/* * SPDX-FileCopyrightText: 2022-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "driver/gptimer.h" #include "gptimer_priv.h" #include "esp_memory_utils.h" static void gptimer_default_isr(void *args); #if GPTIMER_USE_RETENTION_LINK static esp_err_t gptimer_create_sleep_retention_link_cb(void *timer) { int group_id = ((gptimer_t *)timer)->group->group_id; int timer_id = ((gptimer_t *)timer)->timer_id; esp_err_t err = sleep_retention_entries_create(tg_timer_reg_retention_info[group_id][timer_id].regdma_entry_array, tg_timer_reg_retention_info[group_id][timer_id].array_size, REGDMA_LINK_PRI_GPTIMER, tg_timer_reg_retention_info[group_id][timer_id].module); return err; } static void gptimer_create_retention_module(gptimer_t *timer) { int group_id = timer->group->group_id; int timer_id = timer->timer_id; sleep_retention_module_t module = tg_timer_reg_retention_info[group_id][timer_id].module; if (sleep_retention_is_module_inited(module) && !sleep_retention_is_module_created(module)) { if (sleep_retention_module_allocate(module) != ESP_OK) { // even though the sleep retention module create failed, GPTimer driver should still work, so just warning here ESP_LOGW(TAG, "create retention link failed on TimerGroup%d Timer%d, power domain won't be turned off during sleep", group_id, timer_id); } } } #endif // GPTIMER_USE_RETENTION_LINK static esp_err_t gptimer_register_to_group(gptimer_t *timer) { gptimer_group_t *group = NULL; int timer_id = -1; for (int i = 0; i < SOC_TIMER_GROUPS; i++) { group = gptimer_acquire_group_handle(i); ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i); // loop to search free timer in the group portENTER_CRITICAL(&group->spinlock); for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) { if (!group->timers[j]) { timer_id = j; group->timers[j] = timer; break; } } portEXIT_CRITICAL(&group->spinlock); if (timer_id < 0) { gptimer_release_group_handle(group); } else { timer->timer_id = timer_id; timer->group = group; break; } } ESP_RETURN_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, TAG, "no free timer"); #if GPTIMER_USE_RETENTION_LINK sleep_retention_module_t module = tg_timer_reg_retention_info[group->group_id][timer_id].module; sleep_retention_module_init_param_t init_param = { .cbs = { .create = { .handle = gptimer_create_sleep_retention_link_cb, .arg = (void *)timer }, }, .depends = RETENTION_MODULE_BITMAP_INIT(CLOCK_SYSTEM) }; if (sleep_retention_module_init(module, &init_param) != ESP_OK) { // even though the sleep retention module init failed, RMT driver should still work, so just warning here ESP_LOGW(TAG, "init sleep retention failed on TimerGroup%d Timer%d, power domain may be turned off during sleep", group->group_id, timer_id); } #endif // GPTIMER_USE_RETENTION_LINK return ESP_OK; } static void gptimer_unregister_from_group(gptimer_t *timer) { gptimer_group_t *group = timer->group; int timer_id = timer->timer_id; portENTER_CRITICAL(&group->spinlock); group->timers[timer_id] = NULL; portEXIT_CRITICAL(&group->spinlock); #if GPTIMER_USE_RETENTION_LINK sleep_retention_module_t module = tg_timer_reg_retention_info[group->group_id][timer_id].module; if (sleep_retention_is_module_created(module)) { sleep_retention_module_free(module); } if (sleep_retention_is_module_inited(module)) { sleep_retention_module_deinit(module); } #endif // timer has a reference on group, release it now gptimer_release_group_handle(group); } static esp_err_t gptimer_destroy(gptimer_t *timer) { if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_delete(timer->pm_lock), TAG, "delete pm_lock failed"); } if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "delete interrupt service failed"); } if (timer->group) { gptimer_unregister_from_group(timer); } free(timer); return ESP_OK; } esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer) { esp_err_t ret = ESP_OK; gptimer_t *timer = NULL; ESP_RETURN_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, TAG, "invalid timer resolution:%"PRIu32, config->resolution_hz); if (config->intr_priority) { ESP_RETURN_ON_FALSE(1 << (config->intr_priority) & GPTIMER_ALLOW_INTR_PRIORITY_MASK, ESP_ERR_INVALID_ARG, TAG, "invalid interrupt priority:%d", config->intr_priority); } bool allow_pd = (config->flags.allow_pd == 1) || (config->flags.backup_before_sleep == 1); #if !SOC_TIMER_SUPPORT_SLEEP_RETENTION ESP_RETURN_ON_FALSE(allow_pd == false, ESP_ERR_NOT_SUPPORTED, TAG, "not able to power down in light sleep"); #endif // SOC_TIMER_SUPPORT_SLEEP_RETENTION timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer"); // register timer to the group (because one group can have several timers) ESP_GOTO_ON_ERROR(gptimer_register_to_group(timer), err, TAG, "register timer failed"); gptimer_group_t *group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; if (allow_pd) { #if GPTIMER_USE_RETENTION_LINK gptimer_create_retention_module(timer); #endif // GPTIMER_USE_RETENTION_LINK } // initialize HAL layer timer_hal_init(&timer->hal, group_id, timer_id); // select clock source, set clock resolution ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed"); // initialize counter value to zero timer_hal_set_counter_value(&timer->hal, 0); // set counting direction timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction); // interrupt register is shared by all timers in the same group portENTER_CRITICAL(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event portEXIT_CRITICAL(&group->spinlock); // initialize other members of timer timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; // put the timer driver to the init state atomic_init(&timer->fsm, GPTIMER_FSM_INIT); timer->direction = config->direction; timer->intr_priority = config->intr_priority; timer->flags.intr_shared = config->flags.intr_shared; ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, %zu bytes used", group_id, timer_id, timer, heap_caps_get_allocated_size(timer)); *ret_timer = timer; return ESP_OK; err: if (timer) { gptimer_destroy(timer); } return ret; } esp_err_t gptimer_del_timer(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); gptimer_group_t *group = timer->group; gptimer_clock_source_t clk_src = timer->clk_src; int group_id = group->group_id; int timer_id = timer->timer_id; timer_hal_context_t *hal = &timer->hal; ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id); // disable the source clock GPTIMER_CLOCK_SRC_ATOMIC() { timer_ll_enable_clock(hal->dev, hal->timer_id, false); } timer_hal_deinit(hal); // recycle memory resource ESP_RETURN_ON_ERROR(gptimer_destroy(timer), TAG, "destroy gptimer failed"); switch (clk_src) { #if SOC_TIMER_GROUP_SUPPORT_RC_FAST case GPTIMER_CLK_SRC_RC_FAST: periph_rtc_dig_clk8m_disable(); break; #endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST default: break; } return ESP_OK; } esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value) { if (timer == NULL) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL_SAFE(&timer->spinlock); timer_hal_set_counter_value(&timer->hal, value); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value) { if (timer == NULL || value == NULL) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL_SAFE(&timer->spinlock); *value = timer_hal_capture_and_get_counter_value(&timer->hal); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_get_resolution(gptimer_handle_t timer, uint32_t *out_resolution) { ESP_RETURN_ON_FALSE(timer && out_resolution, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); *out_resolution = timer->resolution_hz; return ESP_OK; } esp_err_t gptimer_get_captured_count(gptimer_handle_t timer, uint64_t *value) { if (timer == NULL || value == NULL) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL_SAFE(&timer->spinlock); *value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data) { gptimer_group_t *group = NULL; ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; #if CONFIG_GPTIMER_ISR_CACHE_SAFE if (cbs->on_alarm) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM"); } if (user_data) { ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM"); } #endif // lazy install interrupt service if (!timer->intr) { ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); // if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t` int isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED | GPTIMER_INTR_ALLOC_FLAGS : GPTIMER_INTR_ALLOC_FLAGS; if (timer->intr_priority) { isr_flags |= 1 << (timer->intr_priority); } ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], isr_flags, (uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id), gptimer_default_isr, timer, &timer->intr), TAG, "install interrupt service failed"); } // enable/disable GPTimer interrupt events portENTER_CRITICAL(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm != NULL); // enable timer interrupt portEXIT_CRITICAL(&group->spinlock); timer->on_alarm = cbs->on_alarm; timer->user_ctx = user_data; return ESP_OK; } esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config) { if (timer == NULL) { return ESP_ERR_INVALID_ARG; } if (config) { #if CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM // when the function is placed in IRAM, we expect the config struct is also placed in