NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PA_TRIM_VERSION[] = { &WR_DIS_PA_TRIM_VERSION[0], // [] wr_dis of PA_TRIM_VERSION NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TRIM_N_BIAS[] = { &WR_DIS_TRIM_N_BIAS[0], // [] wr_dis of TRIM_N_BIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TRIM_P_BIAS[] = { &WR_DIS_TRIM_P_BIAS[0], // [] wr_dis of TRIM_P_BIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SYS_DATA_PART1[] = { &WR_DIS_SYS_DATA_PART1[0], // [] wr_dis of BLOCK2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ACTIVE_HP_DBIAS[] = { &WR_DIS_ACTIVE_HP_DBIAS[0], // [] wr_dis of ACTIVE_HP_DBIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ACTIVE_LP_DBIAS[] = { &WR_DIS_ACTIVE_LP_DBIAS[0], // [] wr_dis of ACTIVE_LP_DBIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LSLP_HP_DBG[] = { &WR_DIS_LSLP_HP_DBG[0], // [] wr_dis of LSLP_HP_DBG NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LSLP_HP_DBIAS[] = { &WR_DIS_LSLP_HP_DBIAS[0], // [] wr_dis of LSLP_HP_DBIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DSLP_LP_DBG[] = { &WR_DIS_DSLP_LP_DBG[0], // [] wr_dis of DSLP_LP_DBG NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DSLP_LP_DBIAS[] = { &WR_DIS_DSLP_LP_DBIAS[0], // [] wr_dis of DSLP_LP_DBIAS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LP_HP_DBIAS_VOL_GAP[] = { &WR_DIS_LP_HP_DBIAS_VOL_GAP[0], // [] wr_dis of LP_HP_DBIAS_VOL_GAP NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_REF_CURR_CODE[] = { &WR_DIS_REF_CURR_CODE[0], // [] wr_dis of REF_CURR_CODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_RES_TUNE_CODE[] = { &WR_DIS_RES_TUNE_CODE[0], // [] wr_dis of RES_TUNE_CODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_OPTIONAL_UNIQUE_ID[] = { &WR_DIS_OPTIONAL_UNIQUE_ID[0], // [] wr_dis of OPTIONAL_UNIQUE_ID NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TEMPERATURE_SENSOR[] = { &WR_DIS_TEMPERATURE_SENSOR[0], // [] wr_dis of TEMPERATURE_SENSOR NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_OCODE[] = { &WR_DIS_OCODE[0], // [] wr_dis of OCODE NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN0[] = { &WR_DIS_ADC1_AVE_INITCODE_ATTEN0[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN1[] = { &WR_DIS_ADC1_AVE_INITCODE_ATTEN1[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN2[] = { &WR_DIS_ADC1_AVE_INITCODE_ATTEN2[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN3[] = { &WR_DIS_ADC1_AVE_INITCODE_ATTEN3[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN0[] = { &WR_DIS_ADC1_HI_DOUT_ATTEN0[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN1[] = { &WR_DIS_ADC1_HI_DOUT_ATTEN1[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN2[] = { &WR_DIS_ADC1_HI_DOUT_ATTEN2[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN3[] = { &WR_DIS_ADC1_HI_DOUT_ATTEN3[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH0_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH1_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH2_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH3_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH4_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = { &WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH5_ATTEN0_INITCODE_DIFF NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_USR_DATA[] = { &WR_DIS_BLOCK_USR_DATA[0], // [WR_DIS.USER_DATA] wr_dis of BLOCK_USR_DATA NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_CUSTOM_MAC[] = { &WR_DIS_CUSTOM_MAC[0], // [WR_DIS.MAC_CUSTOM WR_DIS.USER_DATA_MAC_CUSTOM] wr_dis of CUSTOM_MAC NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY0[] = { &WR_DIS_BLOCK_KEY0[0], // [WR_DIS.KEY0] wr_dis of BLOCK_KEY0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY1[] = { &WR_DIS_BLOCK_KEY1[0], // [WR_DIS.KEY1] wr_dis of BLOCK_KEY1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY2[] = { &WR_DIS_BLOCK_KEY2[0], // [WR_DIS.KEY2] wr_dis of BLOCK_KEY2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY3[] = { &WR_DIS_BLOCK_KEY3[0], // [WR_DIS.KEY3] wr_dis of BLOCK_KEY3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY4[] = { &WR_DIS_BLOCK_KEY4[0], // [WR_DIS.KEY4] wr_dis of BLOCK_KEY4 