/* * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_sleep.h" #include "esp_clk_internal.h" #include "esp32p4/rom/ets_sys.h" #include "esp32p4/rom/uart.h" #include "soc/soc.h" #include "soc/rtc.h" #include "soc/rtc_periph.h" #include "soc/i2s_reg.h" #include "soc/hp_sys_clkrst_reg.h" #include "esp_cpu.h" #include "mspi_timing_tuning_configs.h" #include "soc/hp_sys_clkrst_reg.h" #include "soc/lp_clkrst_reg.h" #include "soc/lp_system_reg.h" #include "soc/sdmmc_reg.h" #include "soc/spi_mem_c_reg.h" #include "soc/spi_mem_s_reg.h" #include "soc/usb_serial_jtag_reg.h" #include "soc/trace_struct.h" #include "hal/aes_ll.h" #include "hal/assist_debug_ll.h" #include "hal/ds_ll.h" #include "hal/ecc_ll.h" #include "hal/etm_ll.h" #include "hal/gdma_ll.h" #include "hal/hmac_ll.h" #include "hal/mipi_csi_ll.h" #include "hal/mipi_dsi_brg_ll.h" #include "hal/mpi_ll.h" #include "hal/pau_ll.h" #include "hal/parlio_ll.h" #include "hal/psram_ctrlr_ll.h" #include "hal/rtc_io_ll.h" #include "hal/sha_ll.h" #include "hal/spi_ll.h" #include "hal/spimem_flash_ll.h" #include "hal/timer_ll.h" #include "hal/uart_ll.h" #include "hal/usb_serial_jtag_ll.h" #include "hal/usb_utmi_ll.h" #include "hal/wdt_hal.h" #include "hal/bitscrambler_ll.h" #include "esp_private/esp_modem_clock.h" #include "esp_private/esp_sleep_internal.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_clk.h" #include "esp_private/esp_pmu.h" #include "esp_rom_uart.h" #include "esp_rom_sys.h" /* Number of cycles to wait from the 32k XTAL oscillator to consider it running. * Larger values increase startup delay. Smaller values may cause false positive * detection (i.e. oscillator runs for a few cycles and then stops). */ #define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES #define MHZ (1000000) static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src); static const char *TAG = "clk"; void IRAM_ATTR esp_rtc_init(void) { #if SOC_PMU_SUPPORTED pmu_init(); #endif //SOC_PMU_SUPPORTED } __attribute__((weak)) void esp_clk_init(void) { assert(rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_40M); rtc_clk_8m_enable(true); #if CONFIG_RTC_FAST_CLK_SRC_RC_FAST rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST); #elif CONFIG_RTC_FAST_CLK_SRC_XTAL rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_XTAL); esp_sleep_sub_mode_config(ESP_SLEEP_RTC_FAST_USE_XTAL_MODE, true); #else #error "No RTC fast clock source configured" #endif #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed. // If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times. // Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec). // This prevents excessive delay before resetting in case the supply voltage is drawdown. // (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec). wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT(); uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); //Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif #if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS) select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K); #else select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW); #endif #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // After changing a frequency WDT timeout needs to be set for new frequency. stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif rtc_cpu_freq_config_t old_config, new_config; rtc_clk_cpu_freq_get_config(&old_config); const uint32_t old_freq_mhz = old_config.freq_mhz; const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ; bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config); assert(res); // Wait for UART TX to finish, otherwise some UART output will be lost // when switching APB frequency if (CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM != -1) { esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM); } if (res) { rtc_clk_cpu_freq_set_config(&new_config); } // Re calculate the ccount to make time calculation correct. esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz); } static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src) { uint32_t cal_val = 0; /* number of times to repeat 32k XTAL calibration * before giving up and switching to the internal RC */ int retry_32k_xtal = 3; do { if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) { /* 32k XTAL oscillator needs to be enabled and running before it can * be used. Hardware doesn't have a direct way of checking if the * oscillator is running. Here we use rtc_clk_cal function to count * the number of main XTAL cycles in the given number of 32k XTAL * oscillator cycles. If the 32k XTAL has not started up, calibration * will time out, returning 0. */ ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up"); rtc_cal_sel_t cal_sel = 0; if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) { rtc_clk_32k_enable(true); cal_sel = RTC_CAL_32K_XTAL; } // When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup. if (SLOW_CLK_CAL_CYCLES > 0) { cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES); if (cal_val == 0) { if (retry_32k_xtal-- > 0) { continue; } ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator"); rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW; } } } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) { rtc_clk_rc32k_enable(true); } rtc_clk_slow_src_set(rtc_slow_clk_src); // Disable unused clock sources after clock source switching is complete. // Regardless of the clock source selection, the internal 136K clock source will always keep on. if (rtc_slow_clk_src != SOC_RTC_SLOW_CLK_SRC_XTAL32K) { rtc_clk_32k_enable(false); } if (rtc_slow_clk_src != SOC_RTC_SLOW_CLK_SRC_RC32K) { rtc_clk_rc32k_enable(false); } if (SLOW_CLK_CAL_CYCLES > 0) { /* TODO: 32k XTAL oscillator has some frequency drift at startup. * Improve calibration routine to wait until the frequency is stable. */ cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES); } else { const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL; cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz()); } } while (cal_val == 0); ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %" PRIu32, cal_val); esp_clk_slowclk_cal_set(cal_val); } void rtc_clk_select_rtc_slow_clk(void) { select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K); } /* This function is not exposed as an API at this point. * All peripheral clocks are default enabled after chip is powered on. * This function disables some peripheral clocks when cpu starts. * These peripheral clocks are enabled when the peripherals are initialized * and disabled when they are de-initialized. */ __attribute__((weak)) void esp_perip_clk_init(void) { soc_rtc_slow_clk_src_t rtc_slow_clk_src = rtc_clk_slow_src_get(); if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) { esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_AUTO); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_XTAL_32K_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_RC_32K_CLK_EN); esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_AUTO); } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) { // RC slow (150K) always ON esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_AUTO); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_RC_32K_CLK_EN); esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_ON); } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) { // RC slow (150K) always ON esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_AUTO); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_XTAL_32K_CLK_EN); esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_ON); } soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0); // HP modules related clock control if ((rst_reason == RESET_REASON_CHIP_POWER_ON) || (rst_reason == RESET_REASON_CORE_PMU_PWR_DOWN) || (rst_reason == RESET_REASON_SYS_BROWN_OUT) || (rst_reason == RESET_REASON_SYS_RWDT) || (rst_reason == RESET_REASON_SYS_SUPER_WDT) || (rst_reason == RESET_REASON_CORE_SW) || (rst_reason == RESET_REASON_CORE_MWDT) || (rst_reason == RESET_REASON_CORE_RWDT) || (rst_reason == RESET_REASON_CORE_PWR_GLITCH) || (rst_reason == RESET_REASON_CORE_EFUSE_CRC) || (rst_reason == RESET_REASON_CORE_USB_JTAG) || (rst_reason == RESET_REASON_CORE_USB_UART) ) { // hp_sys_clkrst register gets reset only if chip reset or pmu powers down hp // but at core reset and above, we will also disable HP modules' clock gating to save power consumption _gdma_ll_enable_bus_clock(0, false); _gdma_ll_enable_bus_clock(1, false); _pau_ll_enable_bus_clock(false); _parlio_ll_enable_bus_clock(0, false); _etm_ll_enable_bus_clock(0, false); _bitscrambler_ll_set_bus_clock_sys_enable(false); _bitscrambler_ll_set_bus_clock_rx_enable(false); _bitscrambler_ll_set_bus_clock_tx_enable(false); // Non-Console UART #if CONFIG_ESP_CONSOLE_UART_NUM != 0 _uart_ll_enable_bus_clock(UART_NUM_0, false); _uart_ll_sclk_disable(&UART0); #elif CONFIG_ESP_CONSOLE_UART_NUM != 1 _uart_ll_enable_bus_clock(UART_NUM_1, false); _uart_ll_sclk_disable(&UART1); #endif _uart_ll_enable_bus_clock(UART_NUM_2, false); _uart_ll_sclk_disable(&UART2); _uart_ll_enable_bus_clock(UART_NUM_3, false); _uart_ll_sclk_disable(&UART3); _uart_ll_enable_bus_clock(UART_NUM_4, false); _uart_ll_sclk_disable(&UART4); _timer_ll_enable_bus_clock(0, false); _timer_ll_enable_clock(&TIMERG0, 0, false); _timer_ll_enable_clock(&TIMERG0, 1, false); _timer_ll_enable_bus_clock(1, false); _timer_ll_enable_clock(&TIMERG1, 0, false); _timer_ll_enable_clock(&TIMERG1, 1, false); mipi_dsi_brg_ll_enable_ref_clock(&MIPI_DSI_BRIDGE, false); _mipi_csi_ll_enable_host_bus_clock(0, false); REG_CLR_BIT(SDHOST_CLK_EDGE_SEL_REG, SDHOST_CCLK_EN); #if CONFIG_APP_BUILD_TYPE_PURE_RAM_APP _spimem_ctrlr_ll_unset_clock(0); #endif #if !MSPI_TIMING_FLASH_NEEDS_TUNING