internal RAM // if the cache is disabled, the function can still access the config struct if (esp_ptr_internal(config) == false) { return ESP_ERR_INVALID_ARG; } #endif // When auto_reload is enabled, alarm_count should not be equal to reload_count bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count; if (valid_auto_reload == false) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL_SAFE(&timer->spinlock); timer->reload_count = config->reload_count; timer->alarm_count = config->alarm_count; timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm; timer->flags.alarm_en = true; timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count); timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { portENTER_CRITICAL_SAFE(&timer->spinlock); timer->flags.auto_reload_on_alarm = false; timer->flags.alarm_en = false; portEXIT_CRITICAL_SAFE(&timer->spinlock); } portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_enable(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // the only acceptable FSM change: init->enable gptimer_fsm_t expected_fsm = GPTIMER_FSM_INIT; ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE), ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); // acquire power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire pm_lock failed"); } // enable interrupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed"); } return ESP_OK; } esp_err_t gptimer_disable(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // the only acceptable FSM change: enable->init gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE; ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_INIT), ESP_ERR_INVALID_STATE, TAG, "timer not in enable state"); // disable interrupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed"); } // release power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release pm_lock failed"); } return ESP_OK; } esp_err_t gptimer_start(gptimer_handle_t timer) { if (timer == NULL) { return ESP_ERR_INVALID_ARG; } // if the timer is already started, do nothing if (atomic_load(&timer->fsm) == GPTIMER_FSM_RUN) { return ESP_OK; } gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE; if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_RUN_WAIT)) { // the register used by the following LL functions are shared with other API, // which is possible to run along with this function, so we need to protect portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); // Note here, if the alarm target is set very close to the current counter value // an alarm interrupt may be triggered very quickly after we start the timer timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true); atomic_store(&timer->fsm, GPTIMER_FSM_RUN); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { // return error if the timer is not in the expected state return ESP_ERR_INVALID_STATE; } return ESP_OK; } esp_err_t gptimer_stop(gptimer_handle_t timer) { if (timer == NULL) { // not printing error message here because the return value already indicates the error well return ESP_ERR_INVALID_ARG; } // if the timer is not started, do nothing if (atomic_load(&timer->fsm) == GPTIMER_FSM_ENABLE) { return ESP_OK; } gptimer_fsm_t expected_fsm = GPTIMER_FSM_RUN; if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE_WAIT)) { // disable counter, alarm, auto-reload portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false); atomic_store(&timer->fsm, GPTIMER_FSM_ENABLE); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { // return error if the timer is not in the expected state return ESP_ERR_INVALID_STATE; } return ESP_OK; } static void gptimer_default_isr(void *args) { bool need_yield = false; gptimer_t *timer = (gptimer_t *)args; gptimer_group_t *group = timer->group; gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm; uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev); if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) { // Note: when alarm event happens, the alarm will be disabled automatically by hardware gptimer_alarm_event_data_t edata = { .count_value = timer_hal_capture_and_get_counter_value(&timer->hal), .alarm_value = timer->alarm_count, }; portENTER_CRITICAL_ISR(&group->spinlock); timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id)); // for auto-reload, we need to re-enable the alarm manually if (timer->flags.auto_reload_on_alarm) { timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true); } portEXIT_CRITICAL_ISR(&group->spinlock); if (on_alarm_cb) { if (on_alarm_cb(timer, &edata, timer->user_ctx)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } }