mirror of
https://github.com/espressif/esp-idf.git
synced 2025-10-02 03:42:06 +00:00

- Dynamically switch the AES operation modes based on the buffer operating length - Shorter AES and SHA operations can now run faster and concurrently as well Closes https://github.com/espressif/esp-idf/issues/15914
750 lines
23 KiB
C
750 lines
23 KiB
C
/*
|
|
* \brief AES block and DMA hardware accelerated version
|
|
* Based on mbedTLS FIPS-197 compliant version.
|
|
*
|
|
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* SPDX-FileContributor: 2025 Espressif Systems (Shanghai) CO LTD
|
|
*/
|
|
/*
|
|
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
|
*
|
|
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
|
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "mbedtls/aes.h"
|
|
#include "esp_log.h"
|
|
#include "esp_crypto_lock.h"
|
|
#include "hal/aes_hal.h"
|
|
#include "esp_aes_internal.h"
|
|
#include "esp_crypto_periph_clk.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#if SOC_AES_GDMA
|
|
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
|
|
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
|
|
#elif SOC_AES_CRYPTO_DMA
|
|
#define AES_LOCK() esp_crypto_dma_lock_acquire()
|
|
#define AES_RELEASE() esp_crypto_dma_lock_release()
|
|
#include "hal/crypto_dma_ll.h"
|
|
#endif
|
|
|
|
static const char *TAG = "esp-aes";
|
|
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
#if CONFIG_IDF_TARGET_ESP32P4
|
|
#define AES_DMA_MODE_THRESHOLD 512
|
|
#else
|
|
#define AES_DMA_MODE_THRESHOLD 128
|
|
#endif
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
|
|
#if !SOC_AES_SUPPORT_DMA
|
|
#include <freertos/FreeRTOS.h>
|
|
|
|
/* AES uses a spinlock mux not a lock as the underlying block operation
|
|
only takes 208 cycles (to write key & compute block), +600 cycles
|
|
for DPORT protection but +3400 cycles again if you use a full sized lock.
|
|
|
|
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
|
period of time for bigger lengths. However at the moment this has to happen
|
|
anyway due to DPORT protection...
|
|
*/
|
|
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
#endif
|
|
|
|
void esp_aes_acquire_hardware( void )
|
|
{
|
|
/* Released by esp_aes_release_hardware()*/
|
|
#if SOC_AES_SUPPORT_DMA
|
|
AES_LOCK();
|
|
#else
|
|
portENTER_CRITICAL(&aes_spinlock);
|
|
#endif
|
|
esp_crypto_aes_enable_periph_clk(true);
|
|
}
|
|
|
|
/* Function to disable AES and Crypto DMA clocks and release locks */
|
|
void esp_aes_release_hardware( void )
|
|
{
|
|
esp_crypto_aes_enable_periph_clk(false);
|
|
#if SOC_AES_SUPPORT_DMA
|
|
AES_RELEASE();
|
|
#else
|
|
portEXIT_CRITICAL(&aes_spinlock);
|
|
#endif
|
|
}
|
|
|
|
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
|
unsigned char *output, unsigned char *iv, bool validate_iv)
|
|
{
|
|
if (!ctx) {
|
|
ESP_LOGE(TAG, "No AES context supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!input) {
|
|
ESP_LOGE(TAG, "No input supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!output) {
|
|
ESP_LOGE(TAG, "No output supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!valid_key_length(ctx)) {
|
|
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
|
}
|
|
|
|
if (validate_iv && !iv) {
|
|
ESP_LOGE(TAG, "No IV supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
/* Run a single 16 byte block of AES, using the hardware engine.
|
|
*
|
|
* Call only while holding esp_aes_acquire_hardware().
|
|
*
|
|
* The function esp_aes_block zeroises the output buffer in the case of following conditions:
|
|
* 1. If key is not written in the hardware
|
|
* 2. If the fault injection check failed
|
|
*/
|
|
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
|
{
|
|
uint32_t i0, i1, i2, i3;
|
|
const uint32_t *input_words = (uint32_t *)input;
|
|
uint32_t *output_words = (uint32_t *)output;
|
|
|
|
/* If no key is written to hardware yet, either the user hasn't called
|
|
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
|
know which mode to use - or a fault skipped the
|
|
key write to hardware. Treat this as a fatal error and zero the output block.
|
|
*/
|
|
if (ctx->key_in_hardware != ctx->key_bytes) {
|
|
mbedtls_platform_zeroize(output, 16);
|
|
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
|
}
|
|
i0 = input_words[0];
|
|
i1 = input_words[1];
|
|
i2 = input_words[2];
|
|
i3 = input_words[3];
|
|
|
|
#ifdef CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
|
esp_aes_enable_pseudo_rounds(CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH);
|
|
#endif /* CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC */
|
|
|
|
aes_hal_transform_block(input, output);
|
|
|
|
/* Physical security check: Verify the AES accelerator actually ran, and wasn't
|
|
skipped due to external fault injection while starting the peripheral.
|
|
|
|
Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
|
|
|
|
Bypassing this check requires at least one additional fault.
|
|
*/
|
|
if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
|
// calling zeroing functions to narrow the
|
|
// window for a double-fault of the abort step, here
|
|
memset(output, 0, 16);
|
|
mbedtls_platform_zeroize(output, 16);
|
|
abort();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
|
|
/*
|
|
* AES-ECB single block encryption
|
|
*/
|
|
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] )
|
|
{
|
|
return esp_aes_crypt_ecb(ctx, ESP_AES_ENCRYPT, input, output);
|
|
}
|
|
|
|
/*
|
|
* AES-ECB single block decryption
|
|
*/
|
|
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] )
|
|
{
|
|
return esp_aes_crypt_ecb(ctx, ESP_AES_DECRYPT, input, output);
|
|
}
|
|
|
|
/*
|
|
* AES-ECB block encryption/decryption
|
|
*/
|
|
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
|
int mode,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] )
|
|
{
|
|
// Use helper for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
|
|
|
#if SOC_AES_SUPPORT_DMA && !CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
|
ret = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
|
#else
|
|
ret = esp_aes_block(ctx, input, output);
|
|
#endif
|
|
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* AES-CBC buffer encryption/decryption
|
|
*/
|
|
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
// Use helpers for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* For CBC input length should be multiple of AES BLOCK BYTES */
|
|
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
|
|
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
|
|
}
|
|
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
|
|
#if SOC_AES_SUPPORT_DMA
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
if (length > AES_DMA_MODE_THRESHOLD) {
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
|
|
aes_hal_set_iv(iv);
|
|
|
|
ret = esp_aes_process_dma(ctx, input, output, length, NULL);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
aes_hal_read_iv(iv);
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
} else
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
#endif /* SOC_AES_SUPPORT_DMA */
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
{
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
|
|
|
uint32_t *output_words = (uint32_t *)output;
|
|
const uint32_t *input_words = (const uint32_t *)input;
|
|
uint32_t *iv_words = (uint32_t *)iv;
|
|
unsigned char temp[16];
|
|
|
|
if (mode == ESP_AES_DECRYPT) {
|
|
while (length > 0) {
|
|
memcpy(temp, input_words, 16);
|
|
ret = esp_aes_block(ctx, input_words, output_words);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
output_words[0] = output_words[0] ^ iv_words[0];
|
|
output_words[1] = output_words[1] ^ iv_words[1];
|
|
output_words[2] = output_words[2] ^ iv_words[2];
|
|
output_words[3] = output_words[3] ^ iv_words[3];
|
|
|
|
memcpy( iv_words, temp, 16 );
|
|
|
|
input_words += 4;
|
|
output_words += 4;
|
|
length -= 16;
|
|
}
|
|
} else { // ESP_AES_ENCRYPT
|
|
while (length > 0) {
|
|
|
|
output_words[0] = input_words[0] ^ iv_words[0];
|
|
output_words[1] = input_words[1] ^ iv_words[1];
|
|
output_words[2] = input_words[2] ^ iv_words[2];
