// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "regi2c_ctrl.h" #include "esp_attr.h" #include "soc/adc_periph.h" #include "hal/adc_types.h" #include "soc/apb_saradc_struct.h" #include "soc/apb_saradc_reg.h" #include "soc/rtc_cntl_struct.h" #include "soc/rtc_cntl_reg.h" #include "hal/hal_defs.h" #ifdef __cplusplus extern "C" { #endif #define ADC_LL_CLKM_DIV_NUM_DEFAULT 15 #define ADC_LL_CLKM_DIV_B_DEFAULT 1 #define ADC_LL_CLKM_DIV_A_DEFAULT 0 typedef enum { ADC_NUM_1 = 0, /*!< SAR ADC 1 */ ADC_NUM_2 = 1, /*!< SAR ADC 2 */ ADC_NUM_MAX, } adc_ll_num_t; typedef enum { ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */ ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */ ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */ ADC_POWER_MAX, /*!< For parameter check. */ } adc_ll_power_t; typedef enum { ADC_RTC_DATA_OK = 0, ADC_RTC_CTRL_UNSELECTED = 1, ADC_RTC_CTRL_BREAK = 2, ADC_RTC_DATA_FAIL = -1, } adc_ll_rtc_raw_data_t; //These values should be set according to the HW typedef enum { ADC_LL_INTR_THRES1_LOW = BIT(26), ADC_LL_INTR_THRES0_LOW = BIT(27), ADC_LL_INTR_THRES1_HIGH = BIT(28), ADC_LL_INTR_THRES0_HIGH = BIT(29), ADC_LL_INTR_ADC2_DONE = BIT(30), ADC_LL_INTR_ADC1_DONE = BIT(31), } adc_ll_intr_t; FLAG_ATTR(adc_ll_intr_t) /** * @brief ADC controller type selection. * * @note For ADC2, use the force option with care. The system power consumption detection will use ADC2. * If it is forced to switch to another controller, it may cause the system to obtain incorrect values. * @note Normally, there is no need to switch the controller manually. */ typedef enum { ADC_CTRL_RTC = 0, /*!> offset)); // Clear old data tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back } /** * Reset the pattern table pointer, then take the measurement rule from table header in next measurement. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n) { APB_SARADC.ctrl.sar_patt_p_clear = 1; APB_SARADC.ctrl.sar_patt_p_clear = 0; } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: 0 ~ 4. */ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle) { APB_SARADC.ctrl.wait_arb_cycle = cycle; } /** * ADC Digital controller output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert } } /** * Set the interval clock cycle for the digital controller to trigger the measurement. * Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. * * @note The trigger interval should not be smaller than the sampling time of the SAR ADC. * @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095. */ static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle) { APB_SARADC.ctrl2.timer_target = cycle; } /** * Enable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_enable(void) { APB_SARADC.ctrl2.timer_en = 1; } /** * Disable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_disable(void) { APB_SARADC.ctrl2.timer_en = 0; } /** * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock. * Expression: controller_clk = APLL/APB * (div_num + div_b / div_a). * * @param div_num Division factor. Range: 1 ~ 255. * @param div_b Division factor. Range: 1 ~ 63. * @param div_a Division factor. Range: 0 ~ 63. */ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num); APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b; APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a; } /** * Enable clock and select clock source for ADC digital controller. * * @param use_apll true: use APLL clock; false: use APB clock. */ static inline void adc_ll_digi_controller_clk_enable(bool use_apll) { if (use_apll) { APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock } else { APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock } APB_SARADC.ctrl.sar_clk_gated = 1; } /** * Disable clock for ADC digital controller. */ static inline void adc_ll_digi_controller_clk_disable(void) { APB_SARADC.ctrl.sar_clk_gated = 0; } /** * Reset adc digital controller filter. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n) { APB_SARADC.filter_ctrl0.filter_reset = 1; } /** * Set adc digital controller filter factor. * * @note If the channel info is not supported, the filter function will not be enabled. * @param idx ADC filter unit. * @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter) { if (idx == ADC_DIGI_FILTER_IDX0) { APB_SARADC.filter_ctrl0.filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7); APB_SARADC.filter_ctrl1.filter_factor0 = filter->mode; } else if (idx == ADC_DIGI_FILTER_IDX1) { APB_SARADC.filter_ctrl0.filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7); APB_SARADC.filter_ctrl1.filter_factor1 = filter->mode; } } /** * Get adc digital controller filter factor. * * @param adc_n ADC unit. * @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter) { if (idx == ADC_DIGI_FILTER_IDX0) { filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel0 >> 3) & 0x1; filter->channel = APB_SARADC.filter_ctrl0.filter_channel0 & 0x7; filter->mode = APB_SARADC.filter_ctrl1.filter_factor0; } else if (idx == ADC_DIGI_FILTER_IDX1) { filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel1 >> 3) & 0x1; filter->channel = APB_SARADC.filter_ctrl0.filter_channel1 & 0x7; filter->mode = APB_SARADC.filter_ctrl1.filter_factor1; } } /** * Disable adc digital controller filter. * Filtering the ADC data to obtain smooth data at higher sampling rates. * * @note If the channel info is not supported, the filter function will not be enabled. * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx) { if (idx == ADC_DIGI_FILTER_IDX0) { APB_SARADC.filter_ctrl0.filter_channel0 = 0xF; APB_SARADC.filter_ctrl1.filter_factor0 = 0; } else if (idx == ADC_DIGI_FILTER_IDX1) { APB_SARADC.filter_ctrl0.filter_channel1 = 0xF; APB_SARADC.filter_ctrl1.filter_factor1 = 0; } } /** * Set monitor mode of adc digital controller. * * @note If the channel info is not supported, the monitor function will not be enabled. * @param adc_n ADC unit. * @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt. * false: If ADC_OUT < threshold, Generates monitor interrupt. */ static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg) { if (idx == ADC_DIGI_MONITOR_IDX0) { APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7); APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold; APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold; } else { // ADC_DIGI_MONITOR_IDX1 APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7); APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold; APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold; } } /** * Enable/disable monitor of adc digital controller. * * @note If the channel info is not supported, the monitor function will not be enabled. * @param adc_n ADC unit. */ static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx) { if (idx == ADC_DIGI_MONITOR_IDX0) { APB_SARADC.thres0_ctrl.thres0_channel = 0xF; } else { // ADC_DIGI_MONITOR_IDX1 APB_SARADC.thres1_ctrl.thres1_channel = 0xF; } } /** * Set DMA eof num of adc digital controller. * If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated. * * @param num eof num of DMA. */ static inline void adc_ll_digi_dma_set_eof_num(uint32_t num) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num); } /** * Enable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_enable(void) { APB_SARADC.dma_conf.apb_adc_trans = 1; } /** * Disable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_disable(void) { APB_SARADC.dma_conf.apb_adc_trans = 0; } /** * Reset adc digital controller. */ static inline void adc_ll_digi_reset(void) { APB_SARADC.dma_conf.apb_adc_reset_fsm = 1; APB_SARADC.dma_conf.apb_adc_reset_fsm = 0; } /*--------------------------------------------------------------- PWDET(Power detect) controller setting ---------------------------------------------------------------*/ /** * Set adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @param cct Range: 0 ~ 7. */ static inline void adc_ll_pwdet_set_cct(uint32_t cct) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct; } /** * Get adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @return cct Range: 0 ~ 7. */ static inline uint32_t adc_ll_pwdet_get_cct(void) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ return RTCCNTL.sensor_ctrl.sar2_pwdet_cct; } /** * Analyze whether the obtained raw data is correct. * ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data. * * @param adc_n ADC unit. * @param raw_data ADC raw data input (convert value). * @return * - 0: The data is correct to use. * - -1: The data is invalid. */ static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data) { if (adc_n == ADC_NUM_1) { return ADC_RTC_DATA_OK; } //The raw data API returns value without channel information. Read value directly from the register if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) { return ADC_RTC_DATA_FAIL; } return ADC_RTC_DATA_OK; } /*--------------------------------------------------------------- Common setting ---------------------------------------------------------------*/ /** * Set ADC module power management. * * @param manage Set ADC power status. */ static inline void adc_ll_set_power_manage(adc_ll_power_t manage) { // /* Bit1 0:Fsm 1: SW mode // Bit0 0:SW mode power down 1: SW mode power on */ if (manage == ADC_POWER_SW_ON) { APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 3; } else if (manage == ADC_POWER_BY_FSM) { APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 0; } else if (manage == ADC_POWER_SW_OFF) { APB_SARADC.ctrl.xpd_sar_force = 2; APB_SARADC.ctrl.sar_clk_gated = 0; } } /** * Get ADC module power management. * * @return * - ADC power status. */ static inline adc_ll_power_t adc_ll_get_power_manage(void) { /* Bit1 0:Fsm 1: SW mode Bit0 0:SW mode power down 1: SW mode power on */ adc_ll_power_t manage; if (APB_SARADC.ctrl.xpd_sar_force == 3) { manage = ADC_POWER_SW_ON; } else if (APB_SARADC.ctrl.xpd_sar_force == 2) { manage = ADC_POWER_SW_OFF; } else { manage = ADC_POWER_BY_FSM; } return manage; } /** * Set ADC2 module arbiter work mode. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * * @param mode Refer to `adc_arbiter_mode_t`. */ static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode) { if (mode == ADC_ARB_MODE_FIX) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1; } else if (mode == ADC_ARB_MODE_LOOP) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter. } } /** * Set ADC2 module controller priority in arbiter. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0); * * @param pri_rtc RTC controller priority. Range: 0 ~ 2. * @param pri_dig Digital controller priority. Range: 0 ~ 2. * @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2. */ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet) { if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc; APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet; } /* Should select highest priority controller. */ if (pri_rtc > pri_dig) { if (pri_rtc > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } else { if (pri_dig > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } } /* ADC calibration code. */ /** * @brief Set common calibration configuration. Should be shared with other parts (PWDET). */ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1); } } /** * Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. * @param channel adc channel number. * @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage. * false: Use IO external voltage as calibration voltage. */ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd) { /* Enable/disable internal connect GND (for calibration). */ if (adc_n == ADC_NUM_1) { if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } } else { if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } } /** * Resume register status after calibration. * * @param adc_n ADC index number. */ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } /** * Set the calibration result to ADC. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. */ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param) { uint8_t msb = param >> 8; uint8_t lsb = param & 0xFF; if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb); } } /* Temp code end. */ /** * Output ADCn inter reference voltage to ADC2 channels. * * This function routes the internal reference voltage of ADCn to one of * ADC1's channels. This reference voltage can then be manually measured * for calibration purposes. * * @param[in] adc ADC unit select * @param[in] channel ADC1 channel number * @param[in] en Enable/disable the reference voltage output */ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en) { if (en) { REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3); SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU); REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE); APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF; APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF; APB_SARADC.onetime_sample.adc1_onetime_sample = 1; APB_SARADC.onetime_sample.onetime_channel = channel; SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU); if (adc == ADC_NUM_1) { /* Config test mux to route v_ref to ADC1 Channels */ REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1); } else { /* Config test mux to route v_ref to ADC2 Channels */ REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0); } } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0); APB_SARADC.onetime_sample.adc1_onetime_sample = 0; APB_SARADC.onetime_sample.onetime_channel = 0xf; REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0); REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE); } } /*--------------------------------------------------------------- Single Read ---------------------------------------------------------------*/ /** * Trigger single read * * @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle, * otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow. * This hardware limitation will be removed in future versions. */ static inline void adc_ll_onetime_start(bool val) { APB_SARADC.onetime_sample.onetime_start = val; } static inline void adc_ll_onetime_set_channel(adc_ll_num_t unit, adc_channel_t channel) { APB_SARADC.onetime_sample.onetime_channel = ((unit << 3) | channel); } static inline void adc_ll_onetime_set_atten(adc_atten_t atten) { APB_SARADC.onetime_sample.onetime_atten = atten; } static inline void adc_ll_intr_enable(adc_ll_intr_t mask) { APB_SARADC.int_ena.val |= mask; } static inline void adc_ll_intr_disable(adc_ll_intr_t mask) { APB_SARADC.int_ena.val &= ~mask; } static inline void adc_ll_intr_clear(adc_ll_intr_t mask) { APB_SARADC.int_clr.val |= mask; } static inline bool adc_ll_intr_get_raw(adc_ll_intr_t mask) { return (APB_SARADC.int_raw.val & mask); } static inline bool adc_ll_intr_get_status(adc_ll_intr_t mask) { return (APB_SARADC.int_st.val & mask); } static inline void adc_ll_onetime_sample_enable(adc_ll_num_t adc_n, bool enable) { if (adc_n == ADC_NUM_1) { APB_SARADC.onetime_sample.adc1_onetime_sample = enable; } else { APB_SARADC.onetime_sample.adc2_onetime_sample = enable; } } static inline uint32_t adc_ll_adc1_read(void) { //On ESP32C3, valid data width is 12-bit return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff); } static inline uint32_t adc_ll_adc2_read(void) { //On ESP32C3, valid data width is 12-bit return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff); } #ifdef __cplusplus } #endif