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY5[] = { &WR_DIS_BLOCK_KEY5[0], // [WR_DIS.KEY5] wr_dis of BLOCK_KEY5 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_SYS_DATA2[] = { &WR_DIS_BLOCK_SYS_DATA2[0], // [WR_DIS.SYS_DATA_PART2] wr_dis of BLOCK_SYS_DATA2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_USB_EXCHG_PINS[] = { &WR_DIS_USB_EXCHG_PINS[0], // [] wr_dis of USB_EXCHG_PINS NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_VDD_SPI_AS_GPIO[] = { &WR_DIS_VDD_SPI_AS_GPIO[0], // [] wr_dis of VDD_SPI_AS_GPIO NULL }; const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SOFT_DIS_JTAG[] = { &WR_DIS_SOFT_DIS_JTAG[0], // [] wr_dis of SOFT_DIS_JTAG NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS[] = { &RD_DIS[0], // [] Disable reading from BlOCK4-10 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY0[] = { &RD_DIS_BLOCK_KEY0[0], // [RD_DIS.KEY0] rd_dis of BLOCK_KEY0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY1[] = { &RD_DIS_BLOCK_KEY1[0], // [RD_DIS.KEY1] rd_dis of BLOCK_KEY1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY2[] = { &RD_DIS_BLOCK_KEY2[0], // [RD_DIS.KEY2] rd_dis of BLOCK_KEY2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY3[] = { &RD_DIS_BLOCK_KEY3[0], // [RD_DIS.KEY3] rd_dis of BLOCK_KEY3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY4[] = { &RD_DIS_BLOCK_KEY4[0], // [RD_DIS.KEY4] rd_dis of BLOCK_KEY4 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY5[] = { &RD_DIS_BLOCK_KEY5[0], // [RD_DIS.KEY5] rd_dis of BLOCK_KEY5 NULL }; const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_SYS_DATA2[] = { &RD_DIS_BLOCK_SYS_DATA2[0], // [RD_DIS.SYS_DATA_PART2] rd_dis of BLOCK_SYS_DATA2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[] = { &BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[0], // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the high part of the field) NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_ICACHE[] = { &DIS_ICACHE[0], // [] Represents whether cache is disabled. 1: Disabled 0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_JTAG[] = { &DIS_USB_JTAG[0], // [] Represents whether the USB-to-JTAG function in USB Serial/JTAG is disabled. Note that \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} is available only when \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} is configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_EN[] = { &BOOTLOADER_ANTI_ROLLBACK_EN[0], // [] Represents whether the ani-rollback check for the 2nd stage bootloader is enabled.1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_FORCE_DOWNLOAD[] = { &DIS_FORCE_DOWNLOAD[0], // [] Represents whether the function that forces chip into Download mode is disabled. 1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_SPI_DOWNLOAD_MSPI_DIS[] = { &SPI_DOWNLOAD_MSPI_DIS[0], // [] Represents whether SPI0 controller during boot\_mode\_download is disabled.0: Enabled1: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_TWAI[] = { &DIS_TWAI[0], // [] Represents whether TWAI$^®$ function is disabled.1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_JTAG_SEL_ENABLE[] = { &JTAG_SEL_ENABLE[0], // [] Represents whether the selection of a JTAG signal source through the strapping pin value is enabled when all of \hyperref[fielddesc:EFUSEDISPADJTAG]{EFUSE\_DIS\_PAD\_JTAG}; \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} and \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} are configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_SOFT_DIS_JTAG[] = { &SOFT_DIS_JTAG[0], // [] Represents whether PAD JTAG is disabled in the soft way. It can be restarted via HMAC. Odd count of bits with a value of 1: DisabledEven count of bits with a value of 1: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_PAD_JTAG[] = { &DIS_PAD_JTAG[0], // [] Represents whether PAD JTAG is disabled in the hard way (permanently).1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = { &DIS_DOWNLOAD_MANUAL_ENCRYPT[0], // [] Represents whether flash encryption is disabled (except in SPI boot mode).1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_USB_EXCHG_PINS[] = { &USB_EXCHG_PINS[0], // [] Represents