|
|
output_words[3] = input_words[3] ^ iv_words[3];
|
|
|
|
ret = esp_aes_block(ctx, output_words, output_words);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
memcpy(iv_words, output_words, 16);
|
|
|
|
input_words += 4;
|
|
output_words += 4;
|
|
length -= 16;
|
|
}
|
|
}
|
|
ret = 0;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
|
|
cleanup:
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* AES-CFB8 buffer encryption/decryption
|
|
*/
|
|
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
unsigned char c;
|
|
unsigned char ov[17];
|
|
|
|
// Use helpers for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
esp_aes_acquire_hardware();
|
|
|
|
#if SOC_AES_SUPPORT_DMA
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
if (length > AES_DMA_MODE_THRESHOLD) {
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
|
|
|
|
/* The DMA engine will only output correct IV if it runs
|
|
full blocks of input in CFB8 mode
|
|
*/
|
|
if (block_bytes > 0) {
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
|
|
aes_hal_set_iv(iv);
|
|
|
|
ret = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
aes_hal_read_iv(iv);
|
|
|
|
length -= block_bytes;
|
|
input += block_bytes;
|
|
output += block_bytes;
|
|
}
|
|
|
|
// Process remaining bytes block-at-a-time in ECB mode
|
|
if (length > 0) {
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
|
|
|
while ( length-- ) {
|
|
memcpy( ov, iv, 16 );
|
|
|
|
ret = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
if ( mode == ESP_AES_DECRYPT ) {
|
|
ov[16] = *input;
|
|
}
|
|
|
|
c = *output++ = ( iv[0] ^ *input++ );
|
|
|
|
if ( mode == ESP_AES_ENCRYPT ) {
|
|
ov[16] = c;
|
|
}
|
|
memcpy( iv, ov + 1, 16 );
|
|
}
|
|
}
|
|
ret = 0;
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
} else
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
#endif /* SOC_AES_SUPPORT_DMA */
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
{
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
|
|
|
while (length--) {
|
|
memcpy( ov, iv, 16 );
|
|
ret = esp_aes_block(ctx, iv, iv);
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
if (mode == ESP_AES_DECRYPT) {
|
|
ov[16] = *input;
|
|
}
|
|
|
|
c = *output++ = (unsigned char)(iv[0] ^ *input++);
|
|
|
|
if (mode == ESP_AES_ENCRYPT) {
|
|
ov[16] = c;
|
|
}
|
|
|
|
memcpy( iv, ov + 1, 16 );
|
|
}
|
|
ret = 0;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
cleanup:
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* AES-CFB128 buffer encryption/decryption
|
|
*/
|
|
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
|
|
{
|
|
uint8_t c;
|
|
size_t n;
|
|
|
|
// Use helpers for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!iv_off) {
|
|
ESP_LOGE(TAG, "No IV offset supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
n = *iv_off;
|
|
|
|
#if SOC_AES_SUPPORT_DMA
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
if (length > AES_DMA_MODE_THRESHOLD) {
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
size_t stream_bytes = 0;
|
|
|
|
/* First process the *iv_off bytes
|
|
* which are pending from the previous call to this API
|
|
*/
|
|
while (n > 0 && length > 0) {
|
|
if (mode == ESP_AES_ENCRYPT) {
|
|
iv[n] = *output++ = *input++ ^ iv[n];
|
|
} else {
|
|
c = *input++;
|
|
*output++ = c ^ iv[n];
|
|
iv[n] = c;
|
|
}
|
|
n = (n + 1) % AES_BLOCK_BYTES;
|
|
length--;
|
|
}
|
|
|
|
if (length > 0) {
|
|
stream_bytes = length % AES_BLOCK_BYTES;
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
|
|
aes_hal_set_iv(iv);
|
|
|
|
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
if (stream_bytes == 0) {
|
|
// if we didn't need the partial 'stream block' then the new IV is in the IV register
|
|
aes_hal_read_iv(iv);
|
|
} else {
|
|
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
|
|
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
|
|
// block uses ciphertext as its IV input)
|
|
//
|
|
// Note: It may be more efficient to not process the partial block via DMA in this case.