REG_CLR_BIT(SPI_MEM_C_TIMING_CALI_REG, SPI_MEM_C_TIMING_CLK_ENA); REG_CLR_BIT(SPI_MEM_C_SMEM_TIMING_CALI_REG, SPI_MEM_C_SMEM_TIMING_CLK_ENA); #endif #if !MSPI_TIMING_PSRAM_NEEDS_TUNING REG_CLR_BIT(SPI_MEM_S_TIMING_CALI_REG, SPI_MEM_S_TIMING_CLK_ENA); REG_CLR_BIT(SPI_MEM_S_SMEM_TIMING_CALI_REG, SPI_MEM_S_SMEM_TIMING_CLK_ENA); #endif #if !CONFIG_SPIRAM _psram_ctrlr_ll_enable_core_clock(PSRAM_CTRLR_LL_MSPI_ID_2, false); _psram_ctrlr_ll_enable_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2, false); #endif _spi_ll_enable_bus_clock(SPI2_HOST, false); _spi_ll_enable_bus_clock(SPI3_HOST, false); _spi_ll_enable_clock(SPI2_HOST, false); _spi_ll_enable_clock(SPI3_HOST, false); #if !CONFIG_ESP_SYSTEM_HW_PC_RECORD /* Disable ASSIST Debug module clock if PC recoreding function is not used, * if stack guard function needs it, it will be re-enabled at esp_hw_stack_guard_init */ _assist_debug_ll_enable_bus_clock(false); #endif // Trace & Bus Monitor (0) TRACE0.clock_gate.clk_en = 0; TRACE1.clock_gate.clk_en = 0; REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_L2MEMMON_MEM_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_L2MEMMON_SYS_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_TCMMON_SYS_CLK_EN); // Crypto Modules _aes_ll_enable_bus_clock(false); _ds_ll_enable_bus_clock(false); _ecc_ll_enable_bus_clock(false); _hmac_ll_enable_bus_clock(false); _mpi_ll_enable_bus_clock(false); _sha_ll_enable_bus_clock(false); // USB1.1 REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG11_BK_SYS_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG11_48M_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_USB_OTG11_SYS_CLK_EN); // USB2.0 _usb_utmi_ll_enable_bus_clock(false); REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG20_BK_SYS_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL1_REG, LP_CLKRST_USB_OTG20_ULPI_CLK_EN); // UHCI REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_UHCI_APB_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_UHCI_SYS_CLK_EN); #if !CONFIG_USJ_ENABLE_USB_SERIAL_JTAG && !CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG_ENABLED // Disable USB-Serial-JTAG clock and it's pad if not used usb_serial_jtag_ll_phy_enable_pad(false); _usb_serial_jtag_ll_enable_bus_clock(false); REG_SET_BIT(USB_SERIAL_JTAG_MEM_CONF_REG, USB_SERIAL_JTAG_USB_MEM_PD); REG_CLR_BIT(USB_SERIAL_JTAG_MEM_CONF_REG, USB_SERIAL_JTAG_USB_MEM_CLK_EN); #endif } // HP modules' clock source gating control if ((rst_reason == RESET_REASON_CHIP_POWER_ON) || (rst_reason == RESET_REASON_CORE_PMU_PWR_DOWN)) { // Only safe to disable these clock source gatings if all HP modules clock configurations has been reset REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_REF_50M_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_REF_25M_CLK_EN); // 240M CLK is for Key Management use, should not be gated REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_160M_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_120M_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_80M_CLK_EN); REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_20M_CLK_EN); } // LP related clock control if ((rst_reason == RESET_REASON_CHIP_POWER_ON) || (rst_reason == RESET_REASON_SYS_SUPER_WDT) \ || (rst_reason == RESET_REASON_SYS_RWDT) || (rst_reason == RESET_REASON_SYS_BROWN_OUT)) { // lpperi,lp peripheral registers get reset for reset level equal or higher than system reset lp_uart_ll_sclk_disable(0); _lp_uart_ll_enable_bus_clock(0, false); _rtcio_ll_enable_io_clock(false); if (rst_reason == RESET_REASON_CHIP_POWER_ON) { // lp_aon_clkrst, lp_system registers get reset only if chip reset _uart_ll_enable_pad_sleep_clock(&UART0, false); _uart_ll_enable_pad_sleep_clock(&UART1, false); _uart_ll_enable_pad_sleep_clock(&UART2, false); _uart_ll_enable_pad_sleep_clock(&UART3, false); _uart_ll_enable_pad_sleep_clock(&UART4, false); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_PARLIO_TX_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_PARLIO_RX_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S2_MCLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S1_MCLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S0_MCLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_TX_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_RX_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_TXRX_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PLL_8M_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_AUDIO_PLL_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL2_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL1_CLK_EN); REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL0_CLK_EN); #if !CONFIG_SPIRAM_BOOT_INIT REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_MPLL_500M_CLK_EN); #endif REG_CLR_BIT(LP_SYSTEM_REG_HP_ROOT_CLK_CTRL_REG, LP_SYSTEM_REG_CPU_CLK_EN); } } }