whether the D+ and D- pins is exchanged.1: Exchanged0: Not exchanged NULL }; const esp_efuse_desc_t* ESP_EFUSE_VDD_SPI_AS_GPIO[] = { &VDD_SPI_AS_GPIO[0], // [] Represents whether VDD SPI pin is functioned as GPIO.1: Functioned0: Not functioned NULL }; const esp_efuse_desc_t* ESP_EFUSE_WDT_DELAY_SEL[] = { &WDT_DELAY_SEL[0], // [] Represents RTC watchdog timeout threshold.0: The originally configured STG0 threshold × 21: The originally configured STG0 threshold × 42: The originally configured STG0 threshold × 83: The originally configured STG0 threshold × 16 NULL }; const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[] = { &BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[0], // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the low part of the field) NULL }; const esp_efuse_desc_t* ESP_EFUSE_KM_DISABLE_DEPLOY_MODE[] = { &KM_DISABLE_DEPLOY_MODE[0], // [] Represents whether the new key deployment of key manager is disabled. Bit0: Represents whether the new ECDSA key deployment is disabled0: Enabled1: DisabledBit1: Represents whether the new XTS-AES (flash and PSRAM) key deployment is disabled0: Enabled1: DisabledBit2: Represents whether the new HMAC key deployment is disabled0: Enabled1: DisabledBit3: Represents whether the new DS key deployment is disabled0: Enabled1: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_KM_RND_SWITCH_CYCLE[] = { &KM_RND_SWITCH_CYCLE[0], // [] Represents the cycle at which the Key Manager switches random numbers.0: Controlled by the \hyperref[fielddesc:KEYMNGRNDSWITCHCYCLE]{KEYMNG\_RND\_SWITCH\_CYCLE} register. For more information; please refer to Chapter \ref{mod:keymng} \textit{\nameref{mod:keymng}}1: 8 Key Manager clock cycles2: 16 Key Manager clock cycles3: 32 Key Manager clock cycles NULL }; const esp_efuse_desc_t* ESP_EFUSE_KM_DEPLOY_ONLY_ONCE[] = { &KM_DEPLOY_ONLY_ONCE[0], // [] Represents whether the corresponding key can be deployed only once.Bit0: Represents whether the ECDSA key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit1: Represents whether the XTS-AES (flash and PSRAM) key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit2: Represents whether the HMAC key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit3: Represents whether the DS key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only once NULL }; const esp_efuse_desc_t* ESP_EFUSE_FORCE_USE_KEY_MANAGER_KEY[] = { &FORCE_USE_KEY_MANAGER_KEY[0], // [] Represents whether the corresponding key must come from Key Manager. Bit0: Represents whether the ECDSA key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit1: Represents whether the XTS-AES (flash and PSRAM) key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit2: Represents whether the HMAC key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit3: Represents whether the DS key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key Manager NULL }; const esp_efuse_desc_t* ESP_EFUSE_FORCE_DISABLE_SW_INIT_KEY[] = { &FORCE_DISABLE_SW_INIT_KEY[0], // [] Represents whether to disable the use of the initialization key written by software and instead force use efuse\_init\_key.0: Enable1: Disable NULL }; const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[] = { &BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[0], // [] Represents whether the ani-rollback SECURE_VERSION will be updated from the ROM bootloader.1: Enable0: Disable NULL }; const esp_efuse_desc_t* ESP_EFUSE_SPI_BOOT_CRYPT_CNT[] = { &SPI_BOOT_CRYPT_CNT[0], // [] Enables flash encryption when 1 or 3 bits are set and disables otherwise {0: "Disable"; 1: "Enable"; 3: "Disable"; 7: "Enable"} NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE0[] = { &SECURE_BOOT_KEY_REVOKE0[0], // [] Revoke 1st secure boot key NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE1[] = { &SECURE_BOOT_KEY_REVOKE1[0], // [] Revoke 2nd secure boot key NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE2[] = { &SECURE_BOOT_KEY_REVOKE2[0], // [] Revoke 3rd secure boot key NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_0[] = { &KEY_PURPOSE_0[0], // [KEY0_PURPOSE] Represents the purpose of Key0. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_1[] = { &KEY_PURPOSE_1[0], // [KEY1_PURPOSE] Represents the purpose of Key1. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_2[] = { &KEY_PURPOSE_2[0], // [KEY2_PURPOSE] Represents the purpose of Key2. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_3[] = { &KEY_PURPOSE_3[0], // [KEY3_PURPOSE] Represents the purpose of Key3. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_4[] = { &KEY_PURPOSE_4[0], // [KEY4_PURPOSE] Represents the purpose of Key4. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_5[] = { &KEY_PURPOSE_5[0], // [KEY5_PURPOSE] Represents the purpose of Key5. See Table \ref{tab:efuse-key-purpose} NULL }; const esp_efuse_desc_t* ESP_EFUSE_SEC_DPA_LEVEL[] = { &SEC_DPA_LEVEL[0], // [] Represents the security level of anti-DPA attack. The level is adjusted by configuring the clock random frequency division mode.0: Security level is SEC\_DPA\_OFF1: Security level is SEC\_DPA\_LOW2: Security level is SEC\_DPA\_MIDDLE3: Security level is SEC\_DPA\_HIGHFor more information; please refer to Chapter \ref{mod:sysreg} \textit{\nameref{mod:sysreg}} > Section \ref{sec:sysreg-anti-dpa-attack-security-control} \textit{\nameref{sec:sysreg-anti-dpa-attack-security-control}}. NULL }; const esp_efuse_desc_t* ESP_EFUSE_RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[] = { &RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[0], // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The high part of the field) NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_EN[] = { &SECURE_BOOT_EN[0], // [] Represents whether Secure Boot is enabled.1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE[] = { &SECURE_BOOT_AGGRESSIVE_REVOKE[0], // [] Represents whether aggressive revocation of Secure Boot is enabled.1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_KM_XTS_KEY_LENGTH_256[] = { &KM_XTS_KEY_LENGTH_256[0], // [] Represents which key flash encryption uses.0: XTS-AES-256 key1: XTS-AES-128 key NULL }; const esp_efuse_desc_t* ESP_EFUSE_FLASH_TPUW[] = { &FLASH_TPUW[0], // [] Represents the flash waiting time after power-up. Measurement unit: ms. When the value is less than 15; the waiting time is the programmed value. Otherwise; the waiting time is a fixed value; i.e. 30 ms NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_DOWNLOAD_MODE[] = { &DIS_DOWNLOAD_MODE[0], // [] Represents whether Download mode is disable or enable. 1. Disable 0: Enable NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_DIRECT_BOOT[] = { &DIS_DIRECT_BOOT[0], // [] Represents whether direct boot mode is disabled or enabled. 1. Disable 0: Enable NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = { &DIS_USB_SERIAL_JTAG_ROM_PRINT[0], // [] Represents whether print from USB-Serial-JTAG is disabled or enabled. 1. Disable 0: Enable NULL }; const esp_efuse_desc_t* ESP_EFUSE_LOCK_KM_KEY[] = { &LOCK_KM_KEY[0], // [] Represents whether the keys in the Key Manager are locked after deployment.0: Not locked1: Locked NULL }; const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = { &DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[0], // [] Represents whether the USB-Serial-JTAG download function is disabled or enabled. 1: Disable 0: Enable NULL }; const esp_efuse_desc_t* ESP_EFUSE_ENABLE_SECURITY_DOWNLOAD[] = { &ENABLE_SECURITY_DOWNLOAD[0], // [] Represents whether security download is enabled. Only downloading into flash is supported. Reading/writing RAM or registers is not supported (i.e. stub download is not supported).1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_UART_PRINT_CONTROL[] = { &UART_PRINT_CONTROL[0], // [] Set the default UARTboot message output mode {0: "Enable"; 1: "Enable when GPIO8 is low at reset"; 2: "Enable when GPIO8 is high at reset"; 3: "Disable"} NULL }; const esp_efuse_desc_t* ESP_EFUSE_FORCE_SEND_RESUME[] = { &FORCE_SEND_RESUME[0], // [] Represents whether ROM code is forced to send a resume command during SPI boot.1: Forced. 