|
|
if (mode == ESP_AES_DECRYPT) {
|
|
memcpy(iv, input + length - stream_bytes, stream_bytes);
|
|
}
|
|
}
|
|
esp_aes_release_hardware();
|
|
}
|
|
|
|
*iv_off = n + stream_bytes;
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
} else
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
#endif /* SOC_AES_SUPPORT_DMA */
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
{
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
|
|
|
if (mode == ESP_AES_DECRYPT) {
|
|
while (length--) {
|
|
if (n == 0) {
|
|
ret = esp_aes_block(ctx, iv, iv);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
c = *input++;
|
|
*output++ = (unsigned char)( c ^ iv[n] );
|
|
iv[n] = (unsigned char) c;
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
} else {
|
|
while (length--) {
|
|
if ( n == 0 ) {
|
|
ret = esp_aes_block(ctx, iv, iv);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
|
|
n = ( n + 1 ) & 0x0F;
|
|
}
|
|
}
|
|
|
|
esp_aes_release_hardware();
|
|
*iv_off = n;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
|
*/
|
|
|
|
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
size_t n;
|
|
|
|
// Use helpers for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!iv_off) {
|
|
ESP_LOGE(TAG, "No IV offset supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
n = *iv_off;
|
|
|
|
#if SOC_AES_SUPPORT_DMA
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
if (length > AES_DMA_MODE_THRESHOLD) {
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
size_t stream_bytes = 0;
|
|
|
|
/* If there is an offset then use the output of the previous AES block
|
|
(the updated IV) to calculate the new output */
|
|
while (n > 0 && length > 0) {
|
|
*output++ = (*input++ ^ iv[n]);
|
|
n = (n + 1) & 0xF;
|
|
length--;
|
|
}
|
|
|
|
if (length > 0) {
|
|
stream_bytes = (length % AES_BLOCK_BYTES);
|
|
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
|
|
aes_hal_set_iv(iv);
|
|
|
|
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
aes_hal_read_iv(iv);
|
|
esp_aes_release_hardware();
|
|
}
|
|
|
|
*iv_off = n + stream_bytes;
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
} else
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
#endif /* SOC_AES_SUPPORT_DMA */
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
{
|
|
// TODO: Check if this is necessary as the DMA version does not have this check
|
|
if (n > 15) {
|
|
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
|
}
|
|
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
|
|
|
while (length--) {
|
|
if (n == 0) {
|
|
ret = esp_aes_block(ctx, iv, iv);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
}
|
|
*output++ = *input++ ^ iv[n];
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
|
|
esp_aes_release_hardware();
|
|
*iv_off = n;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* AES-CTR buffer encryption/decryption
|
|
*/
|
|
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
|
size_t length,
|
|
size_t *nc_off,
|
|
unsigned char nonce_counter[16],
|
|
unsigned char stream_block[16],
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
size_t n;
|
|
|
|
// Use helper for validation
|
|
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!stream_block) {
|
|
ESP_LOGE(TAG, "No stream supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!nonce_counter) {
|
|
ESP_LOGE(TAG, "No nonce supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!nc_off) {
|
|
ESP_LOGE(TAG, "No nonce offset supplied");
|
|
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
|
}
|
|
|
|
n = *nc_off;
|
|
|
|
#if SOC_AES_SUPPORT_DMA
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
if (length > AES_DMA_MODE_THRESHOLD) {
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
/* Process any unprocessed bytes left in stream block from
|
|
last operation */
|
|
while (n > 0 && length > 0) {
|
|
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
|
|
n = (n + 1) & 0xF;
|
|
length--;
|
|
}
|
|
|
|
if (length > 0) {
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
|
|
|
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
|
|
aes_hal_set_iv(nonce_counter);
|
|
|
|
ret = esp_aes_process_dma(ctx, input, output, length, stream_block);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
aes_hal_read_iv(nonce_counter);
|
|
esp_aes_release_hardware();
|
|
}
|
|
|
|
*nc_off = n + (length % AES_BLOCK_BYTES);
|
|
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
} else
|
|
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
#endif /* SOC_AES_SUPPORT_DMA */
|
|
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
|
{
|
|
esp_aes_acquire_hardware();
|
|
ctx->key_in_hardware = 0;
|
|
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
|
|
|
int c, i;
|
|
while (length--) {
|
|
if (n == 0) {
|
|
ret = esp_aes_block(ctx, nonce_counter, stream_block);
|
|
if (ret != 0) {
|
|
esp_aes_release_hardware();
|
|
return ret;
|
|
}
|
|
|
|
for (i = 16; i > 0; i--) {
|
|
if (++nonce_counter[i - 1] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
c = *input++;
|
|
*output++ = (unsigned char)(c ^ stream_block[n]);
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
|
|
esp_aes_release_hardware();
|
|
*nc_off = n;
|
|
}
|
|
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
|
return 0;
|
|
}
|