0: Not forced. NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_VERSION[] = { &SECURE_VERSION[0], // [] Represents the app secure version used by ESP-IDF anti-rollback feature NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_DISABLE_FAST_WAKE[] = { &SECURE_BOOT_DISABLE_FAST_WAKE[0], // [] Represents whether FAST VERIFY ON WAKE is disabled when Secure Boot is enabled.1: Disabled0: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_HYS_EN_PAD[] = { &HYS_EN_PAD[0], // [] Represents whether the hysteresis function of PAD0 – PAD27 is enabled.1: Enabled0: Disabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_XTS_DPA_PSEUDO_LEVEL[] = { &XTS_DPA_PSEUDO_LEVEL[0], // [] Represents the pseudo round level of XTS-AES anti-DPA attack.0: Disabled1: Low2: Moderate3: High NULL }; const esp_efuse_desc_t* ESP_EFUSE_XTS_DPA_CLK_ENABLE[] = { &XTS_DPA_CLK_ENABLE[0], // [] Represents whether XTS-AES anti-DPA attack clock is enabled.0: Disable1: Enabled NULL }; const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_SHA384_EN[] = { &SECURE_BOOT_SHA384_EN[0], // [] Represents if the chip supports Secure Boot using SHA-384 NULL }; const esp_efuse_desc_t* ESP_EFUSE_HUK_GEN_STATE[] = { &HUK_GEN_STATE[0], // [] Represents whether the HUK generate mode is valid.Odd count of bits with a value of 1: InvalidEven count of bits with a value of 1: Valid NULL }; const esp_efuse_desc_t* ESP_EFUSE_XTAL_48M_SEL[] = { &XTAL_48M_SEL[0], // [] Represents whether XTAL frequency is 48MHz or not. If not; 40MHz XTAL will be used. If this field contains Odd number bit 1: Enable 48MHz XTAL\ Even number bit 1: Enable 40MHz XTAL NULL }; const esp_efuse_desc_t* ESP_EFUSE_XTAL_48M_SEL_MODE[] = { &XTAL_48M_SEL_MODE[0], // [] Represents what determines the XTAL frequency in \textbf{Joint Download Boot} mode. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.0: Strapping PAD state1: \hyperref[fielddesc:EFUSEXTAL48MSEL]{EFUSE\_XTAL\_48M\_SEL} in eFuse NULL }; const esp_efuse_desc_t* ESP_EFUSE_ECC_FORCE_CONST_TIME[] = { &ECC_FORCE_CONST_TIME[0], // [] Represents whether to force ECC to use constant-time mode for point multiplication calculation. 0: Not force1: Force NULL }; const esp_efuse_desc_t* ESP_EFUSE_RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[] = { &RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[0], // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The low part of the field) NULL }; const esp_efuse_desc_t* ESP_EFUSE_MAC[] = { &MAC[0], // [MAC_FACTORY] MAC address &MAC[1], // [MAC_FACTORY] MAC address &MAC[2], // [MAC_FACTORY] MAC address &MAC[3], // [MAC_FACTORY] MAC address &MAC[4], // [MAC_FACTORY] MAC address &MAC[5], // [MAC_FACTORY] MAC address NULL }; const esp_efuse_desc_t* ESP_EFUSE_MAC_EXT[] = { &MAC_EXT[0], // [] Represents the extended bits of MAC address NULL }; const esp_efuse_desc_t* ESP_EFUSE_WAFER_VERSION_MINOR[] = { &WAFER_VERSION_MINOR[0], // [] Minor chip version NULL }; const esp_efuse_desc_t* ESP_EFUSE_WAFER_VERSION_MAJOR[] = { &WAFER_VERSION_MAJOR[0], // [] Minor chip version NULL }; const esp_efuse_desc_t* ESP_EFUSE_DISABLE_WAFER_VERSION_MAJOR[] = { &DISABLE_WAFER_VERSION_MAJOR[0], // [] Disables check of wafer version major NULL }; const esp_efuse_desc_t* ESP_EFUSE_DISABLE_BLK_VERSION_MAJOR[] = { &DISABLE_BLK_VERSION_MAJOR[0], // [] Disables check of blk version major NULL }; const esp_efuse_desc_t* ESP_EFUSE_BLK_VERSION_MINOR[] = { &BLK_VERSION_MINOR[0], // [] BLK_VERSION_MINOR of BLOCK2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_BLK_VERSION_MAJOR[] = { &BLK_VERSION_MAJOR[0], // [] BLK_VERSION_MAJOR of BLOCK2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_FLASH_CAP[] = { &FLASH_CAP[0], // [] Flash capacity NULL }; const esp_efuse_desc_t* ESP_EFUSE_FLASH_VENDOR[] = { &FLASH_VENDOR[0], // [] Flash vendor NULL }; const esp_efuse_desc_t* ESP_EFUSE_PSRAM_CAP[] = { &PSRAM_CAP[0], // [] Psram capacity NULL }; const esp_efuse_desc_t* ESP_EFUSE_PSRAM_VENDOR[] = { &PSRAM_VENDOR[0], // [] Psram vendor NULL }; const esp_efuse_desc_t* ESP_EFUSE_TEMP[] = { &TEMP[0], // [] Temp (die embedded inside) NULL }; const esp_efuse_desc_t* ESP_EFUSE_PKG_VERSION[] = { &PKG_VERSION[0], // [] Package version NULL }; const esp_efuse_desc_t* ESP_EFUSE_PA_TRIM_VERSION[] = { &PA_TRIM_VERSION[0], // [] PADC CAL PA trim version NULL }; const esp_efuse_desc_t* ESP_EFUSE_TRIM_N_BIAS[] = { &TRIM_N_BIAS[0], // [] PADC CAL N bias NULL }; const esp_efuse_desc_t* ESP_EFUSE_TRIM_P_BIAS[] = { &TRIM_P_BIAS[0], // [] PADC CAL P bias NULL }; const esp_efuse_desc_t* ESP_EFUSE_ACTIVE_HP_DBIAS[] = { &ACTIVE_HP_DBIAS[0], // [] Active HP DBIAS of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_ACTIVE_LP_DBIAS[] = { &ACTIVE_LP_DBIAS[0], // [] Active LP DBIAS of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_LSLP_HP_DBG[] = { &LSLP_HP_DBG[0], // [] LSLP HP DBG of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_LSLP_HP_DBIAS[] = { &LSLP_HP_DBIAS[0], // [] LSLP HP DBIAS of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_DSLP_LP_DBG[] = { &DSLP_LP_DBG[0], // [] DSLP LP DBG of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_DSLP_LP_DBIAS[] = { &DSLP_LP_DBIAS[0], // [] DSLP LP DBIAS of fixed voltage NULL }; const esp_efuse_desc_t* ESP_EFUSE_LP_HP_DBIAS_VOL_GAP[] = { &LP_HP_DBIAS_VOL_GAP[0], // [] DBIAS gap between LP and HP NULL }; const esp_efuse_desc_t* ESP_EFUSE_REF_CURR_CODE[] = { &REF_CURR_CODE[0], // [] REF PADC Calibration Curr NULL }; const esp_efuse_desc_t* ESP_EFUSE_RES_TUNE_CODE[] = { &RES_TUNE_CODE[0], // [] RES PADC Calibration Tune NULL }; const esp_efuse_desc_t* ESP_EFUSE_OPTIONAL_UNIQUE_ID[] = { &OPTIONAL_UNIQUE_ID[0], // [] Optional unique 128-bit ID NULL }; const esp_efuse_desc_t* ESP_EFUSE_TEMPERATURE_SENSOR[] = { &TEMPERATURE_SENSOR[0], // [] Temperature calibration data NULL }; const esp_efuse_desc_t* ESP_EFUSE_OCODE[] = { &OCODE[0], // [] ADC OCode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN0[] = { &ADC1_AVE_INITCODE_ATTEN0[0], // [] Average initcode of ADC1 atten0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN1[] = { &ADC1_AVE_INITCODE_ATTEN1[0], // [] Average initcode of ADC1 atten0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN2[] = { &ADC1_AVE_INITCODE_ATTEN2[0], // [] Average initcode of ADC1 atten0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN3[] = { &ADC1_AVE_INITCODE_ATTEN3[0], // [] Average initcode of ADC1 atten0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN0[] = { &ADC1_HI_DOUT_ATTEN0[0], // [] HI DOUT of ADC1 atten0 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN1[] = { &ADC1_HI_DOUT_ATTEN1[0], // [] HI DOUT of ADC1 atten1 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN2[] = { &ADC1_HI_DOUT_ATTEN2[0], // [] HI DOUT of ADC1 atten2 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN3[] = { &ADC1_HI_DOUT_ATTEN3[0], // [] HI DOUT of ADC1 atten3 NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH0_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH0 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH1_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH1 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH2_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH2 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH3_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH3 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH4_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH4 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = { &ADC1_CH5_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH5 and average initcode NULL }; const esp_efuse_desc_t* ESP_EFUSE_USER_DATA[] = { &USER_DATA[0], // [BLOCK_USR_DATA] User data NULL }; const esp_efuse_desc_t* ESP_EFUSE_USER_DATA_MAC_CUSTOM[] = { &USER_DATA_MAC_CUSTOM[0], // [MAC_CUSTOM CUSTOM_MAC] Custom MAC NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY0[] = { &KEY0[0], // [BLOCK_KEY0] Key0 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY1[] = { &KEY1[0], // [BLOCK_KEY1] Key1 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY2[] = { &KEY2[0], // [BLOCK_KEY2] Key2 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY3[] = { &KEY3[0], // [BLOCK_KEY3] Key3 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY4[] = { &KEY4[0], // [BLOCK_KEY4] Key4 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_KEY5[] = { &KEY5[0], // [BLOCK_KEY5] Key5 or user data NULL }; const esp_efuse_desc_t* ESP_EFUSE_SYS_DATA_PART2[] = { &SYS_DATA_PART2[0], // [BLOCK_SYS_DATA2] System data part 2 (reserved) NULL };